Skip to main content
Log in

Sex Difference in the Association between Prior Fracture and Subsequent Risk of Incident Dementia: A Longitudinal Cohort Study

  • Original Research
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Background

A history of fracture has been associated with increased risk of dementia; however, it is uncertain whether sex difference exists in the association between prior fracture and subsequent risk of incident dementia.

Objectives

To investigate whether sex modified the relationship between prior fracture and subsequent risk of dementia.

Design

Prospective cohort study.

Setting

UK Biobank.

Participants

496,331 participants (54.6% women) free of dementia at baseline.

Measurements

History of fracture was self-reported via touchscreen questionnaires at baseline. The primary outcome was all-cause dementia.

Results

Both any fracture and fragility fracture were significantly associated with an increased risk of subsequent all-cause dementia in men (adjusted hazard ratio (HR): 1.28; 95% confidence interval (CI): 1.14–1.43; adjusted HR: 1.48; 95% CI: 1.18–1.87, respectively), but not in women (adjusted HR: 1.04; 95% CI 0.95–1.15; adjusted HR: 1.01; 95% CI: 0.87–1.18, respectively); and these sex-differences were significant (P interaction = 0.006; P interaction = 0.007, respectively). The sex differences in the impacts of different fracture sites (including upper limb, lower limb, spine, and multiple sites) were consistent on all-cause dementia.

Conclusions

This study demonstrated that prior fracture was associated with an increased risk of dementia in men but not in women, and the sex difference was significant. Previous fracture may be an important marker for identifying subsequent dementia in middle-aged and older men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data sharing: Data used in the present study were obtained from the UK Biobank under Application Number 90492. Further details can be found at https://www.ukbiobank.ac.uk.

References

  1. Sanabria-Castro A, Alvarado-Echeverría I, Monge-Bonilla C. Molecular Pathogenesis of Alzheimer’s Disease: An Update. Ann Neurosci. 2017;24(1):46–54. https://doi.org/10.1159/000464422

    Article  PubMed  PubMed Central  Google Scholar 

  2. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022;7(2):e105-e25. https://doi.org/10.1016/s2468-2667(21)00249-8

  3. Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1684–735. https://doi.org/10.1016/s0140-6736(18)31891-9

  4. Wang L, Yu W, Yin X, Cui L, Tang S, Jiang N, et al. Prevalence of Osteoporosis and Fracture in China: The China Osteoporosis Prevalence Study. JAMA Netw Open. 2021;4(8):e2121106. https://doi.org/10.1001/jamanetworkopen.2021.21106

    Article  PubMed  PubMed Central  Google Scholar 

  5. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev. 2021;2(9):e580-e92. https://doi.org/10.1016/s2666-7568(21)00172-0

  6. Hsu WWQ, Zhang X, Sing CW, Li GHY, Tan KCB, Kung AWC, et al. Hip Fracture as a Predictive Marker for the Risk of Dementia: A Population-Based Cohort Study. J Am Med Dir Assoc. 2022;23(10):1720.e1–.e9. https://doi.org/10.1016/j.jamda.2022.07.013

    Article  PubMed  Google Scholar 

  7. Shang X, Zhu Z, Zhang X, Huang Y, Zhang X, Liu J, et al. Association of a wide range of chronic diseases and apolipoprotein E4 genotype with subsequent risk of dementia in community-dwelling adults: A retrospective cohort study. EClinicalMedicine. 2022;45:101335. https://doi.org/10.1016/j.eclinm.2022.101335

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tsai CH, Chuang CS, Hung CH, Lin CL, Sung FC, Tang CH, et al. Fracture as an independent risk factor of dementia: a nationwide population-based cohort study. Medicine (Baltimore). 2014;93(26):e188. https://doi.org/10.1097/md.0000000000000188

    Article  PubMed  Google Scholar 

  9. Yang JR, Kuo CF, Chung TT, Liao HT. Increased Risk of Dementia in Patients with Craniofacial Trauma: A Nationwide Population-Based Cohort Study. World Neurosurg. 2019;125:e563–e74. https://doi.org/10.1016/j.wneu.2019.01.133

    Article  PubMed  Google Scholar 

  10. Kim SY, Lee JK, Lim JS, Park B, Choi HG. Increased risk of dementia after distal radius, hip, and spine fractures. Medicine (Baltimore). 2020;99(10):e19048. https://doi.org/10.1097/md.0000000000019048

    Article  PubMed  Google Scholar 

  11. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779. https://doi.org/10.1371/journal.pmed.1001779

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ollier W, Sprosen T, Peakman T. UK Biobank: from concept to reality. Pharmacogenomics. 2005;6(6):639–46. https://doi.org/10.2217/14622416.6.6.639

    Article  PubMed  Google Scholar 

  13. Palmer LJ. UK Biobank: bank on it. Lancet. 2007;369(9578):1980–2. https://doi.org/10.1016/s0140-6736(07)60924-6

    Article  PubMed  Google Scholar 

  14. Dafni U. Landmark analysis at the 25-year landmark point. Circ Cardiovasc Qual Outcomes. 2011;4(3):363–71. https://doi.org/10.1161/circoutcomes.110.957951

    Article  MathSciNet  PubMed  Google Scholar 

  15. Petermann-Rocha F, Lyall DM, Gray SR, Esteban-Cornejo I, Quinn TJ, Ho FK, et al. Associations between physical frailty and dementia incidence: a prospective study from UK Biobank. Lancet Healthy Longev. 2020;1(2):e58–e68. https://doi.org/10.1016/s2666-7568(20)30007-6

    Article  PubMed  Google Scholar 

  16. Paccou J, D’Angelo S, Rhodes A, Curtis EM, Raisi-Estabragh Z, Edwards M, et al. Prior fragility fracture and risk of incident ischaemic cardiovascular events: results from UK Biobank. Osteoporos Int. 2018;29(6):1321–8. https://doi.org/10.1007/s00198-018-4426-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Petermann-Rocha F, Ferguson LD, Gray SR, Rodríguez-Gómez I, Sattar N, Siebert S, et al. Association of sarcopenia with incident osteoporosis: a prospective study of 168,682 UK biobank participants. J Cachexia Sarcopenia Muscle. 2021;12(5):1179–88. https://doi.org/10.1002/jcsm.12757

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cao X, Li X, Zhang J, Sun X, Yang G, Zhao Y, et al. Associations Between Frailty and the Increased Risk of Adverse Outcomes Among 38,950 UK Biobank Participants With Prediabetes: Prospective Cohort Study. JMIR Public Health Surveill. 2023;9:ε45502. https://doi.org/10.2196/45502

    Article  Google Scholar 

  19. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–56. https://doi.org/10.1093/gerona/56.3.m146

    Article  CAS  PubMed  Google Scholar 

  20. Hanlon P, Nicholl BI, Jani BD, Lee D, McQueenie R, Mair FS. Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: a prospective analysis of 493 737 UK Biobank participants. Lancet Public Health. 2018;3(7):e323–e32. https://doi.org/10.1016/s2468-2667(18)30091-4

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim M, Paik MC, Jang J, Cheung YK, Willey J, Elkind MSV, et al. Cox proportional hazards models with left truncation and time-varying coefficient: Application of age at event as outcome in cohort studies. Biom J. 2017;59(3):405–19. https://doi.org/10.1002/bimj.201600003

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  22. Altman DG, Bland JM. Interaction revisited: the difference between two estimates. Bmj. 2003;326(7382):219. https://doi.org/10.1136/bmj.326.7382.219

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bale TL, Epperson CN. Sex as a Biological Variable: Who, What, When, Why, and How. Neuropsychopharmacology. 2017;42(2):386–96. https://doi.org/10.1038/npp.2016.215

    Article  CAS  PubMed  Google Scholar 

  24. Dal Forno G, Palermo MT, Donohue JE, Karagiozis H, Zonderman AB, Kawas CH. Depressive symptoms, sex, and risk for Alzheimer’s disease. Ann Neurol. 2005;57(3):381–7. https://doi.org/10.1002/ana.20405

    Article  PubMed  Google Scholar 

  25. Lorentzon M, Johansson H, Harvey NC, Liu E, Vandenput L, McCloskey EV, et al. Osteoporosis and fractures in women: the burden of disease. Climacteric. 2022;25(1):4–10. https://doi.org/10.1080/13697137.2021.1951206

    Article  CAS  PubMed  Google Scholar 

  26. Dören M, Samsioe G. Prevention of postmenopausal osteoporosis with oestrogen replacement therapy and associated compounds: update on clinical trials since 1995. Hum Reprod Update. 2000;6(5):419–26. https://doi.org/10.1093/humupd/6.5.419

    Article  PubMed  Google Scholar 

  27. Wong GRM, Lee EJA, Liaw QY, Rajaram H. The role of oestrogen therapy in reducing risk of Alzheimer’s disease: systematic review. BJPsych Open. 2023;9(6):e194. https://doi.org/10.1192/bjo.2023.579

    Article  PubMed  PubMed Central  Google Scholar 

  28. Su L, Liao Y, Liu X, Xie X, Li Y. Increased risk of dementia among people with a history of fractures: a systematic review and meta-analysis of population-based studies. Front Neurol. 2023;14:1185721. https://doi.org/10.3389/fneur.2023.1185721

    Article  PubMed  PubMed Central  Google Scholar 

  29. Group UBF-uaOW. UK Biobank Algorithmically defined outcomes2022.

  30. Jayakody O, Blumen HM, Breslin M, Ayers E, Lipton RB, Verghese J, et al. Longitudinal associations between falls and future risk of cognitive decline, the Motoric Cognitive Risk syndrome and dementia: the Einstein Ageing Study. Age Ageing. 2022;51(3). https://doi.org/10.1093/ageing/afac058

  31. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413–46. https://doi.org/10.1016/s0140-6736(20)30367-6

    Article  PubMed  PubMed Central  Google Scholar 

  32. Durazzo TC, Mattsson N, Weiner MW. Smoking and increased Alzheimer’s disease risk: a review of potential mechanisms. Alzheimers Dement. 2014;10(3 Suppl):S122–45. https://doi.org/10.1016/j.jalz.2014.04.009

    PubMed  PubMed Central  Google Scholar 

  33. Kanis JA, Johansson H, Johnell O, Oden A, De Laet C, Eisman JA, et al. Alcohol intake as a risk factor for fracture. Osteoporos Int. 2005;16(7):737–42. https://doi.org/10.1007/s00198-004-1734-y

    Article  PubMed  Google Scholar 

  34. Kelsey JL. Risk factors for osteoporosis and associated fractures. Public Health Rep. 1989;104 Suppl(Suppl):14–20.

    PubMed  PubMed Central  Google Scholar 

  35. Kostev K, Hadji P, Jacob L. Impact of Osteoporosis on the Risk of Dementia in Almost 60,000 Patients Followed in General Practices in Germany. J Alzheimers Dis. 2018;65(2):401–7. https://doi.org/10.3233/jad-180569

    Article  PubMed  Google Scholar 

  36. LaMonte MJ, Wactawski-Wende J, Larson JC, Mai X, Robbins JA, LeBoff MS, et al. Association of Physical Activity and Fracture Risk Among Postmenopausal Women. JAMA Netw Open. 2019;2(10):e1914084. https://doi.org/10.1001/jamanetworkopen.2019.14084

    Article  PubMed  PubMed Central  Google Scholar 

  37. Maravic M, Ostertag A, Urena P, Cohen-Solal M. Dementia is a major risk factor for hip fractures in patients with chronic kidney disease. Osteoporos Int. 2016;27(4):1665–9. https://doi.org/10.1007/s00198-015-3429-y

    Article  CAS  PubMed  Google Scholar 

  38. Sabia S, Fayosse A, Dumurgier J, Dugravot A, Akbaraly T, Britton A, et al. Alcohol consumption and risk of dementia: 23 year follow-up of Whitehall II cohort study. Bmj. 2018;362:k2927. https://doi.org/10.1136/bmj.k2927

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schürer C, Wallaschofski H, Nauck M, Völzke H, Schober HC, Hannemann A. Fracture Risk and Risk Factors for Osteoporosis. Dtsch Arztebl Int. 2015;112(21–22):365–71. https://doi.org/10.3238/arztebl.2015.0365

    PubMed  PubMed Central  Google Scholar 

  40. Stapledon CJM, Stamenkov R, Cappai R, Clark JM, Bourke A, Bogdan Solomon L, et al. Relationships between the Bone Expression of Alzheimer’s Disease-Related Genes, Bone Remodelling Genes and Cortical Bone Structure in Neck of Femur Fracture. Calcif Tissue Int. 2021;108(5):610–21. https://doi.org/10.1007/s00223-020-00796-y

    Article  CAS  PubMed  Google Scholar 

  41. Yoon M, Yang PS, Jin MN, Yu HT, Kim TH, Jang E, et al. Association of Physical Activity Level With Risk of Dementia in a Nationwide Cohort in Korea. JAMA Netw Open. 2021;4(12):e2138526. https://doi.org/10.1001/jamanetworkopen.2021.38526

    Article  PubMed  PubMed Central  Google Scholar 

  42. Barreto SM, Swerdlow AJ, Schoemaker MJ, Smith PG. Predictors of first nonfatal occupational injury following employment in a Brazilian steelworks. Scand J Work Environ Health. 2000;26(6):523–8. https://doi.org/10.5271/sjweh.577

    Article  CAS  PubMed  Google Scholar 

  43. Kica J, Rosenman KD. Surveillance for work-related skull fractures in Michigan. J Safety Res. 2014;51:49–56. https://doi.org/10.1016/j.jsr.2014.09.003

    Article  PubMed  Google Scholar 

  44. Marcinkowska M, Horst-Sikorska W, Wawrzyniak A, Michalak M, Sewerynek E. Prognostic factors in patients surgically treated after hip fracture. Endokrynol Pol. 2013;64(2):108–13.

    PubMed  Google Scholar 

  45. Alswat KA. Gender Disparities in Osteoporosis. J Clin Med Res. 2017;9(5):382–7. https://doi.org/10.14740/jocmr2970w

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rinonapoli G, Ruggiero C, Meccariello L, Bisaccia M, Ceccarini P, Caraffa A. Osteoporosis in Men: A Review of an Underestimated Bone Condition. Int J Mol Sci. 2021;22(4). https://doi.org/10.3390/ijms22042105

  47. Kojima G. Frailty as a Predictor of Future Falls Among Community-Dwelling Older People: A Systematic Review and Meta-Analysis. J Am Med Dir Assoc. 2015;16(12):1027–33. https://doi.org/10.1016/j.jamda.2015.06.018

    Article  PubMed  Google Scholar 

  48. Welmer AK, Rizzuto D, Laukka EJ, Johnell K, Fratiglioni L. Cognitive and Physical Function in Relation to the Risk of Injurious Falls in Older Adults: A Population-Based Study. J Gerontol A Biol Sci Med Sci. 2017;72(5):669–75. https://doi.org/10.1093/gerona/glw141

    PubMed  Google Scholar 

  49. Trevisan C, Ripamonti E, Grande G, Triolo F, Ek S, Maggi S, et al. The Association Between Injurious Falls and Older Adults’ Cognitive Function: The Role of Depressive Mood and Physical Performance. J Gerontol A Biol Sci Med Sci. 2021;76(9):1699–706. https://doi.org/10.1093/gerona/glab061

    Article  PubMed  PubMed Central  Google Scholar 

  50. Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551–5. https://doi.org/10.1016/j.injury.2011.03.031

    Article  PubMed  PubMed Central  Google Scholar 

  51. Weitzmann MN. Bone and the Immune System. Toxicol Pathol. 2017;45(7):911–24. https://doi.org/10.1177/0192623317735316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kitaura H, Marahleh A, Ohori F, Noguchi T, Shen WR, Qi J, et al. Osteocyte-Related Cytokines Regulate Osteoclast Formation and Bone Resorption. Int J Mol Sci. 2020;21(14). https://doi.org/10.3390/ijms21145169

  53. Kon T, Cho TJ, Aizawa T, Yamazaki M, Nooh N, Graves D, et al. Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res. 2001;16(6):1004–14. https://doi.org/10.1359/jbmr.2001.16.6.1004

    Article  CAS  PubMed  Google Scholar 

  54. Custodero C, Ciavarella A, Panza F, Gnocchi D, Lenato GM, Lee J, et al. Role of inflammatory markers in the diagnosis of vascular contributions to cognitive impairment and dementia: a systematic review and meta-analysis. Geroscience. 2022;44(3):1373–92. https://doi.org/10.1007/s11357-022-00556-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Darweesh SKL, Wolters FJ, Ikram MA, de Wolf F, Bos D, Hofman A. Inflammatory markers and the risk of dementia and Alzheimer’s disease: A meta-analysis. Alzheimers Dement. 2018;14(11):1450–9. https://doi.org/10.1016/j.jalz.2018.02.014

    Article  PubMed  Google Scholar 

  56. Zheng F, Xie W. High-sensitivity C-reactive protein and cognitive decline: the English Longitudinal Study of Ageing. Psychol Med. 2018;48(8):1381–9. https://doi.org/10.1017/s0033291717003130

    Article  PubMed  Google Scholar 

  57. Pozzi S, Benedusi V, Maggi A, Vegeto E. Estrogen action in neuroprotection and brain inflammation. Ann N Y Acad Sci. 2006;1089:302–23. https://doi.org/10.1196/annals.1386.035

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Small GW. Treatment of Alzheimer’s disease: current approaches and promising developments. Am J Med. 1998;104(4a):32S–8S; discussion 9S–42S. https://doi.org/10.1016/s0002-9343(98)00027-8

    Article  CAS  PubMed  Google Scholar 

  59. Paganini-Hill A, Henderson VW. Estrogen deficiency and risk of Alzheimer’s disease in women. Am J Epidemiol. 1994;140(3):256–61. https://doi.org/10.1093/oxfordjournals.aje.a117244

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate efforts made by the original data creators, depositors, copyright holders, the funders of the data collections, and their contributions to the access of data from the UK Biobank team (project no. 90492). We are also grateful to the participants for generously dedicating their time to take part in the UK Biobank study.

Funding

Role of the funding sources: This study was supported by grants from the National Natural Science Foundation of China (project number 82373665 and 81974490), the Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences (2021-RC330-001), and the 2019 Irma and Paul Milstein Program for Senior Health Research Project Award. The funders had no role in the study design; the collection, analysis, and interpretation of data; the writing of the manuscript; or the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions: Fanfan Zheng and Wuxiang Xie conceived the study. Darui Gao and Chenglong Li did the data analysis and data interpretation. Darui Gao drafted the initial manuscript. All authors critically revised the manuscript. Fanfan Zheng and Wuxiang Xie are the guarantors. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Corresponding authors

Correspondence to Fanfan Zheng or Wuxiang Xie.

Ethics declarations

Ethical statement: Ethics Committee approval for UK Biobank was obtained from the North West Multi-Centre Research Ethics Committee (Research Ethics Committee reference: 16/NW/0274). As part of the UK Biobank recruitment process, informed consent was obtained from all individual participants included in this study.

Declaration of interests: All other authors declare that there are no competing interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, D., Rong, W., Li, C. et al. Sex Difference in the Association between Prior Fracture and Subsequent Risk of Incident Dementia: A Longitudinal Cohort Study. J Prev Alzheimers Dis (2024). https://doi.org/10.14283/jpad.2024.56

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.14283/jpad.2024.56

Key words

Navigation