Skip to main content
Log in

Effectiveness of Physical Exercise on Alzheimer’s disease. A Systematic Review

  • Review
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Objective

A systematic review of randomized controlled trials was conducted to determine the effect of physical exercise on physical-functional capacity, cognitive performance, neuropsychiatric symptoms, and quality of life in a population of older people with Alzheimer’s disease.

Data Sources

Pubmed, Scopus, PEDro, Web of Science, CINAHL, Cochrane Library, grey literature and a reverse search from inception to April 2021 were searched to identify documents.

Study Selection

Publications investigating the effect of any type of physical exercise-based intervention in any of its multiple modalities on physical-functional capacity, cognitive performance, neuropsychiatric symptoms, and quality of life were searched.

Data Extraction

The data were extracted into predesigned data extraction tables. Risk of bias was evaluated through the PEDro scale and its internal validity scale.

Data Synthesis

A total of 8 different randomized controlled trials with a total sample of 562 non-overlap Alzheimer disease patients between 50–90 years and a mean age of 75.2 ± 3.9 years were eligible for analyses. Physical-functional capacity was evaluated in 6 of 8 studies and cognitive performance was evaluated in 5 of 8 studies, all of them showed improvements in these variables when compared with the controls, except for two studies in physical-functional capacity and one study for cognitive performance. In the physical-functional capacity and cognitive performance variables, aerobic physical exercise was used in isolation, or in a multimodal way, combining aerobic, strength and balance exercise, from 2 to 7 weekly sessions with doses between 30 and 90 minutes, and a duration of the program comprised of 9 weeks to 6 months. Neuropsychiatric symptoms and quality of life were evaluated in 2 of 8 studies, which the intervention groups experienced significant improvements when compared with the control groups, except for one study that found similar differences in quality of life between both groups. In the neuropsychiatric symptoms and quality of life variables, only aerobic physical exercise was used, in a more homogeneous way, from 2 to 3 weekly sessions with doses of 30 to 60 minutes, and a total program duration of 9 to 16 weeks.

Conclusions

Despite the scarcity of studies, especially those based on multimodal proposals, and the heterogeneity in the protocols, this systematic review found moderate to limited evidence that aerobic physical exercise on its own or combined in a multimodal program that also includes strength and balance exercise can be a useful tool in the management of patients with Alzheimer’s disease with the aim of maintaining and/or improving physical-functional capacity and cognitive performance. In addition, this review found moderate evidence of the positive impact that aerobic physical exercise could have in reducing neuropsychiatric symptoms and improving quality of life in patients with Alzheimer’s disease. PROSPERO registration number: CRD42021229891.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

Abbreviations

6MWT:

6-Minute walk test

30-STS:

30-seconds sit-to-stand

AD:

Alzheimer’s disease

ADAS-Cog:

Alzheimer disease assessment scale-cognitive

BDNF:

brain-derived neurotrophic factor

CDR:

Clinical dementia rating

CI:

confidence interval

DST:

Digit span test

EMT:

Episodic memory test

EQ-5D:

European Quality of Life-5 Dimensions

FIM:

Functional independence measure

FRT:

Functional reach test

HAMD-17:

Hamilton depression rating scale-17 items

IV:

Internal validity

NINCDS-ADRDA:

National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer

NPI-12:

Neuropsychiatric inventory

PE:

Physical exercise

PEDro:

Physiotherapy evidence database

PICO:

Population, intervention, comparison, and outcomes

PPT:

Physical performance test

QoL-AD:

Quality of life-Alzheimer’s disease

RCTs:

Randomized controlled trials

SDMT:

Symbol Digit Modalities Test

SPPB:

Short physical performance battery

TUG:

Timed up and go test.

References

  1. 2015 Alzheimer’s disease facts and figures. Alzheimer’s Dement [Internet]. 2015 Mar 1 [cited 2021 Feb 21];11(3):332–84. Available from: https://onlinelibrary.wiley.com/doi/10.1016/j.jalz.2015.02.003

  2. Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: A population-based perspective. Alzheimer’s Dement [Internet]. 2015 Jun [cited 2021 Jun 11];11(6):718–26. Available from: https://pubmed.ncbi.nlm.nih.gov/26045020/

    Article  Google Scholar 

  3. Scheltens P, Blennow K, Breteler MMB, de Strooper B, Frisoni GB, Salloway S, et al. Alzheimer’s disease. Lancet [Internet]. 2016 Jul 30 [cited 2021 Jun 11];388(10043):505–17. Available from: https://pubmed.ncbi.nlm.nih.gov/26921134/

    Article  CAS  Google Scholar 

  4. Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimer’s Dement [Internet]. 2016 Jun 23 [cited 2021 Jun 11];12(6):733–48. Available from: https://pubmed.ncbi.nlm.nih.gov/27016693/

    Article  Google Scholar 

  5. Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol [Internet]. 2018 Jan 1 [cited 2021 Jun 11];25(1):59–70. Available from: https://pubmed.ncbi.nlm.nih.gov/28872215/

    Article  CAS  Google Scholar 

  6. Miao H, Chen K, Yan X, Chen F. Sugar in Beverage and the Risk of Incident Dementia, Alzheimer’s disease and Stroke: A Prospective Cohort Study. J Prev Alzheimer’s Dis. 2021 Feb 1;8(2):188–93.

    CAS  Google Scholar 

  7. Zhang XX, Tian Y, Wang ZT, Ma YH, Tan L, Yu JT. The Epidemiology of Alzheimer’s Disease Modifiable Risk Factors and Prevention. J Prev Alzheimer’s Dis [Internet]. 2021 Jul 1 [cited 2022 Jan 16];8(3):313–21. Available from: https://pubmed.ncbi.nlm.nih.gov/34101789/

    Google Scholar 

  8. Ryan JJ, McCloy C, Rundquist P, Srinivasan V, Laird R. Fall Risk Assessment Among Older Adults With Mild Alzheimer Disease. J Geriatr Phys Ther [Internet]. 2011 Jan [cited 2021 Jun 11];34(1):19–27. Available from: https://pubmed.ncbi.nlm.nih.gov/21937888/

    Article  Google Scholar 

  9. Lowe SL, Duggan Evans C, Shcherbinin S, Cheng YJ, Willis BA, Gueorguieva I, et al. Donanemab (LY3002813) Phase 1b Study in Alzheimer’s Disease: Rapid and Sustained Reduction of Brain Amyloid Measured by Florbetapir F18 Imaging. J Prev Alzheimer’s Dis [Internet]. 2021 Sep 1 [cited 2022 Jan 16];8(4):414–24. Available from: https://pubmed.ncbi.nlm.nih.gov/34585215/

    CAS  Google Scholar 

  10. Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ, et al. American College of Sports Medicine Position Stand. Exercise and physical activity for older adults. Med Sci Sports Exerc [Internet]. 1998 Jun [cited 2022 Mar 17];30(6):992–1008. Available from: https://pubmed.ncbi.nlm.nih.gov/19516148/

    Google Scholar 

  11. Sharman JE, La Gerche A, Coombes JS. Exercise and Cardiovascular Risk in Patients With Hypertension. Am J Hypertens [Internet]. 2015 Feb 1 [cited 2021 Jun 11];28(2):147–58. Available from: https://pubmed.ncbi.nlm.nih.gov/25305061/

    Article  Google Scholar 

  12. Lumb A. Diabetes and exercise. Clin Med (Northfield Il) [Internet]. 2014 Dec 2 [cited 2021 Jun 11];14(6):673–6. Available from: https://pubmed.ncbi.nlm.nih.gov/25468857/

    Article  Google Scholar 

  13. Kirk-Sanchez N, McGough E. Physical exercise and cognitive performance in the elderly: current perspectives. Clin Interv Aging [Internet]. 2013 Dec 17 [cited 2021 Jun 11];9:51. Available from: https://pubmed.ncbi.nlm.nih.gov/24379659/

    Article  Google Scholar 

  14. Ströhle A, Schmidt DK, Schultz F, Fricke N, Staden T, Hellweg R, et al. Drug and Exercise Treatment of Alzheimer Disease and Mild Cognitive Impairment: A Systematic Review and Meta-Analysis of Effects on Cognition in Randomized Controlled Trials. Am J Geriatr Psychiatry [Internet]. 2015 Dec 1 [cited 2020 Dec 14];23(12):1234–49. Available from: https://pubmed.ncbi.nlm.nih.gov/26601726/

    Article  Google Scholar 

  15. Öhman H, Savikko N, Strandberg T, Kautiainen H, Raivio M, Laakkonen M-L, et al. Effects of Exercise on Functional Performance and Fall Rate in Subjects with Mild or Advanced Alzheimer’s Disease: Secondary Analyses of a Randomized Controlled Study. Dement Geriatr Cogn Disord [Internet]. 2016 May 1 [cited 2021 Feb 21];41(3–4):233–41. Available from: https://pubmed.ncbi.nlm.nih.gov/27160164/

    Article  Google Scholar 

  16. Enette L, Vogel T, Merle S, Valard-Guiguet A-G, Ozier-Lafontaine N, Neviere R, et al. Effect of 9 weeks continuous vs. interval aerobic training on plasma BDNF levels, aerobic fitness, cognitive capacity and quality of life among seniors with mild to moderate Alzheimer’s disease: a randomized controlled trial. Eur Rev Aging Phys Act [Internet]. 2020 Dec 6 [cited 2021 Jun 11];17(1):2. Available from: https://pubmed.ncbi.nlm.nih.gov/31921371/

    Article  Google Scholar 

  17. Sobol NA, Hoffmann K, Frederiksen KS, Vogel A, Vestergaard K, Brændgaard H, et al. Effect of aerobic exercise on physical performance in patients with Alzheimer’s disease. Alzheimer’s Dement [Internet]. 2016 Dec 23 [cited 2021 Jun 11];12(12):1207–15. Available from: https://pubmed.ncbi.nlm.nih.gov/27344641/

    Article  Google Scholar 

  18. Pitkälä KH, Pöysti MM, Laakkonen M-L, Tilvis RS, Savikko N, Kautiainen H, et al. Effects of the Finnish Alzheimer Disease Exercise Trial (FINALEX). JAMA Intern Med [Internet]. 2013 May 27 [cited 2021 Jun 11];173(10):894. Available from: https://pubmed.ncbi.nlm.nih.gov/23589097/

    Article  Google Scholar 

  19. Sobol NA, Dall CH, Høgh P, Hoffmann K, Frederiksen KS, Vogel A, et al. Change in Fitness and the Relation to Change in Cognition and Neuropsychiatric Symptoms After Aerobic Exercise in Patients with Mild Alzheimer’s Disease. J Alzheimer’s Dis [Internet]. 2018 Aug 7 [cited 2021 Jun 11];65(1):137–45. Available from: https://pubmed.ncbi.nlm.nih.gov/30040719/

    Article  CAS  Google Scholar 

  20. Yang S-Y, Shan C-L, Qing H, Wang W, Zhu Y, Yin M-M, et al. The Effects of Aerobic Exercise on Cognitive Function of Alzheimer’s Disease Patients. CNS Neurol Disord — Drug Targets [Internet]. 2015 Nov 27 [cited 2021 Jun 11];14(10):1292–7. Available from: https://pubmed.ncbi.nlm.nih.gov/26556080/

    Article  CAS  Google Scholar 

  21. Hoffmann K, Sobol NA, Frederiksen KS, Beyer N, Vogel A, Vestergaard K, et al. Moderate-to-High Intensity Physical Exercise in Patients with Alzheimer’s Disease: A Randomized Controlled Trial. J Alzheimer’s Dis [Internet]. 2015 Dec 10 [cited 2021 Jun 11];50(2):443–53. Available from: https://pubmed.ncbi.nlm.nih.gov/26682695/

    Article  Google Scholar 

  22. Suttanon P, Hill KD, Said CM, Byrne KN, Dodd KJ. Factors influencing commencement and adherence to a home-based balance exercise program for reducing risk of falls: perceptions of people with Alzheimer’s disease and their caregivers. Int Psychogeriatrics [Internet]. 2012 Jul 23 [cited 2021 Feb 21];24(7):1172–82. Available from: https://pubmed.ncbi.nlm.nih.gov/22265269/

    Article  Google Scholar 

  23. Pedersen BK, Saltin B. Exercise as medicine — evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports [Internet]. 2015 Dec 1 [cited 2020 Dec 14];25:1–72. Available from: https://onlinelibrary.wiley.com/doi/10.1111/sms.12581

    Article  Google Scholar 

  24. Santos-Lozano A, Pareja-Galeano H, Sanchis-Gomar F, Quindós-Rubial M, Fiuza-Luces C, Cristi-Montero C, et al. Physical Activity and Alzheimer Disease: A Protective Association. Mayo Clin Proc [Internet]. 2016 Aug 1 [cited 2022 Jan 17];91(8):999–1020. Available from: https://pubmed.ncbi.nlm.nih.gov/27492909/

    Article  Google Scholar 

  25. Stephen R, Hongisto K, Solomon A, Lönnroos E. Physical Activity and Alzheimer’s Disease: A Systematic Review. J Gerontol A Biol Sci Med Sci [Internet]. 2017 Jun 1 [cited 2022 Jan 17];72(6):733–9. Available from: https://pubmed.ncbi.nlm.nih.gov/28049634/

    Google Scholar 

  26. Oliveira A, Nossa P, Mota-Pinto A. Assessing Functional Capacity and Factors Determining Functional Decline in the Elderly: A Cross-Sectional Study. Acta Med Port [Internet]. 2019 [cited 2022 Mar 18];32(10):654–60. Available from: https://pubmed.ncbi.nlm.nih.gov/31625878/

    Article  Google Scholar 

  27. Wilder RP, Greene JA, Winters KL, Long WB, Gubler KD, Edlich RF. Physical Fitness Assessment: An Update. J Long Term Eff Med Implants [Internet]. 2006 [cited 2022 Mar 18];16(2):193–204. Available from: https://www.dl.begellhouse.com/journals/1bef42082d7a0fdf,5411b78b6ac8ee0f,21dd375d517fa227.html

    Article  Google Scholar 

  28. Kiely KM. Cognitive Function. Encycl Qual Life Well-Being Res [Internet]. 2014 [cited 2022 Mar 18];974–8. Available from: https://link.springer.com/referenceworkentry/10.1007/978-94-007-0753-5_426

    Google Scholar 

  29. Vreugdenhil A, Cannell J, Davies A, Razay G. A community-based exercise programme to improve functional ability in people with Alzheimer’s disease: a randomized controlled trial. Scand J Caring Sci [Internet]. 2012 Mar [cited 2021 Jun 11];26(1):12–9. Available from: https://pubmed.ncbi.nlm.nih.gov/21564154/

    Article  Google Scholar 

  30. Pedrinolla A, Venturelli M, Fonte C, Tamburin S, Di Baldassarre A, Naro F, et al. Exercise training improves vascular function in patients with Alzheimer’s disease. Eur J Appl Physiol [Internet]. 2020 Oct 1 [cited 2022 Jan 17];120(10):2233–45. Available from: https://pubmed.ncbi.nlm.nih.gov/32728820/

    Article  CAS  Google Scholar 

  31. Venturelli M, Scarsini R, Schena F. Six-Month Walking Program Changes Cognitive and ADL Performance in Patients With Alzheimer. Am J Alzheimer’s Dis Other Dementiasr [Internet]. 2011 Aug 17 [cited 2021 Jun 11];26(5):381–8. Available from: https://pubmed.ncbi.nlm.nih.gov/21852281/

    Article  Google Scholar 

  32. Monastero R, Mangialasche F, Camarda C, Ercolani S, Camarda R. A systematic review of neuropsychiatric symptoms in mild cognitive impairment. J Alzheimers Dis [Internet]. 2009 [cited 2022 Mar 18];18(1):11–30. Available from: https://pubmed.ncbi.nlm.nih.gov/19542627/

    Article  Google Scholar 

  33. The World Health Organization quality of life assessment (WHOQOL): Position paper from the World Health Organization. Soc Sci Med. 1995 Nov 1;41(10):1403–9.

    Article  Google Scholar 

  34. Moseley AM, Herbert RD, Sherrington C, Maher CG. Evidence for physiotherapy practice: A survey of the Physiotherapy Evidence Database (PEDro). Aust J Physiother [Internet]. 2002 [cited 2021 Jun 11];48(1):43–9. Available from: https://pubmed.ncbi.nlm.nih.gov/11869164/

    Article  Google Scholar 

  35. Ellis RF, Hing WA. Neural Mobilization: A Systematic Review of Randomized Controlled Trials with an Analysis of Therapeutic Efficacy. J Man Manip Ther [Internet]. 2008 Jan 18 [cited 2021 Jun 11];16(1):8–22. Available from: https://pubmed.ncbi.nlm.nih.gov/19119380/

    Article  Google Scholar 

  36. Tönnies E, Trushina E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. J Alzheimer’s Dis [Internet]. 2017 Apr 19 [cited 2021 Sep 3];57(4):1105–21. Available from: https://pubmed.ncbi.nlm.nih.gov/28059794/

    Article  Google Scholar 

  37. Jensen CS, Bahl JM, Østergaard LB, Høgh P, Wermuth L, Heslegrave A, et al. Exercise as a potential modulator of inflammation in patients with Alzheimer’s disease measured in cerebrospinal fluid and plasma. Exp Gerontol [Internet]. 2019 Jul 1 [cited 2022 Jan 19];121:91–8. Available from: https://pubmed.ncbi.nlm.nih.gov/30980923/

    Article  CAS  Google Scholar 

  38. Qin XY, Cao C, Cawley NX, Liu TT, Yuan J, Loh YP, et al. Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer’s disease: a meta-analysis study (N=7277). Mol Psychiatry [Internet]. 2017 Feb 1 [cited 2022 Jan 19];22(2):312–20. Available from: https://pubmed.ncbi.nlm.nih.gov/27113997/

    Article  CAS  Google Scholar 

  39. Vecchio LM, Meng Y, Xhima K, Lipsman N, Hamani C, Aubert I. The Neuroprotective Effects of Exercise: Maintaining a Healthy Brain Throughout Aging. Brain Plast (Amsterdam, Netherlands) [Internet]. 2018 Dec 14 [cited 2022 Jan 19];4(1):17–52. Available from: https://pubmed.ncbi.nlm.nih.gov/30564545/

    Google Scholar 

  40. Firth J, Stubbs B, Vancampfort D, Schuch F, Lagopoulos J, Rosenbaum S, et al. Effect of aerobic exercise on hippocampal volume in humans: A systematic review and meta-analysis. Neuroimage [Internet]. 2018 Feb 1 [cited 2022 Jan 19];166:230–8. Available from: https://pubmed.ncbi.nlm.nih.gov/29113943/

    Article  Google Scholar 

  41. Thomas BP, Tarumi T, Sheng M, Tseng B, Womack KB, Munro Cullum C, et al. Brain Perfusion Change in Patients with Mild Cognitive Impairment After 12 Months of Aerobic Exercise Training. J Alzheimers Dis [Internet]. 2020 [cited 2022 Jan 19];75(2):617–31. Available from: https://pubmed.ncbi.nlm.nih.gov/32310162/

    Article  Google Scholar 

  42. Galle FA, Martella D, Bresciani G. Modulación antioxidante y antiinflamatoria del ejercicio físico durante el envejecimiento. Rev Esp Geriatr Gerontol [Internet]. 2018 Sep 1 [cited 2021 Sep 3];53(5):279–84. Available from: https://pubmed.ncbi.nlm.nih.gov/29898833/

    Article  Google Scholar 

  43. de Sousa CV, Sales MM, Rosa TS, Lewis JE, de Andrade RV, Simões HG. The Antioxidant Effect of Exercise: A Systematic Review and Meta-Analysis. Sport Med [Internet]. 2017 Feb 3 [cited 2021 Sep 3];47(2):277–93. Available from: https://pubmed.ncbi.nlm.nih.gov/27260682/

    Article  Google Scholar 

  44. Parihar R, Mahoney JR, Verghese J. Relationship of Gait and Cognition in the Elderly. Curr Transl Geriatr Exp Gerontol Rep [Internet]. 2013 Sep 16 [cited 2021 Jun 11];2(3):167–73. Available from: https://pubmed.ncbi.nlm.nih.gov/24349877/

    Article  Google Scholar 

  45. Tinetti ME, Speechley M, Ginter SF. Risk Factors for Falls among Elderly Persons Living in the Community. N Engl J Med [Internet]. 1988 Dec 29 [cited 2021 Jun 11];319(26):1701–7. Available from: https://pubmed.ncbi.nlm.nih.gov/3205267/

    Article  CAS  Google Scholar 

  46. Hauer K, Schwenk M, Zieschang T, Essig M, Becker C, Oster P. Physical Training Improves Motor Performance in People with Dementia: A Randomized Controlled Trial. J Am Geriatr Soc [Internet]. 2012 Jan [cited 2021 Jun 11];60(1):8–15. Available from: https://pubmed.ncbi.nlm.nih.gov/22211512/

    Article  Google Scholar 

  47. Schwenk M, Zieschang T, Englert S, Grewal G, Najafi B, Hauer K. Improvements in gait characteristics after intensive resistance and functional training in people with dementia: a randomised controlled trial. BMC Geriatr [Internet]. 2014 Dec 12 [cited 2021 Jun 11];14(1):73. Available from: https://pubmed.ncbi.nlm.nih.gov/24924703/

    Article  Google Scholar 

  48. Conlon JA, Haff GG, Tufano JJ, Newton RU. Training Load Indices, Perceived Tolerance, and Enjoyment Among Different Models of Resistance Training in Older Adults. J Strength Cond Res [Internet]. 2018 Mar 1 [cited 2021 Sep 3];32(3):867–75. Available from: https://pubmed.ncbi.nlm.nih.gov/29112052/

    Article  Google Scholar 

  49. Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ, et al. Exercise and Physical Activity for Older Adults. Med Sci Sport Exerc [Internet]. 2009 Jul [cited 2021 Sep 3];41(7):1510–30. Available from: https://pubmed.ncbi.nlm.nih.gov/19516148/

    Article  Google Scholar 

  50. Shnayderman I, Katz-Leurer M. An aerobic walking programme versus muscle strengthening programme for chronic low back pain: a randomized controlled trial. Clin Rehabil [Internet]. 2013 Mar 31 [cited 2021 Sep 3];27(3):207–14. Available from: https://pubmed.ncbi.nlm.nih.gov/22850802/

    Article  Google Scholar 

  51. Rolland Y, Pillard F, Klapouszczak A, Reynish E, Thomas D, Andrieu S, et al. Exercise Program for Nursing Home Residents with Alzheimer’s Disease: A 1-Year Randomized, Controlled Trial. J Am Geriatr Soc [Internet]. 2007 Feb [cited 2021 Sep 3];55(2):158–65. Available from: https://pubmed.ncbi.nlm.nih.gov/17302650/

    Article  Google Scholar 

  52. Clare L, Woods B. Cognitive rehabilitation and cognitive training for early-stage Alzheimer’s disease and vascular dementia. In: Clare L, editor. Cochrane Database of Systematic Reviews [Internet]. Chichester, UK: John Wiley & Sons, Ltd; 2003 [cited 2021 Jun 11]. Available from: https://pubmed.ncbi.nlm.nih.gov/14583963/

  53. Jonasson LS, Nyberg L, Kramer AF, Lundquist A, Riklund K, Boraxbekk C-J. Aerobic Exercise Intervention, Cognitive Performance, and Brain Structure: Results from the Physical Influences on Brain in Aging (PHIBRA) Study. Front Aging Neurosci [Internet]. 2017 Jan 18 [cited 2021 Jun 11];8(JAN). Available from: https://pubmed.ncbi.nlm.nih.gov/28149277/

  54. Wang R, Holsinger RMD. Exercise-induced brain-derived neurotrophic factor expression: Therapeutic implications for Alzheimer’s dementia. Ageing Res Rev [Internet]. 2018 Dec 1 [cited 2021 Jun 11];48:109–21. Available from: https://pubmed.ncbi.nlm.nih.gov/30326283/

    Article  Google Scholar 

  55. Öhman H, Savikko N, Strandberg TE, Pitkälä KH. Effect of Physical Exercise on Cognitive Performance in Older Adults with Mild Cognitive Impairment or Dementia: A Systematic Review. Dement Geriatr Cogn Disord [Internet]. 2014 Nov 7 [cited 2021 Jun 11];38(5–6):347–65. Available from: https://pubmed.ncbi.nlm.nih.gov/25171577/

    Article  Google Scholar 

  56. Smith PJ, Blumenthal JA, Hoffman BM, Cooper H, Strauman TA, Welsh-Bohmer K, et al. Aerobic Exercise and Neurocognitive Performance: A Meta-Analytic Review of Randomized Controlled Trials. Psychosom Med [Internet]. 2010 Apr [cited 2021 Jun 11];72(3):239–52. Available from: https://pubmed.ncbi.nlm.nih.gov/20223924/

    Article  PubMed Central  Google Scholar 

  57. Petzinger GM, Fisher BE, McEwen S, Beeler JA, Walsh JP, Jakowec MW. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol [Internet]. 2013 Jul [cited 2021 Sep 4];12(7):716–26. Available from: https://pubmed.ncbi.nlm.nih.gov/23769598/

    Article  Google Scholar 

  58. Dauwan M, Begemann MJH, Slot MIE, Lee EHM, Scheltens P, Sommer IEC. Physical exercise improves quality of life, depressive symptoms, and cognition across chronic brain disorders: a transdiagnostic systematic review and meta-analysis of randomized controlled trials. J Neurol [Internet]. 2021 Apr 14 [cited 2021 Sep 4];268(4):1222–46. Available from: https://pubmed.ncbi.nlm.nih.gov/31414194/

    Article  Google Scholar 

  59. Sanders LMJ, Hortobágyi T, la Bastide-van Gemert S, van der Zee EA, van Heuvelen MJG. Dose-response relationship between exercise and cognitive function in older adults with and without cognitive impairment: A systematic review and meta-analysis. Regnaux J-P, editor. PLoS One [Internet]. 2019 Jan 10 [cited 2021 Sep 4];14(1):e0210036. Available from: https://pubmed.ncbi.nlm.nih.gov/30629631/

    Article  CAS  Google Scholar 

  60. Valenzuela PL, Castillo-García A, Morales JS, de la Villa P, Hampel H, Emanuele E, et al. Exercise benefits on Alzheimer’s disease: State-of-the-science. Ageing Res Rev [Internet]. 2020 Sep 1 [cited 2022 Jan 20];62. Available from: https://pubmed.ncbi.nlm.nih.gov/32561386/

  61. Ahunca Velásquez LF. Más allá del deterioro cognitivo: síntomas neuropsiquiátricos en demencias neurodegenerativas. Rev Colomb Psiquiatr [Internet]. 2017 Oct 1 [cited 2021 Jun 11];46:51–8. Available from: https://pubmed.ncbi.nlm.nih.gov/29037339/

    Article  Google Scholar 

  62. Nascimento CMC, Teixeira CVL, Gobbi LTB, Gobbi S, Stella F. A controlled clinical trial on the effects of exercise on neuropsychiatric disorders and instrumental activities in women with Alzheimer’s disease. Brazilian J Phys Ther [Internet]. 2012 Jun [cited 2021 Sep 4];16(3):197–204. Available from: https://pubmed.ncbi.nlm.nih.gov/22499405/

    Article  Google Scholar 

  63. Stella F, Canonici AP, Gobbi S, Galduroz RFS, Cação J de C, Gobbi LTB. Attenuation of neuropsychiatric symptoms and caregiver burden in Alzheimer’s disease by motor intervention: a controlled trial. Clinics [Internet]. 2011 [cited 2021 Sep 4];66(8):1353–60. Available from: https://pubmed.ncbi.nlm.nih.gov/21915483/

    Article  Google Scholar 

  64. Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, et al. Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol [Internet]. 2016 Apr 1 [cited 2021 Jun 11];15(5):455–532. Available from: https://pubmed.ncbi.nlm.nih.gov/26987701/

    Article  Google Scholar 

  65. Dechamps A. Effects of Exercise Programs to Prevent Decline in Health-Related Quality of Life in Highly Deconditioned Institutionalized Elderly Persons. Arch Intern Med [Internet]. 2010 Jan 25 [cited 2021 Jun 11];170(2):162. Available from: https://pubmed.ncbi.nlm.nih.gov/20101011/

    Article  Google Scholar 

  66. Aoyagi Y, Park H, Park S, Shephard RJ. Habitual physical activity and health-related quality of life in older adults: interactions between the amount and intensity of activity (the Nakanojo Study). Qual Life Res [Internet]. 2010 Apr 19 [cited 2021 Jun 11];19(3):333–8. Available from: https://pubmed.ncbi.nlm.nih.gov/20084463/

    Article  Google Scholar 

  67. Yu F, Nelson NW, Savik K, Wyman JF, Dysken M, Bronas UG. Affecting Cognition and Quality of Life via Aerobic Exercise in Alzheimer’s Disease. West J Nurs Res [Internet]. 2013 Jan 12 [cited 2021 Sep 4];35(1):24–38. Available from: https://pubmed.ncbi.nlm.nih.gov/21911546/

    Article  Google Scholar 

  68. Abd El-Kader SM, Al-Jiffri OH. Aerobic exercise improves quality of life, psychological well-being and systemic inflammation in subjects with Alzheimer’s disease. Afr Health Sci [Internet]. 2017 Mar 7 [cited 2021 Sep 4];16(4):1045. Available from: https://pubmed.ncbi.nlm.nih.gov/28479898/

    Article  Google Scholar 

  69. Herold F, Törpel A, Schega L, Müller NG. Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements — a systematic review. Eur Rev Aging Phys Act [Internet]. 2019 Jul 10 [cited 2022 Jan 24];16(1). Available from: https://pubmed.ncbi.nlm.nih.gov/31333805/

    Google Scholar 

  70. Kim HJ, Lee HJ, So B, Son JS, Yoon D, Song W. Effect of aerobic training and resistance training on circulating irisin level and their association with change of body composition in overweight/obese adults: a pilot study. Physiol Res [Internet]. 2016 [cited 2022 Jan 24];65(2):271–9. Available from: https://pubmed.ncbi.nlm.nih.gov/26447516/

    Article  CAS  Google Scholar 

  71. Kim J, Choi KH, Cho SG, Kang SR, Yoo SW, Kwon SY, et al. Association of muscle and visceral adipose tissues with the probability of Alzheimer’s disease in healthy subjects. Sci Rep [Internet]. 2019 Dec 1 [cited 2022 Jan 24];9(1). Available from: https://pubmed.ncbi.nlm.nih.gov/30700801/

    Google Scholar 

  72. Boyle PA, Buchman AS, Wilson RS, Leurgans SE, Bennett DA. Association of muscle strength with the risk of Alzheimer disease and the rate of cognitive decline in community-dwelling older persons. Arch Neurol [Internet]. 2009 Nov [cited 2022 Jan 23];66(11):1339–44. Available from: https://pubmed.ncbi.nlm.nih.gov/19901164/

    Google Scholar 

  73. Chang KV, Hsu TH, Wu WT, Huang KC, Han DS. Association Between Sarcopenia and Cognitive Impairment: A Systematic Review and Meta-Analysis. J Am Med Dir Assoc [Internet]. 2016 Dec 1 [cited 2022 Jan 24];17(12):1164.e7–1164.e15. Available from: https://pubmed.ncbi.nlm.nih.gov/27816484/

    Article  Google Scholar 

  74. Antunes BM, Rossi FE, Teixeira AM, Lira FS. Short-time high-intensity exercise increases peripheral BDNF in a physical fitness-dependent way in healthy men. Eur J Sport Sci [Internet]. 2020 Jan 2 [cited 2022 Jan 23];20(1):43–50. Available from: https://pubmed.ncbi.nlm.nih.gov/31057094/

    Article  Google Scholar 

  75. Abkenar IK, Rahmani-Nia F, Lombardi G. The Effects of Acute and Chronic Aerobic Activity on the Signaling Pathway of the Inflammasome NLRP3 Complex in Young Men. Medicina (Kaunas) [Internet]. 2019 Apr 1 [cited 2022 Jan 23];55(4). Available from: https://pubmed.ncbi.nlm.nih.gov/30991661/

    Google Scholar 

  76. Jaroudi W, Garami J, Garrido S, Hornberger M, Keri S, Moustafa AA. Factors underlying cognitive decline in old age and Alzheimer’s disease: the role of the hippocampus. Rev Neurosci [Internet]. 2017 Oct 26 [cited 2022 Jan 24];28(7):705–14. Available from: https://pubmed.ncbi.nlm.nih.gov/28422707/

    Article  Google Scholar 

  77. Bettio LEB, Rajendran L, Gil-Mohapel J. The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev [Internet]. 2017 Aug 1 [cited 2022 Jan 24];79:66–86. Available from: https://pubmed.ncbi.nlm.nih.gov/28476525/

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín Aibar-Almazán.

Ethics declarations

Ethical standards: Not applicable.

Conflict of interest: The authors report no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cámara-Calmaestra, R., Martínez-Amat, A., Aibar-Almazán, A. et al. Effectiveness of Physical Exercise on Alzheimer’s disease. A Systematic Review. J Prev Alzheimers Dis 9, 601–616 (2022). https://doi.org/10.14283/jpad.2022.57

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jpad.2022.57

Key words

Navigation