Loading…
Thumbnail Image

Application of the mode-shape expansion based on model order reduction methods to a composite structure

Peredo Fuentes, Humberto

The application of different mode-shape expansion (MSE) methods to a CFRP based on model order reduction (MOR) and component mode synthesis (CMS) methods is evaluated combining the updated stiffness parameters of the full FE model obtained with a mix-numerical experimental technique (MNET) in a previous work. The eigenvectors and eigenfrequencies of the different MSE methods obtained are compared with respect to the experimental measurements and with a full FE model solutions using the modal assurance criteria (MAC). Furthermore, the stiffness and mass weighted coefficients (K-MAC and M-MAC respectively) are calculated and compared to observe the influence of the different subspace based expansion methods applying the MAC criteria. The K-MAC and M-MAC are basically the MAC coefficients weighted by a partition of the global stiffness and mass matrices respectively. The best K-MAC and M-MAC results per paired mode-sensor are observed in the subspace based expansion MODAL/SEREP and MDRE-WE methods using the updated stiffness parameters. A strong influence of the subspace based on MOR using MSE methods is observed in the K-MAC and M-MAC criteria implemented in SDTools evaluating the stiffness parameters in a contrieved example.
Published in: Open Engineering, 10.1515/eng-2017-0026, de Gruyter