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Abstract 
 

In recent years, more and more researchers' attention has been drawn to the sparse 

representation-based classification (SRC) method and its application in image analysis and 

pattern recognition, due to its good characteristics of high recognition rate, robustness to 

corruption and occlusion, and little dependence on the features selection etc. However, 

sufficient training samples are always required by the sparse representation method for the 

effective recognition. In practical applications, it is generally difficult to obtain sufficient 

training samples of the test targets, especially non-cooperative targets. So the key issues in 

the effective automatic target recognition (ATR) based on the sparse representation are to 

obtain sufficient training samples in different scales, angles, and different illumination 

conditions, and to construct an overcomplete dictionary with discriminative ability. In this 

paper, a novel sparse representation-based scheme is proposed for the automatic target 

recognition in the real environment, in which the training samples are drawn from the 

simulation models of real targets and the overcomplete dictionary is trained using structured 

sparse learning method. The experimental results show that the proposed method is effective 

for the automatic target recognition in the practical application, especially, where the desired 

features of the sparse representation method are kept. 

Keywords: sparse representation; automatic target recognition; model simulation; 

structured learning 

1. Introduction 

Automatic target recognition (ATR) based on image processing technology has been 

extensively researched [1]-[2]. The ATR systems must have the ability of detecting and 

identifying the objects of interest in the images. Recently the algorithmic problem of 

computing sparse linear representations of signals on an overcomplete dictionary has received 

great progress [3]-[5]. The sparse representation theory has been increasingly used in the 

fields of images processing and pattern recognition, such as image denoising [6][7], image 

restoration [8][9], super-resolution reconstruction [10], face recognition [11], automatic target 

recognition [12], etc. 

Traditionally, feature extraction in combination with a classifier (KNN [13], SVM [14], 

Adaboost [15], etc.) is a popular approach utilized in recognition systems. In the traditional 

research paradigm the feature extraction plays significantly critical role to the recognition 

performance and computation performance. Recently, on the basis of sparse representation 

and compressed sensing theory, Wright et al. [11] propose a new object recognition 

framework which is called Sparse Representation-based Classification (SRC). In SRC 

method, a test sample is represented as a linear combination of the elements of an 
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overcomplete dictionary which consists of several classes of training samples. The 

experimental results demonstrate that the sparse representation method used for face 

recognition hold two major advantages: (a) feature extraction is no longer critical. The 

random projections or downsampled images could perform as well as any other carefully 

engineered features. The number of features for a given class and whether the sparse solution 

is computed correctly become the critical issues; (b) SRC is robust to corruption, occlusion, 

disguise and etc. However, there also exist some disadvantages in the approaches proposed by 

Wright [11] and Estabridis [12]. The training samples and testing samples used in [11] are 

both obtained in a controlled lab environment that only includes frontal views (one aspect 

angle) of individuals. Work in [12] expands the concepts in terms of detection and rotational 

invariance, and explores the ideas from the ATR perspective in a real world environment. The 

author utilizes an overcomplete dictionary that holds rotational invariance by including 

training data at various horizontal angles. The data used for the training and testing include 

infrared and visible vehicles imagery captured from 1, 2 and 3 kilometer ranges for all 

horizontal angles. Overall detection and recognition rates are above 95%. However, the 

approach presented in [12] is difficult to gain the training samples of ground vehicles which 

need a large field with radius of several kilometers. Besides, it is inconvenient to collect new 

training samples of new targets in the practical applications.  

In SRC, the construction of overcomplete dictionary is the critical issue to the recognition 

rate and computational complexity. In practice, however, it is usually difficult to obtain 

sufficient training data of target to build the sparse representation dictionary. And the 

dictionary is inefficient if it is formed directly from the original training samples without any 

optimization as proposed in [11]-[12]. In this paper, we address these two problems by 

proposing a modified scheme based on model simulation and structured learning, which 

improves the basic SRC model mainly in two aspects: (1) simulation models of the real world 

targets (such as cars, boats, planes and etc.) are utilized to obtain sufficient training data under 

different illumination conditions at various angles and scales. (2)The structured dictionary 

learning algorithms are used to train the dictionary through the training data to gain better 

recognition rate and computational efficiency. Experiments conducted on the practical object 

datasets demonstrate that the proposed ATR scheme is effective for real non-cooperative 

target recognition in real environment, as well remains the comparative recognition 

performance and robustness. 

The outline of this paper is organized as follows. In Section II, we briefly introduce the 

principles of sparse representation based classification and dictionary learning, and present 

the improved algorithms. Then we discuss the proposed ATR scheme in Section III. In 

Section IV, the experimental results are given in different set-ups. Conclusions and future 

works are presented in the final section. 

 

2. The Improved Algorithms 

2.1. Sparse Representation based Classification 

The sparse representation based classification method was proposed in work [11] which 

shows that the SRC is little dependent on the extracted features and robust to occlusion and 

corruption with competitive recognition performance. In the SRC method, the atoms of the 

overcomplete dictionary are formed by stacking the columns of their corresponding two-

dimensional training images. Given sufficient training samples of the thi  object 

class ,1 ,2 ,{ , , , } R i

i

m n

i i i i nD d d d   , as shown in Figure 1, all samples constitute a new 

matrix 1 2 1,1 1,2 ,[ , , , ] [ , , , ] R   
k

m n

k k nD D D D d d d  for the entire n training samples of 
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all k object classes which is used for the representation of the test sample, where each training 

sample image ,i jd is associated with a class label il .   

 

 

Figure 1. The Training Images of Each Object Form the Dictionary 

We now briefly describe the basic process of the SRC algorithm. 

1) Input the test sample Rmy  and the training samples matrix D. 

2) Normalize the columns of D to unit 2l − norm. 

3) Solve the representation error constrained 1l − norm minimization optimization 

problem with error tolerance ( >0). 

                        
1 2

ˆ argmin , . .
x

x x s t y Dx                                            (1) 

Or solve the following regularization form. The trade-off constant 0   is to balance 

between the representation error and the 1l  regularization term. 

                         
2

2 1

1
ˆ argmin

2x
x y Dx x                                              (2) 

4) Compute the representation residual
2

ˆ( ) ( )i ir y y D x  , for each class 1, ,i k , 

let ( ) :R Rn n

i x  be the characteristic function that only selects the components in x 

that are associated with class i. 

5) Output ( ) argmin ( )i
i

L y r y , where ( )L y  represent the identified class label of the 

test sample. 

The SRC method is based on the assumption that a test sample can be represented as a 

linear combination using only the training samples from the same object. So, when the object 

classes k is fairly large and the training samples are sufficient, this problem can be 

mathematically formulated as a sparse decomposition problem on the overcomplete 

dictionary D. Generally, to find the sparest solution of y Dx , we need to solve the 

following representation error constrained 0l −norm minimization optimization problem: 

                                  
0 2

ˆ argmin , . .
x

x x s t y Dx                                              (3) 

Where 
0

.  denotes the 0l − norm which counts the number of nonzero components in a 

vector. Unfortunately the problem to find the exactly sparsest solution is NP-hard to the 
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underdetermined linear system of Eq. 3. We can approximately solve this problem using 

greedy algorithms such as Matching Pursuit (MP) or Orthogonal Matching Pursuit (OMP) 

[20] , but the solution is usually suboptimal. Works [16] in the statistic community has proved 

that if the solution of Eq.3 is sparse enough, we can relax the 0l norm to the 1l  norm.  

Namely, the solution of the 0l  norm minimization problem in Eq.3 and the 1l norm 

minimization problem in Eq.1 are approximately equal.   The problem of   Eq.1 is classic 

lasso problem [21] in statistics which can be solved by standard linear programming methods. 

Furthermore, we can transfer the representation error constrained 1l  minimization 

optimization problem in Eq. 1 into 1l − norm regularization problem in Eq.2. 

The SRC method in [11] assumes that the underlying subspace for each class is low 

dimensional, the sparsest representation of a test sample ideally corresponds to the training 

data from the identical class. The experimental results show that the SRC method offers a 

great advantage over many classification methods since it can effectively deal with corrupted 

data within the same sparse representation model. However, the SRC method looks for the 

sparsest representation of a test sample on a dictionary composed of all training samples 

across all classes without considering the structure hidden in the training data. As shown in 

Figure 1, the dictionary of the training data obviously has a block structure in which data 

from different class form individual blocks of the dictionary. In this paper, we propose a 

scheme to explicitly consider the inhere structure in the overcomplete dictionary. 

Instead of looking for the sparsest representation of a test sample y on the dictionary D 

composed of all the training samples, a better criterion for classification is to look for a 

representation of the test sample that involves the minimum number of blocks from the 

dictionary [17]. We can formulate this problem using the following optimization program. 

                          
2

1

ˆ arg min ( [ ] 0) . .


   
k

qx
i

x I x i s t y Dx                             (4) 

Where ( )I is the indicator function, 1q  , and [ ] inx i R are the components of the sparse 

representation vector x corresponding to the -thi  block of the dictionary, [ ]  im nD i R , as 

shown in Figure 1. This optimization problem seeks the minimum number of nonzero 

coefficient blocks that approximately represent the test sample. Note that the optimization 

problem Eq.4 is NP-hard since it requires searching exhaustively over all possible blocks of D 

and checking whether they can span the given y. In order to solve this problems efficiently, 

we propose a convex relaxation strategy similar with Eq. 3. A 1  relaxation of this 

optimization problem is given by 

                             
2

1

ˆ argmin [ ] . .


  
k

qx
i

x x i s t y Dx                                     (5) 

 

2.2. The Dictionary Learning Algorithm 

In the aforementioned SRC method, when the number of training data in each class is 

large, we can better capture the underlying distribution of data and the classification 

performance will increase. Nonetheless, existing sparse decomposition algorithms do not 

have theoretical guarantees when it comes to highly redundant dictionaries and the 

computation consumption is large. On the other hand, when the number of training data in 

each class is small, sparse decomposition methods have good theoretical guarantees. 

However, classification algorithms do not perform well. So in our proposed recognition 
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scheme, we use dictionary learning method to construct a compact dictionary from a large set 

of training data. 

It is well known that the K-SVD [18] algorithm can find the overcomplete dictionary D 

that yields sparse representations for a set of training samples. Mathematically, this problem 

can be formulated as 

                      
2

00,
min{ } , iFD X

Y DX Subject to i x T                       (6) 

Where, 1{ }N

i iY y  is the set of training samples and 1{ }N

i iX x   is the set of 

representation coefficients of the training samples. 
F

X is the Frobenius norm defined 

as
2  ijF ij

X X . 

Like the K-means algorithm, K-SVD also uses a two step processes to update D and X 

iteratively [19]. In the sparse coding step, D is fixed and some pursuit algorithm such as  

Orthogonal Matching Pursuit (OMP) [20] and Basis Pursuit (BP) [21] algorithms can be used 

to compute ix in Eq. 1. In the dictionary update step, D and X are assumed to be fixed and 

only one column kd of D is updated at a time. Defines the group of training samples that use 

kd  as: 

                                 { |1 , ( ) 0}k ii i N x k                                           (7) 

Then we can compute 
j

k jj k
E Y d x


   and restrict kE  by choosing the columns 

corresponding to k , so that we obtain
R

kE . Finally, we can apply SVD decomposition 

R T

kE U V  and update kd  to be first column of U, and 
R

kx  to be the first column of V 

multiplied by (1,1) . All dictionary columns are updated in this way. Iteration through the 

two steps will produce the dictionary that can approximately represent the given iy  sparsely 

and accurately. 

Assume that we have k classes of training samples, i = 1 . . . k. The simplest strategy for 

using dictionary learning for classification is to learn k individual dictionaries 

( , 1iD i k ), one for each class. We can approximate the test sample using a constant 

sparsity L and the k different dictionaries.  The k different residual errors can then be used for 

the classification task. This is essentially the strategy employed in [21]. Thus, the first simple 

method of estimating the class ( )L y for certain sample y can be written as blew: 

                                          i
=1

( ) arg min ( )
i k

L y R y D，                                     (8) 

Where, i( )R y D， represents the representation error of y on iD with a sparsity factor L.  

In this paper, instead of this reconstruction-based approach, we propose to impose a block 

structured constraint described as Eq. 4 on the sparse representation coefficients vector x in 

the sparse coding process to simultaneously learn a block structured dictionary with better 

discriminative ability. The dictionary update process is same as K-SVD algorithm. 
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3. Our Proposed ATR Scheme 

3.1. Samples 

To collect sufficient training samples, the scaled models (1:43) of real world targets (such 

as ships, cars, etc.) are made. The models are putted on the center of the rotary table of the 

image acquisition system shown in Figure 2. The models images are collected in horizontal 

direction from 0° to 360° and in vertical direction 0° to 90°. In order to cover the illumination 

variations of nature environment, we change the illumination intensity and illumination 

direction to repeat the image acquisition procedure. The models images were cropped and 

normalized shown in Figure 3 to construct the training samples dataset for the next dictionary 

learning process.  The test samples are collected from nature images of the real target in real 

world situations for the detection and recognition process. 

3.2. Dictionary 

To get an efficient sparse representation-based classification dictionary that contains 

various variations from the large-scale training samples. In our proposed approach, the 

number of the training samples is large because of the changing angle and illumination 

parameters. The method proposed in [11][12] to form the dictionary directly from the original 

training samples is inefficient. We implement the structured sparse representation learning 

method to build the overcomplete dictionary utilizing the large-scale training samples. 

Assume that we have k sets ( 1 )iS i k of training samples, belonging to k different 

classes. The structured dictionary 1 2[ , , , ] kD D D D  is learned, which has k blocks 

structure, one for each class. The dictionary D is used in the next detection and recognition 

process. 

3.3. Detection 

Before classifying a given test sample, we must first decide if it is a valid object from one 

of the classes in the training dataset. The ability to detect and then reject invalid test samples 

is crucial for recognition systems to work in real world situations. We use a sliding rectangle 

window over the test image in order to find potential target regions. In the sparse 

representation paradigm, the representation coefficients x of the sliding window regions are 

computed in terms of the representation dictionary D which is constructed in section 2.2. 

Then, the sparsity concentration index (SCI) of the coefficient vector 
nxR  is computed as  

                               1 1
max ( ) / 1

SCI( )= [0,1]
1

i i
k x x

x
k

 



                       (9) 

Where ( )i x is the characteristic function that selects the coefficients of x associated with 

the thi class. Supposing SCI  , then the rectangle region is accepted as a possible target 

region and sent to the next recognition process. Otherwise, the rectangle region is rejected and 

discarded. 

3.4. Recognition 

The recognition process utilizes the 1l  norm minimization algorithm as Eq. 2 to get the 

sparse representation coefficient vector x of the potential target region y found in Section 2.1. 

Then we can classify y by assigning it to the object class that minimizes the individual class 
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representation residual, identity(y) = argmin ( ),
i

i
r y  where ir ( )y  is defined as 

i 2
r ( ) ( )

i
y y D x  . 

 

4. Experiments 

4.1. Model Image Acquisition System 

We have designed a system that can capture images of a target in different scales, aspect 

angles and different illumination. A sketch of the system is shown in Figure 2: The image 

capture system consists of four axes that control the different moving direction. The first is 

the rotation axis and the target on the rotary table can rotate at all 360 degrees. The second is 

the horizontal axis, along which the rotary table can move front and back. The third is the 

vertical axis, along which the camera can move up and down. The fourth is the pitch axis 

which enables the camera pitch to 0-90 degree to ensure that the captured target is always 

located on the center of the lens. The light illumination system can reflects off of the white 

board and illuminates the targets indirectly. Our four-axis linkage image acquisition system 

has several advantages: 

• The capture parameters can be modified in software, rather than hardware. 

• It is easy to capture target images in different angles, scales, and illumination quickly. 

 

 

Figure 2. Four-axis Linkage Image Acquisition Platform 

4.2. Tests on the Real Target Dataset 

Using the image acquisition system that we describe in Section 4.1, and show in Figure 2, 

we collect many model images of different real car targets of new Passet, new Polo, Octavia 

and Tiguan shown in Figure 3 in different aspect angles and illumination. For testing our 

algorithm, we have also collected 40 images of these cars in real environment shown in 

Figure 4.  
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Figure 3. Model Images of New Passet, New Polo, Octavia and Tiguan 

 

 

Figure 4. Real Car Images of New Passet, New Polo, Octavia and Tiguan 

We compared our proposed scheme with methods in [11][12]. The target recognition 

performances are reported in Tables 1-3 for the practical target images. The results in Table 1 

shows the recognition performance for the various number of training images which are 

selected to directly form the dictionary with different θ  degrees of 8°, 4°, 2° and 1° for each 

target same as described in [12]. Table 2 shows the recognition performance for the various 

feature space dimensions of 80, 120, 200 and 300. The training samples and the test target 

regions are reduced to same dimensions using random projection. The result shows that the 

feature is no longer crucial as long as the dimension of the feature space surpasses certain 

threshold. Table 3 shows the benefit of structured dictionary learning approach in terms of the 

recognition rate for various dictionary sizes 45, 90, 180 and 360. 

Table 1. Recognition Rate for Various Numbers of Training Images 

Number of training images 

per class object 

90 120 180 360 

Recognition rate 0.75 0.75 0.75 0.81 

Table 2. Recognition Rate for Various Feature Dimensions 

feature dimensions 80 120 200 300 

Recognition rate 0.43 0.5 0.81 0.81 
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Table 3. Recognition Rate for Various Dictionary Sizes 

Number of dictionary 

elements per class object 

90 120 180 360 

Recognition rate 0.81 0.81 0.81 0.81 

 

5. Conclusion and Future Work 

Using a well thought-out improvement of existing ideas (model simulation, SRC, 

dictionary learning), we have proposed a new simulation sparse representation-based method 

for automatically recognizing the targets in natural images taken under real environments. 

The experimental results show that the proposed approach is effective for the automatic target 

recognition in the practical application. The system achieves stable recognition performance 

under some variations in illumination, misalignment, and even under small amounts of 

corruption and occlusion.  

We achieve good recognition performance on our practical targets images in the 

experiments, while using only some aspect images and scale images. Our system could 

potentially be extended to better handle practical targets images by incorporating more model 

training images with various angles, scales and illumination. Another important direction for 

future investigation is to introduce the partition algorithm to better tackle big illumination 

variations and misalignment. 
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