
International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015), pp.411-428

http://dx.doi.org/10.14257/ijmue.2015.10.5.38

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2015 SERSC

Distributed Large-Scale Conferencing System Architecture with

Dynamic Server Allocation in SIP Environment

Choonseo Jang

Department of Computer Engineering, Kumoh National Institute of Technology,

Gumi, Korea

csjang@kumoh.ac.kr

Abstract

In this paper, in order to improve scalability of conferencing system in SIP(session

initiation protocol) environment, a distributed large-scale conferencing system

architecture with dynamic server allocation has been proposed. For this architecture, a

new extended conference information data format has been presented to distribute system

load dynamically to multiple conference servers. In order to control system load and

conference object, the proposed extended conference information data format has been

designed to include new added elements and attributes. The extended conference event

package has been used to synchronize overall system conference information data

between conference servers. This paper also shows detailed exchange procedures of SIP

messages between conference servers and participants for distributing system load

dynamically. An extensive experimental measurements have been done to verify the

performance of the proposed distributed conferencing system architecture. The results

show that the proposed architecture improves highly scalability and flexibility of the

conferencing system

Keywords: session initiation protocol, distributed conferencing system, conference

information data format, conference event package

1. Introduction

In SIP-based conferencing system, the conference focus maintains and manages SIP

conference session, and the mixers processes audio/video frames generated from each

participants [1-4]. Therefore load of the focus and mixers increases as the number of

participants increases, and it becomes the major reason that limits the scalability of the

large-scale conferencing system. However, many studies about conferencing system with

multiple servers have some limitations. Some approaches have focused on allocation of

media processing load to multiples mixers [5-6]. SIP session establishment control,

conference information data [7] control and QoS (quality of service) control are not fully

distributed in these approaches, and delay time to process SIP messages and audio/video

streams may not be acceptable when many participants join the conference. Furthermore,

these approaches are lack of conference information data synchronization capability

between servers. In large-scale conferencing system, severs should frequently exchange

their conference information data for effective load distribution during conferencing

operation, however, these approaches do not present such functions.

Some studies have proposed P2P-signaling protocol scheme for distributed conference

control [8-9], but their methods require resource location and discovery function for both

conference servers and participants, and these facts limit their usages. So in this paper, a

new distributed conferencing system architecture, which enable to controls each server’s

load and distributes dynamically overall system load to each server, has been suggested.

In order to control conference system load, a new extended conference information data

format which has some added elements for load distribution and control has been

http://dx.doi.org/10.14257/ijmue.2015.10.5.17

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

412 Copyright ⓒ 2015 SERSC

designed. And detailed exchange procedures of SIP messages between conference servers

and participants have been presented.

In Section 2, the related work with regard to conferencing system
architecture in SIP environment is described. Section 3 presents newly
designed distributed large-scale conferencing architecture, and a new
extended conference information data format with some added elements for
the distributed conferencing system architecture. The extended conference
event package and exchange procedures of SIP messages between conference
servers and participants have been also described in this section. In Section 4,
extensive experimental measurements have been done to verify the
performance of the proposed distributed conferencing system architecture,
and Section 5 is dedicated to conclusion remarks.

2. Related Work

The IETF researches on conferencing system have defined frameworks for

allowing participants to exchange media in a centralized conference [7,10,11].

These documents also have defined logical entities required for conference systems,

and have outlined conferencing protocols for building advanced conferencing

applications. These researches use the conference object as a logical representation

of a conference instance, representing the current state and capabilities of a

conference. However, these frameworks are for centralized single conference server

architecture, and they cannot be applied to distributed conferencing system with

multiple servers. There have been a few researches about scalable conference

architecture to increase extendability in the large-scale conferencing system. One of

them is policy-based management architecture [6]. This approach focuses on

allocation of media processing load to several mixers, and in this case conference

information data control and SIP session establishment control are not fully

distributed in the conference system. Furthermore, this policy-based management

architecture does not use the concept of conference event package, so the approach

has problem of real time conference information synchronization between servers.

Some studies propose P2P-signaling protocol scheme for distributed conference

control using resource location and discovery method[8,9]. These approaches

provide functions such as a mechanism for proximity-aware routing within a

conference, and mechanisms for conference synchronization and call delegation for

conferencing system. These researches have defined applications of resource

location and discovery method, and suggest Kind code data structure for distributed

conferencing system. This data structure provides mapping of a single conference

URI to multiple conference controllers, so it provides scalable signaling for resource

location and discovery in conferencing system. However, these methods require

resource location and discovery function for both conference servers and

participants, so this fact restricts their usage.

In conferencing system, authenticated and authorized participants should be

allowed to create, manipulate, and delete conference objects. Some studies on

centralized conferencing manipulation protocol (CCMP) have suggested conference

operations such as adding participants, removing participants, changing their roles,

adding and removing media streams and associated endpoints[12,13]. However,

these papers only describe the client-server model within the centralized

conferencing framework, so these approaches cannot be used to distributed

conferencing system with multiple servers.

In order to overcome such restrictions on previous works, a new architecture for

SIP-based distributed conferencing system with dynamic server allocation capability

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 413

has been suggested in this paper. In this system, overall system load is effectively

and dynamically distributed to each conference servers. In this study, a new

extended conference information data format which has some added elements for

load control and conference objects manipulation has been designed. Furthermore, a

new extended conference event package for synchronizing conference information

between servers has been also proposed. And, for distributing system load

dynamically to each server, detailed exchange procedures of SIP messages between

servers and participants has been presented.

3. System Design and Implementation

In this section, a newly designed distributed large-scale conferencing system

architecture that allocates system load dynamically to multiple conference servers has

been suggested. This section also describes an extended conference information data

format with new added elements for controlling conferencing system load, and presents

extended conference event package using the extended conference information data

format with exchange procedures of SIP messages between conference servers and

participants.

3.1. Design of Distributed Conferencing System Architecture

Figure 1 shows a designed architecture of distributed large-scale conferencing system

proposed in this paper. In this system, the conference server is comprised of conference

focus, media mixer, extended conference information and conference load control

module. The conference focus maintains SIP sessions between serves and participants.

The media mixer maintains RTP sessions with participants, and it mixes and distributes

media streams from participants. The extended conference information represents overall

conference information data of the conference system with new added elements required

to allocate participants dynamically to each server in this distributed conferencing system.

The conference load control module monitors and generates SIP signals to distribute

system load to each server.

In order to synchronize overall conference information data, each server subscribes

extended conference event package, which uses extended conference information data

format designed in this study, using SIP SUBSCRIBE message to the other servers. This

extended conference event package is used also to notify changes of conference

information data to the participants. When a participant sends SIP INVITE message

containing conference URI to the primary conference server, the server checks its current

value of <load-level> element of the extended conference information data format to

determine whether it can handle the participant’s request. When the current load value is

within pre-determined limit, the server sends SIP 200 OK response, and establishes RTP

session with the participant to make the participant join the conference. The detailed

function of new added <load-level> element is described on Section 3.2. When the

current load value exceeds pre-determined limits, the server checks current load values of

the other servers, and selects a server with the lowest current load value. Then, the

primary server sends 302 Redirection SIP response message representing this selected

server to the participant, and the participant sends again SIP INVITE message to this

server to make conference session with it.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

414 Copyright ⓒ 2015 SERSC

Figure 1. Designed Architecture of Distributed Conferencing System

When all the other server’s current load values exceed pre-determined limits, the

primary server fetches extended conference information data elements <reserved-servers-

list>, to selects a new server which can be added to the conference from the reserved

servers list. The detailed function of new added <reserved-servers-list> element is

described on Section 3.2. Then, the primary server sends SIP INVITE message to this

new server to make conference session with it. The new added server sends SIP

SUBSCRIBE message to the primary server to subscribe extended conference event

package, and the primary server notifies current extended conference information data

using SIP NOTIFY message. After receiving current extended conference information

data, the new added server make SIP session and RTP session with the other active

servers in the conferencing system. The primary server sends SIP redirection response

message representing this new added server to the participant, and the participant sends

again SIP INVITE message to this new added server to make conference session with it.

After new conference server is added successfully following the above procedures, the

primary server starts to reassign the existing participants to this new added server to share

overall load of the conference system. As primary server does more jobs than the other

servers, its pre-determined load limit can be set to lower value than the other servers by

conference policy. Figure 2 shows signaling procedure of the proposed conferencing

system operation.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 415

Figure 2. Signaling Procedure of the Proposed Distributed Conferencing
System

In this procedure, when a participant requests to join the conference using SIP INVITE

message, the primary conference server searches extended conference information data to

find conference object identifier of the participant from its SIP URI, and determines

whether the participant should be allowed using <allowed-users-list> element of the

conference object. Then, the primary conference server checks current load values of all

the activated servers, and select the server with the lowest current load value. Then, it

sends SIP redirection message which has URI of this selected server to the participant.

The participant makes SIP session with this server by sending SIP INVITE message, and

it establishes RTP session to the server for exchanging media stream. When all the

activated servers show high load value, a new server is required, and the primary server

selects a new server from the candidate servers list. The primary conference server sends

SIP INVITE message to the new server to establish conference session with it, and sends

SIP redirection message with URI of this new added server to the participant. When the

participant receives redirection message, it establishes SIP session and RTP session with

the new added server.

Then, load reallocation process begins. The primary server sends SIP REFER message

to the participants connected to the server which has highest load value. When the

participants receives SIP REFER message, they send SIP INVITE requests to the new

added server to make conference session with it. After establishing SIP and RTP session

with the new added server, the participants send SIP BYE messages to their prior sever

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

416 Copyright ⓒ 2015 SERSC

to release the conference sessions with it. This load reallocation process continues until

load levels of all the active servers decrease to be nearly same value.

3.2. Design of Extended Conference Information Data Format

In this paper, a new extended conference information data format with some added

elements has been designed to implement distributed conferencing system architecture. In

order to control conference system load, <load-level> element is added as a child element

of <conference-info> which is the root element of the original conference information

data format. This <load-level> element contains information about load level in each

conference server. The proposed load level iL is calculated as :

)(
1

ij

N

j

ijii AVNL
i

 


 (1)

where index i represents each conference server, iN is number of participants for each

conference server, ijV and ijA represent video/audio frames generated per second

according to RTP payload types that are negotiated via SDP messages. The parameters 

and  are weighting factors. Each of these elements has three attributes, which are ‘max-

load-level’ for representing maximum allowed load level, ‘min-load-level’ for

representing minimum allowed load level, and ‘server-id’ for identifying each server.

The value of ‘max-load-level’ for primary server can be lower than value of the other

servers by conference policy. When a server's load level is below the minimum allowed

load level, and this server's load can be distributed to the other servers, then the server

becomes to be deactivated state. The element <load-level-components> has been designed

to represent each component of load level value. This element has one attribute, ‘server-

id’ for identifying each server, and two child elements such as <participants-numbers>

and <media-frames>. The element <weighting-factors> has also been added to represent

each load weighting factors described above. This element has two child elements,

<alpha> and <beta>, to represent each load weighting factor.

 The element <reserved-servers-list>, <server-num> and <current-participants-list> are

also designed in this study. The element <reserved-servers-list> has list of candidate

servers that can be added to the conference. It has a child element <uri> to represent each

server. The <server-num> element represents number of active servers in conference

system. The <current-participants-list> element represents active users list of each server,

and it has a child element <uri> to represent each participant, and an attribute ‘server-id’

to identify each server.

The element <conf-control> has been added to control conference object by authorized

participants. The authorized participant can create conference object, add participants to

the created conference object, update participant's information, delete participant, and

update conference object information by using this new <conf-control> element. This

element has a child element <operation> to control the conference object. The

<operation> element has ‘conf_create’, ‘user_add’, ‘user_update’, ‘user_delete’,

‘conf_update’ and ‘conf_delete’ as it's values. Figure 3 shows main part of the XML

schema definition for extended conference information data format designed in this paper.

<?xml version="1.0" encoding="utf-8"?>

 <xsd:schema

 …………..

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

…………..

<!-- load-level definition -->

<xsd: element name=" load-level" minOccurs="1" maxOccurs=" unbounded " />

<xsd: complexType>

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 417

<xsd: simpleContent>

 <xsd:extention base=" xsd: unsignedInt” >

<xsd:attribute name=" max-load-level" type=" xsd:unsignedInt" use="required" />

<xsd:attribute name=" min-load-level" type=" xsd:unsignedInt" use="required" />

<xsd:attribute name=" server-id" type=" xsd:anyURI"

use="required" />

</xsd:extention >

</xsd: simpleContent>

 </xsd:complexType>

</xsd: element>

<!—load-level-components definition -->

 <xsd: element name=" load-level-components " minOccurs="1"

 maxOccurs=" unbounded " />

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="participants-numbers" type=" xsd: unsignedInt" />

 <xsd:element name="media-frames" type=" xsd: unsignedInt" />

 </xs:sequence>

 <xsd:attribute name=" server-id" type=" xsd:anyURI " use="required" />

 </xsd:complexType>

</xsd: element>

<!—weighting-factors definition -->

 <xsd: element name=" weighting-factors " />

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="alpha" type=" xsd: double" />

 <xsd:element name="beta" type=" xsd: double" />

 </xs:sequence>

 </xsd:complexType>

</xsd: element>

<!—reserved-servers-list definition -->

<xsd: element name=" reserved-servers-list" />

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="uri" type=" xsd: anyURI" minOccurs="1"

maxOccurs="unbounded" />

 </xs:sequence>

</xsd:complexType>

</xsd: element>

<!—server-num definition -->

<xsd: element name=" server-num " type=" xsd: unsignedInt " />

<!—current-participants-list definition -->

<xsd: element name=" current-participants-list " minOccurs="1" maxOccurs="1" />

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="uri" type=" xsd: anyURI" minOccurs="1" maxOccurs="

unbounded " />

 </xs:sequence>

<xsd:attribute name=" server-id" type=" xsd:anyURI " use="required" />

</xds:complexType>

</xsd: element>

<!—conf-control definition -->

<xsd:element name=" conf-control " >

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

418 Copyright ⓒ 2015 SERSC

<xsd:complexType>

 <xsd:sequence>

 <xsd:element name=" operation" type=" operationType" />

<xsd:element name=" conf-subject" type=" xsd: string" minOccurs="0" maxOccurs="1" />

 </xs:sequence>

</xsd:complexType>

</xsd: element>

<!-- operationType definition -->

 <xsd:simpleType name="operationType">

<xsd:enumeration value="conf_create "/>

 <xsd:enumeration value="user_add"/>

 <xsd:enumeration value="conf_update"/>

<xsd:enumeration value="user_update"/>

 <xsd:enumeration value="user_delete"/>

<xsd:enumeration value="conf_delete"/>

</xs:simpleType>

…………..

Figure 3. XML Schema Definition for Extended Conference Information
Data Format

3.3. Exchange Procedure of SIP Messages between Conference Servers and

Participants

In centralized conferencing system, the original conference event package uses SIP

SUBSCRIBE/NOTIFY messages to exchange conference information between SIP user-

agent[10]. In this paper, in order to synchronize conference information between servers

in distributed conferencing environment, the conference event package has been extended

by using some added information data format elements as described on Section 3.2.

Followings are the exchange procedures of SIP messages between conference servers and

participants using the extended conference event package.

Figure 4 shows exchange procedure of SIP messages between conference servers and

participants. In this exchange procedure, each conference server subscribes to primary

conference server using the extended conference event package, and primary conference

server also subscribes itself to the other servers. When a participant(participant A) sends

SIP INVITE message to the primary conference server, it checks current load level of

each active server to find a server with the lowest load level. If load level of the

server(conference server C) is within the maximum allowed load level, the primary server

sends SIP redirection message with URI of this server to the participant.

Then, the participant sends again SIP INVITE message to this server to establish SIP

session, and makes RTP session with the server to exchange media stream. The

server(conference server C) notifies this change to the primary server, and primary server

notifies to other servers the change of conference information to synchronize the overall

conference information of the system. The added participant sends SIP SUBSCRIBE

message to the server(conference server C) to subscribe conference event package, then it

receives current conference information from the server. Then, other

participant(participant B) sends request message to join the conference, and in this case,

the primary server select conference server B, and sends SIP redirection message with

URI of this server to participant B. Then, the participant establishes conference session

by sending SIP request message to this server, and conference server B processes media

streams from participant B through RTP session. The conference server B notifies this

conference information change to the primary server, and the primary server sends

NOTIFY messages to the other servers.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 419

Figure 4. Exchange Procedures of SIP Messages between Conference
Servers and Participants

Figure 5 shows exchange procedure of SIP messages when a new conference server is

added to process participant’s request. When the primary server determines to add a new

server after checking current load levels of all active servers, it selects candidate sever

from reserved servers list, and sends SIP INVITE message to this selected new server to

establish conference session with it.

Then, the new server sends SIP SUBSCRIBE message to the primary conference

server to subscribe extended conference event package. The primary conference server

sends SIP NOTIFY message which contains current conference information of the system

in its body to the new server, and by this way the new server can share current conference

information with the other active servers. The primary conference server sends SIP

SUBSCRIBE message to the new added server to subscribe itself to this new server to get

conference information changes from this server. Then, the new added server makes RTP

sessions with the other servers, and the primary conference server sends SIP redirection

message with URI of this new added server to the participant (participant C). The

participant makes SIP session and RTP session with the new added server.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

420 Copyright ⓒ 2015 SERSC

Figure 5. Exchange Procedures of SIP Messages when a New Server is
Added

Then, load reallocation process begins. In this figure, the primary server sends SIP

REFER message to the participant D who is connected to the server which has higher load

level value than the other servers. When participant D receives SIP REFER message, it

sends INVITE request to the new added server to make SIP conference session with it.

After establishing SIP session with the new added server, participant D sends SIP BYE

message to its prior server(conference server C) to release the conference session with it.

Then, participant D disconnects RTP session from its prior sever, and establishes new

RTP session to the new added server. The conference server C and new added server

notify their conference information changes to the primary server, and finally, the primary

server sends NOTIFY message to other servers to synchronize the overall conference

information of the system.

Figure 6 shows exchange procedures of SIP messages when an authorized participant

(participant A) requests to the primary conference server to create a conference object.

Some SIP messages are omitted to simplify the figure. The authorized participant sends

INVITE message with Allow-Events header which has value ‘x-conf’ representing the

proposed extended conference event package. The body part of INVITE message has

extended conference information element <conf-control>, as described on Section 3.2,

with child element <operation> which has value ‘conf_create’ representing creation of

conference object. The body part has also <allowed-users-list> element with child

element <target>. The element <target> has attribute ‘uri’ representing participant’s SIP

URI, and attribute ‘method’ representing conference joining method.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 421

The primary conference server creates conference object, and selects a

server(conference server B) as a focus of the created conference object. And the primary

conference server sends SIP NOTIFY message which has conference information of the

created conference object in its body to conference server B. The primary conference

server also sends a created conference object ID to participant A. Then, the conference

server B sends INVITE message to each participants in <allowed-users-list> element,

and establishes SIP session and RTP session. Each participant subscribes to the

conference server B and receives conference information.

The authorized participant (participant A) sends INVITE message which has

conference object ID, <operation> element with value ‘user_add’, and new participant’s

SIP URI in the body part. In this case, the primary conference server decides to assign a

new conference server to serve the new participant due to high load level of conference

server B. It selects candidate sever from the reserved servers list, and sends SIP INVITE

message to this selected new server to establish conference session with it. Then, the new

added server subscribes to the primary conference server, and it responds with notification

which has current conference information of the system. Then, the new added server

establishes SIP conference session with the new participant(participant D). The new

added server notifies changes of conference information to the primary conference server,

and the primary conference server sends NOTIFY messages to the other servers. Then,

the conference server B notifies changes of conference information about new participant

to the other participants.

Figure 6. Exchange Procedures of SIP Messages when an Authorized
Participant Requests to Create Conference Object

4. Performance Evaluation

In the experiments, 10 personal computers are used to emulate conference participants.

Each personal computer has been programmed to generate workload up to 30 conference

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

422 Copyright ⓒ 2015 SERSC

participants. For acting as conference servers, 7 personal computers are used. SIP protocol

stack and packet generator are written by JAVA in MS-Windows and LINUX

environment. SIP protocol stack sources are written according to SIP standard, and packet

generator is configurable and extensible via XML. All personal computers are

interconnected using a gigabit Ethernet switch. Conference object ID has been assigned

for every 10 participants, so total number of conference objects used for tests is 30.

The average media packet transmission delay and the average SIP signaling delay are

measured. The performance of the proposed distributed architecture has been compared

with the centralized conferencing architecture of IETF [11]. Table 1 shows detailed

parameters used for experimental measurements. In order to measure media packet

transmission delay time, audio signal encoding method CS-ACELP G.729 Annex A

which has a payload type 18 defined in RTP profile has been used. The sampling

frequency for encoding signal is 8 KHz, and 15 packets are generated every second. The

frame length is 10 msec, packet generation period is 66.67 msec, and packet duration is

20 msec.

Table 1. Parameters Used for Experimental Measurements

Parameters Value

sampling frequency 8000 Hz

frame length 10 msec

number of packets per second 15

packet generation period 66.67 msec

encoding rule CS-ACELP G.729A

number of bits per frame 80

packet duration 20 msec

bit generation speed 8000 bps

number of conference objects 30

network bandwidth 1000 Mbps

Figure 7 shows average media packet transmission delay as the number of participant

increases from 30 to 300. The average media packet transmission delay includes

processing time for mixing media packets in the mixer, delay time for media packet

transmission, and delay time for generating media packet. The value of the maximum load

level, ‘max-load-level’, which is an attribute of <load-level> element defined in Section

3.2, is set to be 600. The value of weighting factor parameter  is set to be 10, and  is

set to be 0.001. In this figure, the average media packet transmission delay of the

proposed architecture is measured much smaller than that of the centralized architecture.

This figure shows that as the number of participants increases, the average media packet

transmission delay of the proposed architecture remains almost at constant, while delay of

the centralized architecture grows rapidly. This is because the whole media streams are

concentrated to a single conference server in the centralized architecture, while in the

proposed architecture, the media streams are distributed to multiple servers dynamically

according to load level of each server. In this figure, transmission delay of the proposed

architecture grows slightly when the number of participants exceeds 210. This is because

new conference server is added for every 30 participants according to the value of the

maximum load level and weighting factor parameters. So there are no further reserved

servers when the number of participants exceeds 210, and each server's load slightly

increases.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 423

Figure 7. Average Media Packet Transmission Delay

Figure 8 presents average SIP signaling delay when participants join a

conference. The delay is measured by completion time of SIP INVITE transaction to

the conference server. The testing parameters for the proposed architecture are same

as in Figure 7, and only SIP sessions are used in the centralized architecture. When

the number of participants is 30, one server is used in both cases, and the proposed

architecture shows somewhat higher delay due to media processing load. As the

number of participants increases beyond 30, the proposed architecture shows higher

delay time. This is because additional SIP messages are required to complete the

transaction during the redirection procedures of adding conference servers as

described in Section 3.3.

When the number of participants exceeds 120, the average SIP signaling delay of

the centralized architecture increases continuously. This is because server load

required to keep conference sessions with all participants also increases even

without media processing. However, the average SIP signaling delay of the

proposed architecture remains almost constant with increasing number of

participants due to distribution of server load to multiple servers by dynamic server

allocation, and this fact improves scalability of the large-scale conference system.

Figure 8. Comparison of Average SIP Signaling Delay

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

424 Copyright ⓒ 2015 SERSC

Figure 9 shows comparison of average media packet transmission delay of the

proposed architecture with different values of the maximum load level, 300 and 1200. The

weighting factor parameters are same as in test for Figure 7. In this test, when maximum

load level is 300, new conference server is added for every 15 participants from the

equation (1). When maximum load level is 1200, new conference server is added for

every 60 participants.

Figure 9. Average Media Packet Transmission Delay with Different
Maximum Load Level

In this figure, when maximum load level is 300, the average media packet transmission

delay is measured nearly constant until the number of participants reaches 90. When the

number of participants exceeds 120, transmission delay gradually increases. This is

because new conference server is added for every 15 participants, so there is no further

reserved servers when the number of participants exceeds 120. In this case, the load of the

system has been equally distributed to all conference servers, so the load per server

gradually increases. When maximum load level is 1200, the average media packet

transmission delay shows some fluctuation around 115 msec when the number of

participants exceeds 60. This is because new conference server is added for every 60

participants, and the number of participants allocated to each server fluctuates around 55

after 60 participants. This result presents that load balancing of the system can be easily

controlled by changing load level value.

Figure 10 shows effect of media frames generated per second according to RTP

payload types. Equation (1) in Section 3.2 describes about that. In the experiment, PCMµ

encoding method has been used for 30% of participants, and G.729A has been used for

70% of participants in one case. In the other case, all participants use G.729A. The

maximum load level and weighting factor parameters are same as in test for Figure 7. In

this figure, the average media packet transmission delay of using 30% PCMµ shows

nearly constant, and somewhat lower than the transmission delay of using 100% G.729A

until the number of participants reaches 90. However, when the number of participants

exceeds 120, transmission delay of using PCMµ increases somewhat rapidly. This is

because the sum of PCMµ media frames generated per second is 8 times higher than that

of G.729A, therefore, the load level becomes higher when PCMµ is used. So in this case,

all servers are allocated when the number of participants reaches 120, and the load per

server increases after that.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 425

Figure 10. Effect of Media Frames Generated per Second According to RTP
Payload Types

Figure 11 shows effect of weighting parameter  in the load level equation (1). In this

experiment, 30% of participants assumed to use PCMµ encoding method as in Figure 10.

The value of weighting parameter  is changed from 0.001 to 0.00035 to decrease the

effect of media frames generated per second on the load level. As shown in Figure 11, the

average media packet transmission delay of using weighting parameter  = 0.00035 and

70% G.729A remains almost constant until the number of participants becomes to be 210.

This is due to the fact that new conference server is allocated for every 30 participants by

reducing the value of weighting parameter  in the case of using 70% G.729A. In this

figure, the average media packet transmission delay of using 100% G.729A shows

somewhat lower value than that of using 70% G.729A, this is because the amount of

media frames generated per second is lower than that of using 70% G.729A, so the load

level is lower at the same number of participants. When the value of weighting parameter

 is 0.001 and 30% PCMµ encoding method is used as in Figure 10, conference server is

allocated for every 15 participants due to highly generated load level. Therefore, there is

no further reserved servers when the number of participants exceeds 120, and the

transmission delay increases somewhat rapidly after that. However, by changing

weighting parameter value, transmission delay can be controlled to remain almost

constant until the number of participants becomes to be 210 in this experiment.

Figure 11. Effect of Weighting Parameter 

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

426 Copyright ⓒ 2015 SERSC

5. Conclusion

In this paper, distributed large-scale conferencing system architecture which has

effective dynamic server allocation capability has been proposed. A new extended

conference information data format has been designed to distribute system load

dynamically to multiple conference servers. The extended conference information data

format has new added elements for controlling conference system load and conference

object. To synchronize conference information data between conference servers, the

extended conference event package has also been used. The amount of video frames and

audio frames generated per second according to RTP payload types and the number of

participants for each conference server is used for load level control. The presented

exchanging procedures of SIP messages show detailed SIP request and response signals

transferred between conference servers and participants to dynamically distribute system

load.

Experimental measurements have been done to verify performance of the proposed

distributed conferencing system architecture. The experiments measure average media

packet transmission delay and the average SIP signaling delay by changing the number of

participants, load level values, and weighting factor parameters. The results show that the

proposed architecture can provide high scalability and flexibility for distributed large-

scale conferencing system. Future work may include security issues which would adapt

advanced security mechanism for implementing distributed large-scale conferencing

system architecture.

Acknowledgements

This paper was supported by Research Fund, Kumoh National Institute of Technology.

References

[1] W. Su, C. Bo and J. Chen, "The design and implementation of sip control for Multimedia Conference

system”, in Proc. of International Conf. on Circuits, Communications and System, (2010) August 1-2;

Vouliagmeni, Italy.

[2] R. Shekh-Yusef and M. Barnes, “Indication of Conference Focus Support for the Centralized

Conferencing Manipulation Protocol”, RFC 7082, (2013).

[3] J. Zhang Yanyan and Yao Yuan, “SIP-based multimedia conference system design and implementation”,

in Proc. of International Conf. on Computer Design and Applications, (2010) June 25-27; Amsterdam,

Netherlands.

[4] J. Li, W. Lei and X. Zhang, "Design and Implementation of a SIP-Based Centralized Multimedia

Conferencing System," in Proc. of International Conf. Communication Software and Networks, February

27-28, (2009); Macua, China.

[5] L. Wang and S. Jun, “SIP-Based Multimedia Conference Management System and Its Application”, in

Proc. of International Conf. on Information Engineering, (2009) July 10-11; Taiyuan, China.

[6] Y.-H. Cho, M.-S. Jeong, J.-W. Nah, W.-H. Lee and J.-T. Park, "Policy-based distributed management

architecture for large-scale enterprise conferencing service using SIP," IEEE Journal on Selected Areas

in Communications, vol. 23, no. 10, (2005), pp. 1934-1949.

[7] J. Rosenberg and H. Schulzrinne, "Conference Information Data Model for Centralized Conferencing

(XCON)," RFC 6501, (2012).

[8] A. Knauf, G. Hege, T. C. Schmidt and M. Wahlisch, “A virtual and distributed control layer with

proximity awareness for group conferencing in P2PSIP,” in Proc. of IPTComm, (2010) August 2-3;

Munich, Germany.

[9] C. Jennings, B. Lowekamp, E. Rescorla and H. Schulzrinne, “REsource LOcation and Discovery Base

Protocol,” RFC 6940, (2014).

[10] G. Camarillo, S. Srinivasan, R. Even and J. Urpalainen, “Conference Event Package Data Format

Extension for Centralized Conferencing (XCON),” RFC 6502, (2012).

[11] M. Barnes, C. Boulto and O. Levin, "A Framework for Centralized Conferencing," RFC 5239, (2008).

[12] [12] M. Barnes, C. Boulton, S. Romano and H. Schulzrinne, “Centralized Conferencing Manipulation

Protocol”, RFC 6503, (2012).

[13] M. Barnes, L. Miniero, R. Presta, S. P. Romano and H. Schulzrinne, “CCMP: a novel standard protocol

for Conference Management in the XCON Framework,” in Proc. of IPTComm, (2010) August 2-3;

Munich, Germany.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 427

Author

Choonseo Jang, He received the B.S. degree from the Seoul

National University, Seoul, Korea, in 1978, and received the M.S.

and Ph.D. degrees from the Korea Advanced Institute of Science and

Technology (KAIST), Daejon, Korea, in 1981 and 1993,

respectively. From 1981 He is a professor at department of computer

engineering, Kumoh National Institute of Technology, Gumi, Korea.

His research interests include Session Initiation Protocol and Voice

over IP.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

428 Copyright ⓒ 2015 SERSC

