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Abstract 

In this paper, in order to improve scalability of conferencing system in SIP(session 

initiation protocol) environment, a distributed large-scale conferencing system 

architecture with dynamic server allocation has been proposed. For this architecture, a 

new extended conference information data format has been presented to distribute system 

load dynamically to multiple conference servers. In order to control system load and 

conference object, the proposed extended conference information data format has been 

designed to include new added elements and attributes. The extended conference event 

package has been used to synchronize overall system conference information data 

between conference servers. This paper also shows detailed exchange procedures of SIP 

messages between conference servers and participants for distributing system load 

dynamically. An extensive experimental measurements have been done to verify the 

performance of the proposed distributed conferencing system architecture. The results 

show that the proposed architecture improves highly scalability and flexibility of the 

conferencing system 
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1. Introduction 

In SIP-based conferencing system, the conference focus maintains and manages SIP 

conference session, and the mixers processes audio/video frames generated from each 

participants [1-4]. Therefore load of the focus and mixers increases as the number of 

participants increases, and it becomes the major reason that limits the scalability of the 

large-scale conferencing system. However, many studies about conferencing system with 

multiple servers have some limitations. Some approaches have focused on allocation of 

media processing load to multiples mixers [5-6]. SIP session establishment control, 

conference information data [7] control and QoS (quality of service) control are not fully 

distributed in these approaches, and delay time to process SIP messages and audio/video 

streams may not be acceptable when many participants join the conference. Furthermore, 

these approaches are lack of conference information data synchronization capability 

between servers. In large-scale conferencing system, severs should frequently exchange 

their conference information data for effective load distribution during conferencing 

operation, however, these approaches do not present such functions.  

Some studies have proposed P2P-signaling protocol scheme for distributed conference 

control [8-9], but their methods require resource location and discovery function for both 

conference servers and participants, and these facts limit their usages. So in this paper, a 

new distributed conferencing system architecture, which enable to controls each server’s 

load and distributes dynamically overall system load to each server, has been suggested. 

In order to control conference system load, a new extended conference information data 

format which has some added elements for load distribution and control has been 

http://dx.doi.org/10.14257/ijmue.2015.10.5.17


International Journal of Multimedia and Ubiquitous Engineering 

Vol.10, No.5 (2015) 

 

 

412   Copyright ⓒ 2015 SERSC 

designed. And detailed exchange procedures of SIP messages between conference servers 

and participants have been presented. 

In Section 2, the related work with regard to conferencing system 
architecture in SIP environment is described. Section 3 presents newly 
designed distributed large-scale conferencing architecture, and a new 
extended conference information data format with some added elements for 
the distributed conferencing system architecture. The extended conference 
event package and exchange procedures of SIP messages between conference 
servers and participants have been also described in this section. In Section 4, 
extensive experimental measurements have been done to verify the 
performance of the proposed distributed conferencing system architecture, 
and Section 5 is dedicated to conclusion remarks. 

 

2. Related Work  

The IETF researches on conferencing system have defined frameworks for 

allowing   participants to exchange media in a centralized conference  [7,10,11]. 

These documents also have defined logical entities required for conference systems, 

and have outlined conferencing protocols for building advanced conferencing 

applications. These researches use the conference object as a logical representation 

of a conference instance, representing the current state and capabilities of a 

conference. However, these frameworks are for centralized single conference server 

architecture, and they cannot be applied to distributed conferencing system with 

multiple servers. There have been a few researches about scalable conference 

architecture to increase extendability in the large-scale conferencing system. One of 

them is policy-based management architecture [6]. This approach focuses on 

allocation of media processing load to several mixers, and in this case conference 

information data control and SIP session establishment control are not fully 

distributed in the conference system. Furthermore, this policy-based management 

architecture does not use the concept of conference event package, so the approach 

has problem of real time conference information synchronization between servers.  

Some studies propose P2P-signaling protocol scheme for distributed conference 

control using resource location and discovery method[8,9]. These approaches 

provide functions such as a mechanism for proximity-aware routing within a 

conference, and mechanisms for conference synchronization and call delegation for 

conferencing system. These researches have defined applications of resource 

location and discovery method, and suggest Kind code data structure for distributed 

conferencing system. This data structure provides mapping of a single conference 

URI to multiple conference controllers, so it provides scalable signaling for resource 

location and discovery in   conferencing system. However, these methods require 

resource location and discovery function for both conference servers and 

participants, so this fact restricts their usage. 

In conferencing system, authenticated and authorized participants should be 

allowed to create, manipulate, and delete conference objects. Some studies on 

centralized conferencing manipulation protocol (CCMP) have suggested conference 

operations such as adding participants, removing participants, changing their roles, 

adding and removing media streams and associated endpoints[12,13]. However, 

these papers only describe the client-server model within the centralized 

conferencing framework, so these approaches cannot be used to distributed 

conferencing system with multiple servers.  

In order to overcome such restrictions on previous works, a new architecture for 

SIP-based distributed conferencing system with dynamic server allocation capability 
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has been suggested in this paper. In this system, overall system load is effectively 

and dynamically distributed to each conference servers. In this study, a new 

extended conference information data format which has some added elements for 

load control and conference objects manipulation has been designed. Furthermore, a 

new extended conference event package for synchronizing conference information 

between servers has been also proposed. And, for distributing system load 

dynamically to each server, detailed exchange procedures of SIP messages between 

servers and participants has been presented. 

 

3. System Design and Implementation 

In this section, a newly designed distributed large-scale conferencing system 

architecture that allocates system load dynamically to multiple conference servers has 

been suggested. This section also describes an extended conference information data 

format with new added elements for controlling conferencing system load, and presents 

extended conference event package using the extended conference information data 

format with exchange procedures of SIP messages between conference servers and 

participants. 

 

3.1. Design of Distributed Conferencing System Architecture 

Figure 1 shows a designed architecture of distributed large-scale conferencing system 

proposed in this paper. In this system, the conference server is comprised of conference 

focus, media mixer, extended conference information and conference load control 

module. The conference focus maintains SIP sessions between serves and participants. 

The media mixer maintains RTP sessions with participants, and it mixes and distributes 

media streams from participants. The extended conference information represents overall 

conference information data of the conference system with new added elements required 

to allocate participants dynamically to each server in this distributed conferencing system. 

The conference load control module monitors and generates SIP signals to distribute 

system load to each server. 

In order to synchronize overall conference information data, each server subscribes 

extended conference event package, which uses extended conference information data 

format designed in this study, using SIP SUBSCRIBE message to the other servers. This 

extended   conference event package is used also to notify changes of conference 

information data to the   participants. When a participant sends SIP INVITE message 

containing conference URI to the primary conference server, the server checks its current 

value of <load-level> element of the extended conference information data format to 

determine whether it can  handle the participant’s  request. When the current load value is 

within pre-determined limit, the server sends SIP 200 OK response, and establishes RTP 

session with the participant to make the participant join the conference. The detailed 

function of new added  <load-level> element  is described on Section 3.2. When the 

current load value exceeds pre-determined limits, the server checks current load values of 

the other servers, and selects a server with the lowest current load value. Then, the 

primary server sends 302 Redirection SIP response message representing this selected 

server to the participant, and the participant sends again SIP INVITE message to this 

server to make conference session with it. 
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Figure 1. Designed Architecture of Distributed Conferencing System 

When all the other server’s current load values exceed pre-determined limits, the 

primary server fetches extended conference information data elements <reserved-servers-

list>, to selects a new server which can be added to the conference from the reserved 

servers list. The detailed function of new added <reserved-servers-list> element is 

described on Section 3.2. Then, the primary server sends SIP INVITE message to this 

new server to make conference session with it. The new added server sends SIP 

SUBSCRIBE message to the primary server to subscribe extended conference event 

package, and the primary server notifies current extended conference information data 

using SIP NOTIFY message. After receiving current extended conference information 

data, the new added server make SIP session and RTP session with the other active 

servers in the conferencing system. The primary server sends SIP redirection response 

message representing this new added server to the participant, and the participant sends 

again SIP INVITE message to this new added server to make conference session with it. 

After new conference server is added successfully following the above procedures, the 

primary server starts to reassign the existing participants to this new added server to share 

overall load of the conference system.  As primary server does more jobs than the other 

servers, its pre-determined load limit can be set to lower value than the other servers by 

conference policy. Figure 2 shows signaling procedure of the proposed conferencing 

system operation. 
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Figure 2. Signaling Procedure of the Proposed Distributed Conferencing 
System 

In this procedure, when a participant requests to join the conference using SIP INVITE 

message, the primary conference server searches extended conference information data to 

find conference object identifier of the participant from its SIP URI, and determines 

whether the participant should be allowed using <allowed-users-list> element of the 

conference object. Then, the primary conference server checks current load values of all 

the activated servers, and select the server with the lowest current load value. Then, it 

sends SIP redirection message which has URI of this selected server to the participant. 

The participant makes SIP session with this server by sending SIP INVITE message, and 

it establishes RTP session to the server for exchanging media stream. When all the 

activated servers show high load value, a new server is required, and the primary server 

selects a new server from the candidate servers list. The primary conference server sends 

SIP INVITE message to the new server to establish conference session with it, and sends 

SIP redirection message with URI of this new added server to the participant. When the 

participant receives redirection message, it establishes SIP session and RTP session with 

the new added server.  

Then, load reallocation process begins. The primary server sends SIP REFER message 

to the participants connected to the server which has highest load value. When the 

participants receives SIP REFER message, they send SIP INVITE requests to the new 

added server to make conference session with it. After establishing SIP and RTP session 

with the new added   server, the participants send SIP BYE messages to their prior sever 
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to release the conference sessions with it. This load reallocation process continues until 

load levels of all the active servers decrease to be nearly same value.  

 

3.2. Design of Extended Conference Information Data Format  

In this paper, a new extended conference information data format with some added 

elements has been designed to implement distributed conferencing system architecture. In 

order to control conference system load,  <load-level> element is added as a child element 

of  <conference-info> which is the root element of the original conference information 

data format. This <load-level> element contains information about load level in each 

conference server. The proposed load level iL is calculated as : 

)(
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                                                       (1) 

where index i represents each conference server, iN is number of participants for each 

conference server, ijV  and ijA  represent video/audio frames generated per second 

according to RTP payload types that are negotiated via SDP messages. The parameters   

and   are weighting factors. Each of these elements has three attributes, which are ‘max-

load-level’ for representing maximum allowed load level, ‘min-load-level’ for 

representing minimum allowed load level, and ‘server-id’ for  identifying each server. 

The value of ‘max-load-level’ for primary server can be lower than value of the other 

servers by conference policy. When a server's load level is below the minimum allowed 

load level, and this server's load can be distributed to the other servers, then the server 

becomes to be deactivated state. The element <load-level-components> has been designed 

to represent each component of load level value. This element has one attribute, ‘server-

id’ for identifying each server, and two child elements such as <participants-numbers> 

and <media-frames>. The element <weighting-factors> has also been added to represent 

each load weighting factors described above. This element has two child elements, 

<alpha> and <beta>, to represent each load weighting factor. 

   The element <reserved-servers-list>, <server-num>  and <current-participants-list> are 

also designed in this study. The element <reserved-servers-list> has list of candidate 

servers that can be added to the conference. It has a child element <uri> to represent each 

server. The <server-num> element represents number of active servers in conference 

system. The <current-participants-list>  element represents active users list of each server, 

and it has a child element <uri> to represent each participant, and an attribute ‘server-id’ 

to identify each server.  

The element <conf-control> has been added to control conference object by authorized 

participants. The authorized participant can create conference object, add participants to 

the created conference object, update participant's information, delete participant, and 

update conference object information by using this new <conf-control> element. This 

element has a child element <operation> to control the conference object. The 

<operation> element has ‘conf_create’, ‘user_add’, ‘user_update’, ‘user_delete’, 

‘conf_update’  and  ‘conf_delete’ as  it's values. Figure 3 shows main part of the XML 

schema definition for extended conference information data format designed in this paper.  

 
<?xml version="1.0" encoding="utf-8"?> 

   <xsd:schema 

       ………….. 

      xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

………….. 

<!-- load-level definition --> 

<xsd: element name=" load-level"  minOccurs="1"  maxOccurs=" unbounded " />  

<xsd: complexType>   
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<xsd: simpleContent> 

            <xsd:extention base=" xsd: unsignedInt” > 

<xsd:attribute    name=" max-load-level"   type=" xsd:unsignedInt"   use="required" /> 

<xsd:attribute    name=" min-load-level"   type=" xsd:unsignedInt"   use="required" /> 

<xsd:attribute   name=" server-id"  type=" xsd:anyURI"    

use="required" /> 

</xsd:extention > 

</xsd: simpleContent> 

   </xsd:complexType> 

</xsd: element> 

 

<!—load-level-components definition --> 

 <xsd: element name=" load-level-components "  minOccurs="1"     

 maxOccurs=" unbounded " />  

   <xsd:complexType> 

       <xsd:sequence> 

         <xsd:element   name="participants-numbers"  type=" xsd: unsignedInt" /> 

         <xsd:element   name="media-frames"   type=" xsd: unsignedInt" /> 

     </xs:sequence> 

  <xsd:attribute  name=" server-id"   type=" xsd:anyURI "  use="required" /> 

   </xsd:complexType> 

</xsd: element> 

 

<!—weighting-factors definition --> 

 <xsd: element name=" weighting-factors " />  

   <xsd:complexType> 

       <xsd:sequence> 

           <xsd:element   name="alpha"  type=" xsd: double" /> 

          <xsd:element    name="beta"  type=" xsd: double" /> 

      </xs:sequence> 

 </xsd:complexType> 

</xsd: element> 

 

<!—reserved-servers-list definition --> 

<xsd: element name=" reserved-servers-list" />  

   <xsd:complexType> 

       <xsd:sequence> 

           <xsd:element    name="uri"   type=" xsd: anyURI"   minOccurs="1"   

maxOccurs="unbounded" /> 

       </xs:sequence> 

</xsd:complexType> 

</xsd: element> 

 

<!—server-num definition --> 

<xsd: element name=" server-num " type=" xsd: unsignedInt " />  

 

<!—current-participants-list definition --> 

<xsd: element name=" current-participants-list "  minOccurs="1"  maxOccurs="1" />  

   <xsd:complexType> 

       <xsd:sequence> 

           <xsd:element    name="uri"   type=" xsd: anyURI"   minOccurs="1"   maxOccurs=" 

unbounded " /> 

       </xs:sequence> 

<xsd:attribute  name=" server-id"   type=" xsd:anyURI "   use="required" /> 

</xds:complexType> 

</xsd: element> 

 

<!—conf-control definition --> 

<xsd:element  name=" conf-control "  > 
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<xsd:complexType> 

       <xsd:sequence> 

            <xsd:element    name=" operation"   type=" operationType" /> 

<xsd:element    name=" conf-subject"   type=" xsd: string"   minOccurs="0"   maxOccurs="1" /> 

       </xs:sequence> 

</xsd:complexType> 

</xsd: element>  

 

<!-- operationType definition --> 

    <xsd:simpleType name="operationType"> 

<xsd:enumeration value="conf_create "/> 

        <xsd:enumeration value="user_add"/> 

        <xsd:enumeration value="conf_update"/> 

<xsd:enumeration value="user_update"/> 

        <xsd:enumeration value="user_delete"/> 

<xsd:enumeration value="conf_delete"/> 

</xs:simpleType> 

………….. 

Figure 3. XML Schema Definition for Extended Conference Information 
Data Format 

3.3. Exchange Procedure of SIP Messages between Conference Servers and 

Participants 

In centralized conferencing system, the original conference event package uses SIP 

SUBSCRIBE/NOTIFY messages to exchange conference information between SIP user-

agent[10]. In this paper, in order to synchronize conference information between servers 

in distributed conferencing environment, the conference event package has been extended 

by using some added information data format elements as described on Section 3.2. 

Followings are the exchange procedures of SIP messages between conference servers and 

participants using the extended conference event package. 

Figure 4 shows exchange procedure of SIP messages between conference servers and 

participants. In this exchange procedure, each conference server subscribes to primary 

conference server using the extended conference event package, and primary conference 

server also subscribes itself to the other servers. When a participant(participant A) sends 

SIP INVITE message to the primary conference server, it checks current load level of 

each active server to find a server with the lowest load level. If load level of the 

server(conference server C) is within the maximum allowed load level, the primary server 

sends SIP redirection message with URI of this  server  to the participant.   

Then, the participant sends again SIP INVITE message to this server to establish SIP 

session, and makes RTP session with the server to exchange media stream. The 

server(conference server C) notifies this change to the primary server, and primary server 

notifies to other servers the change of conference information to synchronize the overall 

conference information of the system. The added participant sends SIP SUBSCRIBE 

message to the server(conference server C) to subscribe conference event package, then it 

receives current conference information from the server. Then, other 

participant(participant B) sends request message to join the conference, and in this case, 

the primary server select conference server B, and sends SIP redirection message with 

URI of this  server to participant B.  Then, the participant establishes conference session 

by sending SIP request message to this server, and conference server B processes media 

streams from participant B through RTP session. The conference server B notifies this 

conference information change to the primary server, and the primary server sends 

NOTIFY messages to the other servers. 
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Figure 4. Exchange Procedures of SIP Messages between Conference 
Servers and Participants 

Figure 5 shows exchange procedure of SIP messages when a new conference server is 

added to process participant’s request. When the primary server determines to add a new 

server after checking current load levels of all active servers,  it selects candidate sever 

from reserved servers list, and sends SIP INVITE message to this selected new server to 

establish conference session with it.  

Then, the new server sends SIP SUBSCRIBE message to the primary conference 

server to subscribe extended conference event package. The primary conference server 

sends SIP NOTIFY message which contains current conference information of the system 

in its body to the new server, and by this way the new server can share current conference 

information with the other active servers. The primary conference server sends SIP 

SUBSCRIBE message to the new added server to subscribe itself to this new server to get 

conference information changes from this server. Then, the new added server makes RTP 

sessions with the other servers, and the primary conference server sends SIP redirection 

message with URI of this new added server to the participant (participant C).  The 

participant makes SIP session and RTP session with the new added server.  
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Figure  5. Exchange Procedures of SIP Messages when a New Server is 
Added 

Then, load reallocation process begins. In this figure, the primary server sends SIP 

REFER message to the participant D who is connected to the server which has higher load 

level value than the other servers. When participant D receives SIP REFER message, it 

sends INVITE request to the new added server to make SIP conference session with it. 

After establishing SIP session with the new added server, participant D sends SIP BYE 

message to its prior server(conference server C) to release the conference session with it. 

Then, participant D disconnects RTP session from its prior sever, and establishes new 

RTP session to the new added server. The conference server C and new added server 

notify their conference information changes to the primary server, and finally, the primary 

server sends NOTIFY message to other servers to synchronize the overall conference 

information of the system. 

Figure 6 shows exchange procedures of SIP messages when an authorized participant 

(participant A)  requests to the primary conference server to create a conference object. 

Some SIP messages are omitted to simplify the figure. The authorized participant sends 

INVITE message with Allow-Events header which has value ‘x-conf’ representing the 

proposed extended conference event package. The body part of INVITE message  has 

extended conference information element <conf-control>, as described on Section 3.2, 

with child element <operation>  which has value ‘conf_create’ representing creation of 

conference object. The body part has also <allowed-users-list> element with child 

element <target>. The element <target> has attribute ‘uri’ representing participant’s SIP 

URI, and attribute  ‘method’ representing  conference joining method.  
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The primary conference server creates conference object, and selects a 

server(conference server B) as a focus of the created conference object. And the primary 

conference server sends SIP NOTIFY message which has conference information of the 

created conference object in its body to conference server B. The primary conference 

server also sends a created conference object ID to participant A. Then, the conference 

server B sends INVITE message to each participants in <allowed-users-list> element,  

and establishes SIP session and RTP session. Each participant subscribes to the 

conference server B and receives conference information.  

The authorized participant (participant A) sends INVITE message which has 

conference object ID, <operation> element with value ‘user_add’, and new participant’s 

SIP URI in the body part. In this case, the primary conference server decides to assign a 

new conference server to serve the new participant due to high load level of conference 

server B. It selects candidate sever from the reserved servers list, and sends SIP INVITE 

message to this selected new server to establish conference session with it. Then, the new 

added server subscribes to the primary conference server, and it responds with notification 

which has current conference information of the system. Then, the new added server 

establishes SIP conference session with the  new participant(participant D). The new 

added server notifies changes of conference information to the primary conference server, 

and the primary conference server sends NOTIFY messages to the other servers. Then, 

the conference server B notifies changes of conference information about new participant 

to the other participants.  

 

 

Figure 6. Exchange Procedures of SIP Messages when an Authorized 
Participant Requests to Create Conference Object 

4. Performance Evaluation 

In the experiments, 10 personal computers are used to emulate conference participants. 

Each personal computer has been programmed to generate workload up to 30 conference 
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participants. For acting as conference servers, 7 personal computers are used. SIP protocol 

stack and packet generator are written by JAVA in MS-Windows and LINUX 

environment. SIP protocol stack sources are written according to SIP standard, and packet 

generator is configurable and extensible via XML. All personal computers are 

interconnected using a gigabit Ethernet switch. Conference object ID has been assigned 

for every 10 participants, so total number of conference objects used for tests is 30.  

The average media packet transmission delay and the average SIP signaling delay are 

measured. The performance of the proposed distributed architecture has been compared 

with the centralized conferencing architecture of IETF [11]. Table 1 shows detailed 

parameters used for experimental measurements. In order to measure media packet 

transmission delay time, audio signal encoding method CS-ACELP G.729 Annex A 

which has a payload type 18 defined in RTP profile has been used. The sampling 

frequency for encoding signal is 8 KHz, and 15 packets are generated every second. The 

frame length is 10 msec, packet generation period is 66.67  msec, and packet  duration is 

20 msec. 

Table 1. Parameters Used for Experimental Measurements 

Parameters Value 

sampling frequency 8000 Hz 

frame length  10 msec 

number of packets per second 15 

packet generation period 66.67 msec 

encoding rule CS-ACELP G.729A 

number of bits per frame 80 

packet duration 20 msec 

bit generation speed 8000 bps 

number of conference objects 30 

network bandwidth 1000 Mbps 

 

Figure 7 shows average media packet transmission delay as the number of participant 

increases from 30 to 300. The average media packet transmission delay includes 

processing time for mixing media packets in the mixer, delay time for media packet 

transmission, and delay time for generating media packet. The value of the maximum load 

level, ‘max-load-level’, which is an attribute of <load-level> element defined in Section 

3.2, is set to be 600. The value of weighting factor parameter    is set to be 10, and   is 

set to be 0.001. In this figure, the average media packet transmission delay of the 

proposed architecture is measured much smaller than that of the centralized architecture. 

This figure shows that as the number of participants increases, the average media packet 

transmission delay of the proposed architecture remains almost at constant, while delay of 

the centralized architecture grows rapidly. This is because the whole media streams are 

concentrated to a single conference server in the centralized architecture, while in the 

proposed architecture, the media streams are distributed to multiple servers dynamically 

according to load level of each server. In this figure, transmission delay of the proposed 

architecture grows slightly when the number of participants exceeds 210. This is because 

new conference server is added for every 30 participants according to the value of the 

maximum load level and weighting factor parameters. So there are no further reserved 

servers when the number of participants exceeds 210, and each server's load slightly 

increases. 
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Figure 7. Average Media Packet Transmission Delay 

Figure 8 presents average SIP signaling delay when participants join a 

conference. The delay is measured by completion time of SIP INVITE transaction to 

the conference server. The testing parameters for the proposed architecture are same 

as in Figure 7, and only SIP sessions are used in the centralized architecture.  When 

the number of participants is 30, one server is used in both cases, and the proposed 

architecture shows somewhat higher delay due to media processing load. As the 

number of participants increases beyond 30, the proposed architecture shows higher 

delay time. This is because additional SIP messages are required to complete the 

transaction during the redirection procedures of adding conference servers as 

described in Section 3.3.  

When the number of participants exceeds 120, the average SIP signaling delay of 

the centralized architecture increases continuously. This is because server load 

required to keep conference sessions with all participants also increases even 

without media processing. However, the average SIP signaling delay of the 

proposed architecture remains almost constant with increasing number of 

participants due to distribution of server load to multiple servers by dynamic server 

allocation, and this fact improves scalability of the large-scale conference system. 

 

 

Figure 8. Comparison of Average SIP Signaling Delay 
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Figure 9 shows comparison of average media packet transmission delay of the 

proposed architecture with different values of the maximum load level, 300 and 1200. The 

weighting factor parameters are same as in test for Figure 7. In this test, when maximum 

load level is 300, new conference server is added for every 15 participants from the 

equation (1). When maximum load level is 1200, new conference server is added for 

every 60 participants. 

 

 
 

Figure 9. Average Media Packet Transmission Delay with Different 
Maximum Load Level 

In this figure, when maximum load level is 300, the average media packet transmission 

delay is measured nearly constant until the number of participants reaches 90. When the 

number of participants exceeds 120, transmission delay gradually increases. This is 

because new conference server is added for every 15 participants, so there is no further 

reserved servers when the number of participants exceeds 120. In this case, the load of the 

system has been equally distributed to all conference servers, so the load per server 

gradually increases. When maximum load level is 1200, the average media packet 

transmission delay shows some fluctuation around 115 msec when the number of 

participants exceeds 60. This is because new conference server is added for every 60 

participants, and the number of participants allocated to each server fluctuates around 55 

after 60 participants. This result presents that load balancing  of the system can be easily 

controlled by changing load level value. 

Figure 10 shows effect of media frames generated per second according to RTP 

payload types. Equation (1) in Section 3.2 describes about that. In the experiment, PCMµ 

encoding method has been used for 30% of participants, and G.729A has been used for 

70% of participants in one case. In the other case, all participants use G.729A. The 

maximum load level and weighting factor parameters are same as in test for Figure 7. In 

this figure, the average media packet transmission delay of using 30% PCMµ shows 

nearly constant, and somewhat lower than the transmission delay of using 100% G.729A 

until the number of participants reaches 90. However, when the number of participants 

exceeds 120, transmission delay of using PCMµ increases somewhat rapidly. This is 

because the sum of PCMµ media frames generated per second  is 8 times higher than that 

of G.729A, therefore, the load level becomes higher when PCMµ is used. So in this case, 

all servers are allocated when the number of participants reaches 120,  and the load per 

server increases after that. 
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Figure 10. Effect of Media Frames Generated per Second According to RTP 
Payload Types 

Figure 11 shows effect of weighting parameter   in the load level equation (1). In this 

experiment, 30% of participants assumed to use PCMµ encoding method as in Figure 10. 

The value of weighting parameter   is changed from 0.001 to 0.00035 to decrease the 

effect of media frames generated per second on the load level. As shown in Figure 11, the 

average media packet transmission delay of using weighting parameter   = 0.00035 and 

70% G.729A remains almost constant until the number of participants becomes to be 210. 

This is due to the fact that new conference server is allocated for every 30 participants by 

reducing the  value of weighting parameter   in the case of using 70% G.729A. In this 

figure, the average media packet transmission delay of using 100% G.729A shows 

somewhat lower value than that of using 70% G.729A, this is because the amount of 

media frames generated per second is lower than that of using  70% G.729A, so the load 

level  is lower at the same number of participants. When the value of weighting parameter 

  is 0.001 and 30% PCMµ encoding method is used as in Figure 10, conference server is 

allocated for every 15 participants due to highly generated load level. Therefore, there is 

no further reserved servers when the number of participants exceeds 120, and the 

transmission delay increases somewhat rapidly after that. However, by changing 

weighting parameter value, transmission delay can be controlled to remain almost 

constant until the number of participants becomes to be 210 in this experiment.  

 

Figure 11. Effect of Weighting Parameter   
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5. Conclusion 

In this paper, distributed large-scale conferencing system architecture which has 

effective dynamic server allocation capability has been proposed. A new extended 

conference information data format has been designed to distribute system load 

dynamically to multiple conference servers. The extended conference information data 

format has new added elements for controlling conference system load and conference 

object. To synchronize conference information data between conference servers, the 

extended conference event package has also been used. The amount of video frames and 

audio frames generated per second according to RTP payload types and the number of 

participants for each conference server is used for load level control. The presented 

exchanging procedures of SIP messages show detailed SIP request and response signals 

transferred between conference servers and participants to dynamically distribute system 

load. 

Experimental measurements have been done to verify performance of the proposed 

distributed conferencing system architecture. The experiments measure average media 

packet transmission delay and the average SIP signaling delay by changing the number of 

participants, load level values, and weighting factor parameters. The results show that the 

proposed architecture can provide high scalability and flexibility for distributed large-

scale conferencing system. Future work may include security issues which would adapt 

advanced security mechanism for implementing distributed large-scale conferencing 

system architecture. 
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