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Abstract 

To improve the performance of the Magnetotelluric Occam inversion, by in-depth 

analysis of the sequential algorithm, we develop a multi-level hybrid parallel computing 

scheme for MT Occam inversion based on MPI+OpenMP+CUDA and implement it on a 

small heterogeneous cluster. We implement the parallel algorithm for solving linear 

equations with Gauss elimination, jacobian matrix, cross-product matrix calculations and 

Cholesky decomposition. Through reasonable decomposition, combination and mapping 

of computing tasks, the scheme reduces the data traffic and realizes the purpose of load 

balancing. By changing the matrix storage order ， the memory access speed is 

significantly increased. The scheme is tested with multiple synthesis data from 2-D 

theoretical models and the execution efficiency of sequential code and parallel code on a 

4 nodes PC cluster is comparatively analyzed. The test results show that the realization of 

this hybrid parallel algorithm is feasible and efficient. Compared with the sequential code 

and pure message passing algorithm, the inversion speed is obviously increased. 

 

Keywords: Magnetotelluric, inversion, heterogeneous, parallel computing, 

MPI+OpenMP+CUDA 

 

1. Introduction 

Occam inversion is one of the most important geophysical inversion methods, which 

pursues the best fitting between the model and original data, demands that the model is the 

smoothest at the same time [1]. Using adaptive algorithms to calculate the Lagrange 

multiplier (µ
-1

), Occam inversion has the strongpoint of stability of convergence and is 

independent of starting model. So, this method has been widely used in geophysical 

exploration [2-5]. 

But the low computing speed has been the main problem of the Occam inversion method. 

Hu Zuzhi et al., have done some comparative experiments for various inversion methods, 

their results show that the Occam method is the most stable, but its inversion time is the 

longest [6]. The major causes are: 1) the jacobian matrix of the explicit calculation 

consuming too much CPU time; 2) too dense finite element grid subdivision will lead to 

huge coefficient matrix, make the amount of calculation increased rapidly; 3) using 

adaptive algorithm to calculate the Lagrange multiplier will lead to the increase of the 

iteration, making the overall increase of the calculation. After the algorithm been put 

forward, many geophysical workers home and abroad have targeted made some 

improvements to it, obtained certain achievements on its time performance [7-10]. 

Parallel computing is one of the ways to improve the computing speed of geophysical 

processing and some research works has been done in the aspect of electromagnetic data 

parallel processing. Newman and Alumbaugh (1997) used parallel computing to calculate 

3-D electromagnetic imaging [11]; Zyserman and Santos (2000) implemented the 

three-dimensional magnetotelluric finite element parallel computing [12];Chen Jin-chuang 

and Dai Guang-ming realized a 2.5-D CSAMT forward modeling parallel computing on the 

PVM environment [13]; Tan Han-dong et al., (2005) realized parallel computing of 
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magnetotelluric 3-D forward modeling[14], and then the magnetotelluric 3-D RRI 

inversion [20]; Liu Yu (2006) implemented the two-dimensional magnetotelluric Occam 

inversion based on PVM parallel flatform [15, 16]; In the same year, Chen Lu-jun et al., 

Realized 3-D electromagnetic numerical simulation based on MPI[21]; Hu xiang-yun and 

Li yan (2010 and 2012)applied parallel computing to the magnetotelluric data processing 

and achieved good effect [17-19]. 

The study achievements mentioned above are all based on message passing model (MPI 

or PVM), which are usually suitable for large granularity parallel calculation, and not 

beneficial to the efficient use of multi-core of CPU and many-core of GPU resources. This 

paper adopts a CPU + GPU multi-level heterogeneous hybrid parallel computing scheme 

for MT Occam inversion. The top layer implement the parallelism between nodes using 

message passing, the middle layer further parallelize each MPI task by OpenMP and 

implement the parallelism between multi-core in the compute nodes with shared memory 

way, the bottom layer realize the GPU core calculation through CUDA, thereby to use 

computing resources and decrease the cost of the cluster to the greatest possible. 

The remainder of this article is organized as follow. We begin with description of the 

3-level hybrid parallel computing model in Section 2. Then in Section 3 the basic principle 

of magnetotelluric Occam inversion algorithm is given. The Occam inversion hybrid 

parallel scheme is presented in Section 4 and some major algorithms have also been 

discussed in this section. Inversion results of 6 theoretical models are provided and 

discussed in Section 5. Finally, in Section 6, we offer some concluding remarks on this 

hybrid parallel scheme. 

 

2. Hybrid Parallel Computing Model 

MPI was released in May 1994 as a message passing Interface, it is actually a standard 

specification of a message passing library, with advantages of numerous message passing 

systems, is currently the international standard of the most popular distributed storage 

parallel programming, with the characteristics of portability, ease of use, complete 

asynchronous communication function, and many other advantages. In the MPI 

programming model, the calculation is made of one or more processes, each process by 

calling the library function to receive and send message with other processes. The processor 

can read and write only local memory and the data exchanges between different memories 

are implemented through the messaging model. 

With the development of computer hardware technology, CPU multi-core sharing the 

same memory block has been widely used. Open Multi-Processing (OpenMP) is a kind of 

shared memory architecture API which provides a multithreaded capacity. OpenMP is an 

open specification for shared memory parallelism. The basic idea behind it is data-shared 

parallel execution. It consists of a set of compiler directives, callable runtime library 

routines and environment variables that extend FORTRAN, C and C++ programs. 

Communication in OpenMP is implicit, this makes the OpenMP programming relatively 

easy to implement. A loop can be parallelized easily by invoking subroutine calls from 

OpenMP thread libraries and inserting the OpenMP compiler. The unit of workers in 

OpenMP is threads. Every thread can access variables in shared cache or RAM. When 

accessing shared data, it costs almost nothing. 

GPU general purpose computation has developed rapidly in recent 10 years thanks to the 

NVIDIA CUDA parallel computing architecture. CUDA (Compute Unified Device 

Architecture) is the computing engine in NVIDIA graphics processing units or GPUs that 

are accessible to software developers through industry standard programming languages. It 

supports a range of computational interfaces including OpenGL and Direct Compute. 

CUDA’s parallel programming model is designed to over-come the challenge of intensive 

computing while maintaining a low learning curve for programmers familiar with standard 

programming languages such as C or Fortran. CUDA enable high levels of fine-grain data 
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parallelism and thread parallelism, nested within coarse-grained data parallelism and task 

parallelism. So the programmer can partition the problem into coarse sub-problems that can 

be solved independently in parallel, and then into finer pieces that can be solved 

cooperatively in parallel. Such decomposition preserves language expressivity by allowing 

threads to cooperate when solving each sub-problem, and at the same time enables 

transparent scalability since each sub-problem can be scheduled to be solved on any of the 

available processor cores. 

The above three parallel environments can be fused in together to form a multi-layer 

hybrid structure, the premise is that the system has multiple nodes and each node has 

multiple CPU cores and at least one GPU. Under this hybrid structure, we can make better 

use of the advantages of different programming model. MPI is suitable for large task 

granularity parallel between computing nodes. OpenMP, which has little messaging 

overhead, is suitable for processing intra-node medium and small granularity tasks in 

parallel. GPU architecture usually provide a large number of cores(SP), thus can use more 

threads (lightweight) for parallel processing and  is more suitable for fine-grained 

intensive parallel computing of large data. 

The goal of this article is to realize a multi-level, top-down gradual refinement 

programming model, and the MT Occam inversion in parallel with this model. Figure 1 is 

the framework of this hybrid model. The top level is cluster environment where computer 

nodes exchange information through the network and MPI platform. The middle level is 

multicore computing nodes (PC). The cores share the main memory and the fetch mode is 

symmetry. The bottom level consist of GPU stream processors(SP), the SP in some form 

share the local storage ,constant cache and texture cache. Corresponding to the hardware 

environment, the parallel software environment from to bottom are respectively the MPI, 

OpenMP and CUDA. In this model, when computing tasks are submitted to the cluster, 

they are divided into several subtasks at first, and then the subtasks are mapped to a cluster 

node through the MPI messaging. Within each node, the tasks are assigned to a CPU core 

with compilation guidance statements, and the corresponding processing threads are 

established. When using CUDA for GPU programming, each CPU process controls a 

CUDA device. The CUDA program divides the data to be processed into more residential 

blocks, and then executes them in parallel. Under the CUDA programming model, the 

problem is divided into two parts, one part execute on CPU (the host) and the other part on 

the device side (display chip). 
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Figure 1. The Basic Architecture of a Heterogeneous Cluster 
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3. The Basic Theory of MT Occam Inversion 

The actual field data in the geophysics are always limited and there inevitably are some 

errors within the data which will lead to nonunique solutions [22]. In order to obtain the 

optimal solution, inversion model should be as simple or smooth as possible and the 

roughness should be as small as possible, on the condition that the misfit is within an 

expected tolerance, thus to suppress redundant structure. Based on this idea, Constable et al 

put forward the Occam inversion method in 1987 [23]. 

MT Occam inversion uses a Lagrange multiplier to balance the model smoothness and 

misfit. The unconstrained functional is 

,                              (2.1) 

where the μ is a trade-off parameter (Lagrange multiplier), used to balance the model 

smoothness and misfit. The first term on the right is the roughness and second the misfit 

weighted by the Lagrange multiplier, d is the data vector, F(m) defines the forward mapping, 

R is the roughness matrix, ||Wd – WF(m) ||
2
is the standard 2-d norm, represent the misfit ( 2X ) 

of the forward response of the model to the data d, 2

*X  is the desired 2X . W  is the diagonal 

n n  matrix 

1 2 3{1/ ,1/ ,1/ ...,1/ },ndiag    W                                 (2.2) 

serving to standardize the data with the uncertainty in the data. When the data is accurate, 

to avoid data overflow that will cause the inversion abnormal end, let 2

* 0X  , W I . 

The discrete expression of is: 

 ,                                               (2.3) 

where di is the i
th
 data and σi is the uncertainty in the i

th
 datum, ，  express the 

data quantity. 

the model roughness ， in a 2-Dinversion ， where  and  

respectively express the transverse and longitudinal adjacent model roughness constraint 

matrix, the discrete expression of R is: 

 ,                                               (2.4) 

where  is the number of parameters,  is the number of constraint terms. 

Here introducing  to constrain the variability of model parameters and fix the 

conductivity structure, where p is prior information. The diagonal matrix T serves as a 

weighting factor, which is used to minimize the horizontal and vertical differences between 

m and p. 

To linearize the above nonlinear problem in (2.1), refer to formula 

, we can get iteration formula of the inversion: 

 ,                            (2.5) 

where  is the Jacobian matrix, that is, the partial derivative of  relative to .  

, , where  is the limitation of iterations. 

Through repeated iterations, and by judging the misfit and roughness, we can get the 

optimal solution. figure 2 is a basic flow chart of the inversion. 
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Figure 2. A Simplified Flow Chart of the Inversion Algorithm 

4. Hybrid Parallel Scheme 

Through the analysis of the Occam inversion, we know that the algorithm has good 

gradation. Computations based on grouping frequencies are of large granularity and can be 

further divided into single frequency computations, which have relatively small granularity. 

In forward modeling, for each frequency, linear equation group resolving can also be 

decomposed, thus to make use of the mass core of the GPU. On these grounds, a parallel 

inversion scheme was designed and the overall process is shown in Figure 3. 
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Figure 3. A Simplified Flow Chart of the Hybrid Parallel Inversion Scheme 

4.1. Distributed Storage Parallel Algorithm 

The upper level distributed parallel model is used to implement parallelization for 

different frequency response and Jacobian matrix calculation in the forward modeling 

process, through task decomposition of large granularity. The main input of the forward 

calculation is the inversion model m, the auxiliary parameters include finite element mesh, 

survey point location and frequency data. The output is the corresponding frequency’s 

modeling response and Jacobian matrix. Each frequency point’s forward calculation is an 

independent process, thus can be directly partitioned based on frequency big granularity 

task. Before the computation, the model data and parameters are distributed between 

computing nodes and then, the forward response and partial derivative are collected 

through communication. In the process of task mapping, the master node is responsible for 

reading data, sending data to and receiving data from the slave nodes.  The slave nodes 
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receive and send data in passive way, keeping in block state before confirming that the 

master node has received the data. 

In algorithm 1, according to the actual number of nodes in the task mapping the 

frequencies are divided into multiple subset Fi (I = 1, n, n < nfre) and each node calculates 

frequency points within the corresponding subset. Since the calculations for each frequency 

point are relative equilibrium, for nproc nodes, frequencies can be divided equally in 

sequence, so that each process calculates nproc/nfre (+ 1) frequency points. Experiment 

results show that this task assignment can keep the load balance between nodes. In 

consideration that master node is responsible for global communication control and have 

certain overhead, computing tasks mapped to the master node should be the least of all the 

nodes.  

 
 

4.2 Intra-node Parallel Algorithm 

The intra-node parallel model includes multi-core CPU and mass core GPU parallel 

programming model. Through the analysis of Occam algorithm, the parallelism within a 

node concentrates on the process of finite element coefficient matrix assembly and linear 

equation group solving with Gauss elimination algorithm in the process of forward 

modeling, the jacobian matrices calculation and Cholesky decomposition in the process of 

inversion. 

 

4.2.1. Forward Calculation on Shared Memory System 

Based on the shared memory parallel model, the computing tasks mapped to nodes by 

upper parallel model are further divided and mapped to the multi-core processor system. 

Based on the same principle, the calculation for each frequency in the process of forward 

modeling are data independent to each other and share the data such as the inversion model, 

finite element mesh, survey point locations and frequency data. 

   Algorithm 1 forward modeling on distributed memory system 
input: m 
output: F(m),J  
  rank ← index of processes∈[0,nproc-1]  
  GLOBAL COMMUNICATION 
    BCAST{ frequencies, MESH, NRL} 
  {f_s, f_e}← selection(rank) 
  GLOBAL COMMUNICATION 
    BCAST{m} 
  for every i = f_s,…, f_e do 
    freq←frequencies[i] 
    ∙   ∙   ∙ 
    Calculate  F(m) [freq] 
    if(calculation J) then 
      ∙   ∙   ∙ 
      Calculate  J [freq] 
    endif 
  end for(i) 
  GLOBAL COMMUNICATION 
    GATHER{F(m) } 

if(calculation J) then 
  GATHER{J} 

endif 

javascript:void(0);
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Algorithm 2 describes the parallel algorithm of forward calculation within a node. If a 

node is about to calculate T frequency points then T threads will be created before 

algorithm implementation and a copy of the private variables for each thread will be created 

at the same time. The thread choose their corresponding frequency freq[t] from the 

frequency group of the node, and use the private variable K[t] to complete the calculation of 

forward response and partial derivative, t represents the number of threads. The shared 

memory parallel programming model has characteristic that multi-threads in a node share 

the same piece of storage space, so the access latencies to the memory are all the same. 

Since the execution status of a thread are unpredictable at some time points, in order to 

guarantee the correctness of the data in time, the scheme adopt the way of creating thread 

private storage space for data isolation. 

Using multi-thread parallel processing to complete the forward calculation within a node 

can reduce the Gaussian elimination method’s time complexity to O(NE
2
). On the contrary, 

in order to handle multi-thread shared memory data access conflicts, private copies for each 

thread will increase the algorithm space complexity accordingly. 

 

4.2.2. CUDA Based 2-D Bandwidth Gaussian Elimination 

Finite element forward modeling algorithm adopt the FE-method to divide strata 

structure into a finite number of non-overlapping units and convert the forward problems 

into solving partial differential equations. 

 

Band

Band  

Figure 4. Two-dimensional Bandwidth Storage Structure 

In the algorithm, the Gaussian elimination solving the linear equations account for a 

great proportion of the whole. As FE coefficient matrix has the characteristics of sparse, 

ribbon, symmetry and phalanx, MT Occam invoke a two-dimensional bandwidth storage 

structure to store data and complete Gaussian elimination on this compressed storage 

Algorithm 2 forward modeling on shared memory system 
imput: m 
create T threads 
t ← index of threads 
freq[t]←(t) 
( [t], [t])← finit Element (freq(t)) 
K[t] ← K[t]+ [t] 
P[t] ← P[t]+ [t] 

(freq[t])← gauss(K[t], P[t]) 
if(calculation ) then 

[t]← derivative Element (freq[t]) 
[t]← [t]+ [t] 
(freq[t])← gaussd(K[t], [t]) 

endif 
join threads 
calculate ,  

javascript:void(0);
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structure which is shown in figure 4. A basic Gaussian elimination CUDA program is given 

in Code 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Code 1, offset represent the location before the first element of first row of the 

coefficient matrix in each block. The matrix moves up row by row in the loop and 

synchronization function syncthreads() has been invoked by each cycle for threads 

synchronization in a block. idx express thread relative position in the working triangle. 

In order to reduce the traffic of global memory and improve the CUDA application 

efficiency, data are firstly loaded into the shared storage and then read out by each thread to 

complete the calculation. 

 

4.2.3. CUDA based Matrices Computation and Cholesky Decomposition 

NVIDIA now supports CUDA implementation of BLAS function library called cublas 

which provides support for transposed matrix multiplication. We directly invoke the routine 

to calculate cross-product matrix and the key codes are presented in Code 2. In calculation 

of matrices that depend on Jacobian, Occam algorithm firstly by partial derivative 

calculation to get weighted Jacobian matrix WJ, then calculate WJWJ T . The low dimension 

is ND and the high is NP, so the first column of matrix WJ is saved first in accordance with 

the principle of column-major order in Fortran. But in the real calculation, the data are 

calculated from top to bottom row by row, and this sequence will cause some cache 

conflicts. Therefore, the original program has been modified by storing WJ
T
 instead of WJ, 

so as to keep the data calculation order same with the storage order to increase the cache hit.  

In the transposed matrix multiplication, let TWJA  , and the original equation change to 

WJWJAA TT  . 

 

Code 2  Cross-matrices computation on CUDA 

lerr = cublasCreate(h) 

d_WJT = WJT 

I = cublasSsyrk_v2(h, CUBLAS_FILL_MODE_UPPER, 

CUBLAS_OP_N, nParams, ND, 1., d_WJT, nParams, 0., 

d_WJTWJ, nParams) 

WJTWJ = d_WJTWJ 

 

CULAtools also provide the CUDA version of LAPCK routine library and we realize the 

Code 1  The process of coefficient matrix elimination 

offset = (blockIdx%x-1)*height*width 

idx = ID(threadIdx%x) 

do i=1,NNODE-1 

  if(threadIdx%x <= NBAND) then 

    pivot(threadIdx%x) = S(offset+threadIdx%x) 

  endif 

  call syncthreads() 

  temp=K(offset+idx)  

temp=temp-pivot((idx/width)+1)/pivot(1)*pivot(idx/width+MO

D(idx,width)) 

  K(offset+idx) = temp 

  if(threadIdx%x <= NBAND .and. threadIdx%x /= 1) then 

    K(offset+threadIdx%x) = pivot(threadIdx%x)/pivot(1)    

endif 

  offset = offset+width 

  call syncthreads() 

enddo 
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Cholesky decomposition by calling device kernel cula_device_SPOSV. The key codes are 

presented in Code 3. 

 

Code 3  Cholesky decomposition on CUDA 

lerr = cula_initialize() 

d_aMat = A 

d_pwk4(:,1) = B 

lerr = cula_device_SPOSV('U', N, 1, d_aMat, N, d_pwk4, N) 

CALL CULA_CHECK_STATUS(lerr) 

x(:) = d_pwk4(:,1) 

 

The output of matrix multiplied by its transpose is always symmetric matrix, so in 

calculating the cross-product matrix, only the upper triangle need to be saved, thus to 

reduce the storage space. 

 

5. Implementation and Experimental Results Analysis 
 

5.1. The Testing Platform 

All testing are implemented on the small heterogeneous cluster we have built. The 

cluster includes 4 compute nodes connected via gigabit network. Each compute node 

configure an Intel Core i5-3470 CPU with 4 physical cores and 8 GB dual channel DDR3 

host memory, and an NVIDIA GTX 680 GPU with 1536 stream processing units and 2GB 

GDDR5 device memory. As a whole, this platform provides 16 CPU cores and four GPUs. 

The operating system is CentOS 6.4 and the development tool is the Cluster Development 

Kit of PGI company, which includes C/C + + and Fortran compilers that directly support 

MPI, OpenMP and CUDA programing model and provides performance analysis and 

debugging tools at the same time.5.2 Inversion model design.In order to assess the actual 

execution efficiency of the MT Occam algorithm in parallel, six inversion models of two 

scales (only model 1 and 5 are shown) have been designed. Four main parameters of two 

scale model are shown in table 1. The largest number of inversion is limited to 20. 

Table 1.The Parameters of Inversion Model 

scale rN  
mN  NE （y×z） nfre 

1 21 889 103×35 20 

2 41 1549 193×35 36 

 

On the basis of scale 1 model, scale 2 increase the frequency number and measuring 

points, refine the finite element grid and the inversion model mesh. 

Model 1 (see Figure 5) is designed as a horst with resistivity of 1000 Ω.m and the cross 

section size of 5 Km by 12.5 Km. The upper part is a 100 Ωm homogeneous layer. Model 2 

(see Fig. 6) is designed as 2 2D prisms with different resistivity in the uniform half space. 

The resistivity of the half space is 100Ω.m which is covered by a high resistance layer. For 

scale 1 models, the survey points are fixed to 21 and the forward grid is 105(vertical) x 

35(horizontal). The inversion grid number (model blocks) is 889 and the number of 

frequency points is 20. For scale 2 models, the number of survey points increases to 41 and 

forward grid density increase to 193 x 35. Accordingly, the inversion grid number increases 

to 1549 and the number of frequency points increases to 36. The starting model of inversion 

is 100 Ω.m homogeneous half spaces. In order to simulate real environment, 5% random 

noises have been added to the theoretical data. 
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Figure 5. Schematic Diagram of Model 1(scale 1) 

  

Figure 6. Schematic Diagram of Model 5(scale 1) 

5.3. The Experimental Results Analysis 

We have calculated inversions for 6 model of scale 1 with serial and hybrid parallel 

algorithms. The deviation values are defined as the differences (absolute value) of model 

misfit and roughness in each iteration between serial and parallel algorithms. 

 

 

Figure 7. Error Curve of Model 1(scale 1) 

 

Figure 8. Error Curve of Model 5(scale 1) 

The inversion process statistical results are given in Table 2 and Table 3 respectively for 

serial and parallel algorithms. The results indicate that there is a subtle difference of 

forward calculation counts between serial and parallel modes with some individual models. 

By program tracing and analysis, we found that it is caused by different floating point 
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arithmetic precision of CPU and GPU and the final inversion results have not been affected. 

 

Table 2. Inversion Process Statistical Results of Scale 1 Models 

Model  

Iterations used Forward counts 
Execution 

time(ms) Speedup 

ratio 
serial parallel Serial parallel serial parallel 

1 5 5 69 69 125.86 20.84  6.04 

2 20 20 156 160  324.23 55.14 5.88 

3 15 15 129 129 261.90 48.48 5.40 

4 6 6 58 58 113.82 16.00 7.11 

5 20 20 134 134 298.02 48.76 6.11 

6 10 10 205 219 371.76 181.37 2.05 

Table 3. Inversion Process Statistical Results of Scale 2 Models 

Model  

Iterations used Forward counts 
Execution 

time(ms) Speedup 

ratio 
serial parallel Serial parallel serial parallel 

1 5 5 53 53 510.97 36.27 14.09 

2 20 20 208 169 2317.87 139.42 16.62 

3 20 20 161 161 2185.22 130.89 16.70 

4 6 7 54 64 526.84 46.15 11.42 

5 20 20 509 248 3947.62 168.02 23.49 

6 20 20 185 187 2254.37 142.41 15.83 

 

 

Figure 9. Inversion Result of Model 1(scale 1) 

 

Figure 10. Inversion Result of Model 1(scale 2) 

Figure 9-12 show the output results of the parallel inversion for model 1 and model 5 of 

scale 1 and scale 2, with black solid line to outline the theory model structure. In the case of 

model 1, inversion results has no much differences between scale 1 and scale 2 and the 

inversion process is relatively stable. But as to model 5, the inversion results of scale 2 are 
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relatively closer to the theoretical model compare to scale 1. Compare this hybrid parallel 

scheme with pure messaging model of document [16, 17, 18, 21], the speedup ratio have 

large improvement and the scheme is feasible. In our tests, the speedup ratios vary from 

model to model, depending on the amount of calculation mapped to different levels. On the 

whole, the models with larger calculation such as scale 2 models have lager speedup ratio. 

In the case of 4 nodes environment we have built, scale 1 models obtain the maximum 

speedup ratio of 7.11 and scale 2 models achieve a speedup ratio as high as 23.49, showing 

that this scheme is more suitable for models with multi survey points, multi frequency 

points and big density grid. 
 

 

Figure 11. Inversion Result of Model 5(scale 1) 

 

Figure 12. Inversion Result of Model 
5(scale 2) 

6. Conclusions 

In this paper, we have constructed a hybrid programing environment for a small cluster 

by combining the message passing interface MPI, OpenMP programming and CUDA 

programing based on share memory. We realized the MT Occam inversion algorithm in this 

environment, including Gaussian elimination, Jacobian matrix calculation, cross products 

and Cholesky decomposition. We utilized several theoretical models to test this hybrid 

method and have deeply analyzed the experiment results. 

MT Occam algorithm has relatively large amount of calculation, and their potential 

parallelism of multiple level is obvious especially in its forward calculation. So it can be 

implemented with a hybrid parallel model, on which the compute tasks with different 

granularity are mapped to different level. Compare with pure message passing interface, the 

hybrid parallel model can achieve greater speedup ratio. In our experiments, the speedup 

ratio is up to 23.49. The study also show that with the constant division of computing tasks, 

the communication overhead also rise gradually, with the maximum of 30% of the total 

computing time in our three level model. This indicates that data communication has 

become the main limiting factors of this solution efficiency and further optimization for 

communication need to be down. 
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