
International Journal of Grid and Distributed Computing

Vol. 9, No. 9 (2016), pp.67-82

http://dx.doi.org/10.14257/ijgdc.2016.9.9.07

ISSN: 2005-4262 IJGDC

Copyright ⓒ 2016 SERSC

A MPI + OpenMP + CUDA Hybrid Parallel Scheme for MT

Occam Inversion

Yu Liu
1
, Renhao Xiong

2
and Renhao Xiong

2

1,2,3
College of Information Science and Engineering of Guilin University of

Technology

Abstract

To improve the performance of the Magnetotelluric Occam inversion, by in-depth

analysis of the sequential algorithm, we develop a multi-level hybrid parallel computing

scheme for MT Occam inversion based on MPI+OpenMP+CUDA and implement it on a

small heterogeneous cluster. We implement the parallel algorithm for solving linear

equations with Gauss elimination, jacobian matrix, cross-product matrix calculations and

Cholesky decomposition. Through reasonable decomposition, combination and mapping

of computing tasks, the scheme reduces the data traffic and realizes the purpose of load

balancing. By changing the matrix storage order ， the memory access speed is

significantly increased. The scheme is tested with multiple synthesis data from 2-D

theoretical models and the execution efficiency of sequential code and parallel code on a

4 nodes PC cluster is comparatively analyzed. The test results show that the realization of

this hybrid parallel algorithm is feasible and efficient. Compared with the sequential code

and pure message passing algorithm, the inversion speed is obviously increased.

Keywords: Magnetotelluric, inversion, heterogeneous, parallel computing,

MPI+OpenMP+CUDA

1. Introduction

Occam inversion is one of the most important geophysical inversion methods, which

pursues the best fitting between the model and original data, demands that the model is the

smoothest at the same time [1]. Using adaptive algorithms to calculate the Lagrange

multiplier (µ
-1

), Occam inversion has the strongpoint of stability of convergence and is

independent of starting model. So, this method has been widely used in geophysical

exploration [2-5].

But the low computing speed has been the main problem of the Occam inversion method.

Hu Zuzhi et al., have done some comparative experiments for various inversion methods,

their results show that the Occam method is the most stable, but its inversion time is the

longest [6]. The major causes are: 1) the jacobian matrix of the explicit calculation

consuming too much CPU time; 2) too dense finite element grid subdivision will lead to

huge coefficient matrix, make the amount of calculation increased rapidly; 3) using

adaptive algorithm to calculate the Lagrange multiplier will lead to the increase of the

iteration, making the overall increase of the calculation. After the algorithm been put

forward, many geophysical workers home and abroad have targeted made some

improvements to it, obtained certain achievements on its time performance [7-10].

Parallel computing is one of the ways to improve the computing speed of geophysical

processing and some research works has been done in the aspect of electromagnetic data

parallel processing. Newman and Alumbaugh (1997) used parallel computing to calculate

3-D electromagnetic imaging [11]; Zyserman and Santos (2000) implemented the

three-dimensional magnetotelluric finite element parallel computing [12];Chen Jin-chuang

and Dai Guang-ming realized a 2.5-D CSAMT forward modeling parallel computing on the

PVM environment [13]; Tan Han-dong et al., (2005) realized parallel computing of

International Journal of Grid and Distributed Computing

Vol. 9, No. 9 (2016)

68 Copyright ⓒ 2016 SERSC

magnetotelluric 3-D forward modeling[14], and then the magnetotelluric 3-D RRI

inversion [20]; Liu Yu (2006) implemented the two-dimensional magnetotelluric Occam

inversion based on PVM parallel flatform [15, 16]; In the same year, Chen Lu-jun et al.,

Realized 3-D electromagnetic numerical simulation based on MPI[21]; Hu xiang-yun and

Li yan (2010 and 2012)applied parallel computing to the magnetotelluric data processing

and achieved good effect [17-19].

The study achievements mentioned above are all based on message passing model (MPI

or PVM), which are usually suitable for large granularity parallel calculation, and not

beneficial to the efficient use of multi-core of CPU and many-core of GPU resources. This

paper adopts a CPU + GPU multi-level heterogeneous hybrid parallel computing scheme

for MT Occam inversion. The top layer implement the parallelism between nodes using

message passing, the middle layer further parallelize each MPI task by OpenMP and

implement the parallelism between multi-core in the compute nodes with shared memory

way, the bottom layer realize the GPU core calculation through CUDA, thereby to use

computing resources and decrease the cost of the cluster to the greatest possible.

The remainder of this article is organized as follow. We begin with description of the

3-level hybrid parallel computing model in Section 2. Then in Section 3 the basic principle

of magnetotelluric Occam inversion algorithm is given. The Occam inversion hybrid

parallel scheme is presented in Section 4 and some major algorithms have also been

discussed in this section. Inversion results of 6 theoretical models are provided and

discussed in Section 5. Finally, in Section 6, we offer some concluding remarks on this

hybrid parallel scheme.

2. Hybrid Parallel Computing Model

MPI was released in May 1994 as a message passing Interface, it is actually a standard

specification of a message passing library, with advantages of numerous message passing

systems, is currently the international standard of the most popular distributed storage

parallel programming, with the characteristics of portability, ease of use, complete

asynchronous communication function, and many other advantages. In the MPI

programming model, the calculation is made of one or more processes, each process by

calling the library function to receive and send message with other processes. The processor

can read and write only local memory and the data exchanges between different memories

are implemented through the messaging model.

With the development of computer hardware technology, CPU multi-core sharing the

same memory block has been widely used. Open Multi-Processing (OpenMP) is a kind of

shared memory architecture API which provides a multithreaded capacity. OpenMP is an

open specification for shared memory parallelism. The basic idea behind it is data-shared

parallel execution. It consists of a set of compiler directives, callable runtime library

routines and environment variables that extend FORTRAN, C and C++ programs.

Communication in OpenMP is implicit, this makes the OpenMP programming relatively

easy to implement. A loop can be parallelized easily by invoking subroutine calls from

OpenMP thread libraries and inserting the OpenMP compiler. The unit of workers in

OpenMP is threads. Every thread can access variables in shared cache or RAM. When

accessing shared data, it costs almost nothing.

GPU general purpose computation has developed rapidly in recent 10 years thanks to the

NVIDIA CUDA parallel computing architecture. CUDA (Compute Unified Device

Architecture) is the computing engine in NVIDIA graphics processing units or GPUs that

are accessible to software developers through industry standard programming languages. It

supports a range of computational interfaces including OpenGL and Direct Compute.

CUDA’s parallel programming model is designed to over-come the challenge of intensive

computing while maintaining a low learning curve for programmers familiar with standard

programming languages such as C or Fortran. CUDA enable high levels of fine-grain data

International Journal of Grid and Distributed Computing

Vol. 9, No. 9 (2016)

Copyright ⓒ 2016 SERSC 69

parallelism and thread parallelism, nested within coarse-grained data parallelism and task

parallelism. So the programmer can partition the problem into coarse sub-problems that can

be solved independently in parallel, and then into finer pieces that can be solved

cooperatively in parallel. Such decomposition preserves language expressivity by allowing

threads to cooperate when solving each sub-problem, and at the same time enables

transparent scalability since each sub-problem can be scheduled to be solved on any of the

available processor cores.

The above three parallel environments can be fused in together to form a multi-layer

hybrid structure, the premise is that the system has multiple nodes and each node has

multiple CPU cores and at least one GPU. Under this hybrid structure, we can make better

use of the advantages of different programming model. MPI is suitable for large task

granularity parallel between computing nodes. OpenMP, which has little messaging

overhead, is suitable for processing intra-node medium and small granularity tasks in

parallel. GPU architecture usually provide a large number of cores(SP), thus can use more

threads (lightweight) for parallel processing and is more suitable for fine-grained

intensive parallel computing of large data.

The goal of this article is to realize a multi-level, top-down gradual refinement

programming model, and the MT Occam inversion in parallel with this model. Figure 1 is

the framework of this hybrid model. The top level is cluster environment where computer

nodes exchange information through the network and MPI platform. The middle level is

multicore computing nodes (PC). The cores share the main memory and the fetch mode is

symmetry. The bottom level consist of GPU stream processors(SP), the SP in some form

share the local storage ,constant cache and texture cache. Corresponding to the hardware

environment, the parallel software environment from to bottom are respectively the MPI,

OpenMP and CUDA. In this model, when computing tasks are submitted to the cluster,

they are divided into several subtasks at first, and then the subtasks are mapped to a cluster

node through the MPI messaging. Within each node, the tasks are assigned to a CPU core

with compilation guidance statements, and the corresponding processing threads are

established. When using CUDA for GPU programming, each CPU process controls a

CUDA device. The CUDA program divides the data to be processed into more residential

blocks, and then executes them in parallel. Under the CUDA programming model, the

problem is divided into two parts, one part execute on CPU (the host) and the other part on

the device side (display chip).

 ………
PD PD

PC PC PC PC

Globl
storage
space

………
PE PE

C
l
u
s
t
e
r

P
C

N
V
I
D
I
A

G
P
U

PA PA PA PA

PA PA PA PA

PA PA PA PA

PA PA PA PA

Bloble
storage
space

Hardware envarnment Parallel software
envarentment

Local memory

PE PE PE PE PE PE PE PE

Constant buffer

Texture buffer

Register group

M
P

MPI

CUDA

Cluster
envarenment

Process
level

Thread
level

核心计算
GPU

envarenment

Compute
nodes

envarentment
OpenMP

Large
granularity
computing

Middle
granularity
computng

Fine-grained
intensive

computing

f
i
n
e
r

Problem
space

Thread
level

Figure 1. The Basic Architecture of a Heterogeneous Cluster

International Journal of Grid and Distributed Computing

Vol. 9, No. 9 (2016)

70 Copyright ⓒ 2016 SERSC

3. The Basic Theory of MT Occam Inversion

The actual field data in the geophysics are always limited and there inevitably are some

errors within the data which will lead to nonunique solutions [22]. In order to obtain the

optimal solution, inversion model should be as simple or smooth as possible and the

roughness should be as small as possible, on the condition that the misfit is within an

expected tolerance, thus to suppress redundant structure. Based on this idea, Constable et al

put forward the Occam inversion method in 1987 [23].

MT Occam inversion uses a Lagrange multiplier to balance the model smoothness and

misfit. The unconstrained functional is

, (2.1)

where the μ is a trade-off parameter (Lagrange multiplier), used to balance the model

smoothness and misfit. The first term on the right is the roughness and second the misfit

weighted by the Lagrange multiplier, d is the data vector, F(m) defines the forward mapping,

R is the roughness matrix, ||Wd – WF(m) ||
2
is the standard 2-d norm, represent the misfit (2X)

of the forward response of the model to the data d, 2

*X is the desired 2X . W is the diagonal

n n matrix

1 2 3{1/ ,1/ ,1/ ...,1/ },ndiag    W (2.2)

serving to standardize the data with the uncertainty in the data. When the data is accurate,

to avoid data overflow that will cause the inversion abnormal end, let 2

* 0X  , W I .

The discrete expression of is:

 , (2.3)

where di is the i
th
 data and σi is the uncertainty in the i

th
 datum, ， express the

data quantity.

the model roughness ， in a 2-Dinversion ， where and

respectively express the transverse and longitudinal adjacent model roughness constraint

matrix, the discrete expression of R is:

 , (2.4)

where is the number of parameters, is the number of constraint terms.

Here introducing to constrain the variability of model parameters and fix the

conductivity structure, where p is prior information. The diagonal matrix T serves as a

weighting factor, which is used to minimize the horizontal and vertical differences between

m and p.

To linearize the above nonlinear problem in (2.1), refer to formula

, we can get iteration formula of the inversion:

 , (2.5)

where is the Jacobian matrix, that is, the partial derivative of relative to .

, , where is the limitation of iterations.

Through repeated iterations, and by judging the misfit and roughness, we can get the

optimal solution. figure 2 is a basic flow chart of the inversion.

      
22212

pmTXmWFWdmmU  



2X

  






dN

i i

ii mFd
X

1
2

2

2



 dNi ,1 dN

2
mR  














z

y
y z

   
2

1 1

, 
 
















pt m
N

i

N

j

jmijR

mN ptN

  2
pmT 

     kkKkk mmJmFmF   11

             TpdWWJWJWJTTm k

T

kk

T

kk

T

kk  



ˆ1

1

kJ)(kmF km

kKkk mJmFdd )(ˆ  ITRMAXk ,1 ITRMAX

International Journal of Grid and Distributed Computing

Vol. 9, No. 9 (2016)

Copyright ⓒ 2016 SERSC 71

Impute starting model and
parameters

Construct a roughness matrix R，compute RT
R

Compute F(m), jacobian matrix J, misfit X2 and (WJ)
T
WJ for the current model

Is minimum X2 less
than required X2 ?

Did model roughness
increase even though last

iteration achieved
required X2?

Compute stepsize and save model.

Is a)max.no. of iteration exceeded?
b)required misfit obtained and 1)stepsize is

small or 2)model totally smooth?

Is min. X2 less than

min. X2 from previous
iteration ?

Decrease step by
half.

Decrease step
by half.

No

No

Yes

No

No

Yes

Yes

stop

start

Use 1D optimization to find the larger
intercept of X2 with the required X2.

Yes

Use 1D optimization to select minimum
misfit ，simultaneously compute the

corresponding model.

Figure 2. A Simplified Flow Chart of the Inversion Algorithm

4. Hybrid Parallel Scheme

Through the analysis of the Occam inversion, we know that the algorithm has good

gradation. Computations based on grouping frequencies are of large granularity and can be

further divided into single frequency computations, which have relatively small granularity.

In forward modeling, for each frequency, linear equation group resolving can also be

decomposed, thus to make use of the mass core of the GPU. On these grounds, a parallel

inversion scheme was designed and the overall process is shown in Figure 3.

International Journal of Grid and Distributed Computing

Vol. 9, No. 9 (2016)

72 Copyright ⓒ 2016 SERSC

Impute start model, data file
and mesh parameters

Master node

start

MPI initializing

Group frequencies and send
to sub process Receive grouping prameter Conmunication

Send model m Receive model mConmunication

receive F(m), J Send F(m), J to master nodeConmunication

Search Lagrange multiplier μ

Compute Jacobean related
matrix

Compute model m related to μ

GPU parallel computing

 linear equations
solving with Cholesky

decomposition

Transposed matrix
multiplication

Send model m to slave
nodes Receive model mConmunication

Call parallel GAUSS elimination
algorithm

Receive F(m) Send F(m) to master nodeConmunication

Is required misfit
obtained ?

Compute the misfit and
roughness of the current

model

Slave nodes

MPI ,OpenMP initializng

Conmunication Receive model and data

Is required model
obtained？

yes

no

stop

no

calculate FE matrix for one
frequency

Call parallel Gaussd
elinination

Solve the forward respond
F(m)

Compute constant terms of
the FE matrix

Call parallel GAUSSD
elimination algorithm

solve the Jacobean matrix J

GPU parallel computing

Elimination of
coefficient matrix

Back substitution
of constant terms

Elimination of
coefficient matrix

Elimination of
Constant terms

Back substitution
of constant terms

GAUSS algorithm

GAUSSD alorithm

GPU parallel computing

Elimination of
coefficient matrix

Back substitution of
constant terms

Elimination of
Constant terms

GAUSS algorithm

yes

Figure 3. A Simplified Flow Chart of the Hybrid Parallel Inversion Scheme

4.1. Distributed Storage Parallel Algorithm

The upper level distributed parallel model is used to implement parallelization for

different frequency response and Jacobian matrix calculation in the forward modeling

process, through task decomposition of large granularity. The main input of the forward

calculation is the inversion model m, the auxiliary parameters include finite element mesh,

survey point location and frequency data. The output is the corresponding frequency’s

modeling response and Jacobian matrix. Each frequency point’s forward calculation is an

independent process, thus can be directly partitioned based on frequency big granularity

task. Before the computation, the model data and parameters are distributed between

computing nodes and then, the forward response and partial derivative are collected

through communication. In the process of task mapping, the master node is responsible for

reading data, sending data to and receiving data from the slave nodes. The slave nodes

International Journal of Grid and Distributed Computing

Vol. 9, No. 9 (2016)

Copyright ⓒ 2016 SERSC 73

receive and send data in passive way, keeping in block state before confirming that the

master node has received the data.

In algorithm 1, according to the actual number of nodes in the task mapping the

frequencies are divided into multiple subset Fi (I = 1, n, n < nfre) and each node calculates

frequency points within the corresponding subset. Since the calculations for each frequency

point are relative equilibrium, for nproc nodes, frequencies can be divided equally in

sequence, so that each process calculates nproc/nfre (+ 1) frequency points. Experiment

results show that this task assignment can keep the load balance between nodes. In

consideration that master node is responsible for global communication control and have

certain overhead, computing tasks mapped to the master node should be the least of all the

nodes.

4.2 Intra-node Parallel Algorithm

The intra-node parallel model includes multi-core CPU and mass core GPU parallel

programming model. Through the analysis of Occam algorithm, the parallelism within a

node concentrates on the process of finite element coefficient matrix assembly and linear

equation group solving with Gauss elimination algorithm in the process of forward

modeling, the jacobian matrices calculation and Cholesky decomposition in the process of

inversion.

4.2.1. Forward Calculation on Shared Memory System

Based on the shared memory parallel model, the computing tasks mapped to nodes by

upper parallel model are further divided and mapped to the multi-core processor system.

Based on the same principle, the calculation for each frequency in the process of forward

modeling are data independent to each other and share the data such as the inversion model,

finite element mesh, survey point locations and frequency data.

 Algorithm 1 forward modeling on distributed memory system
input: m
output: F(m),J
 rank ← index of processes∈[0,nproc-1]
 GLOBAL COMMUNICATION
 BCAST{ frequencies, MESH, NRL}
 {f_s, f_e}← selection(rank)
 GLOBAL COMMUNICATION
 BCAST{m}
 for every i = f_s,…, f_e do
 freq←frequencies[i]
 ∙ ∙ ∙
 Calculate F(m) [freq]
 if(calculation J) then
 ∙ ∙ ∙
 Calculate J [freq]
 endif
 end for(i)
 GLOBAL COMMUNICATION
 GATHER{F(m) }

if(calculation J) then
 GATHER{J}

endif

javascript:void(0);
javascript:void(0);

International Journal of Grid and Distributed Computing

Vol. 9, No. 9 (2016)

74 Copyright ⓒ 2016 SERSC

Algorithm 2 describes the parallel algorithm of forward calculation within a node. If a

node is about to calculate T frequency points then T threads will be created before

algorithm implementation and a copy of the private variables for each thread will be created

at the same time. The thread choose their corresponding frequency freq[t] from the

frequency group of the node, and use the private variable K[t] to complete the calculation of

forward response and partial derivative, t represents the number of threads. The shared

memory parallel programming model has characteristic that multi-threads in a node share

the same piece of storage space, so the access latencies to the memory are all the same.

Since the execution status of a thread are unpredictable at some time points, in order to

guarantee the correctness of the data in time, the scheme adopt the way of creating thread

private storage space for data isolation.

Using multi-thread parallel processing to complete the forward calculation within a node

can reduce the Gaussian elimination method’s time complexity to O(NE
2
). On the contrary,

in order to handle multi-thread shared memory data access conflicts, private copies for each

thread will increase the algorithm space complexity accordingly.

4.2.2. CUDA Based 2-D Bandwidth Gaussian Elimination

Finite element forward modeling algorithm adopt the FE-method to divide strata

structure into a finite number of non-overlapping units and convert the forward problems

into solving partial differential equations.

Band

Band

Figure 4. Two-dimensional Bandwidth Storage Structure

In the algorithm, the Gaussian elimination solving the linear equations account for a

great proportion of the whole. As FE coefficient matrix has the characteristics of sparse,

ribbon, symmetry and phalanx, MT Occam invoke a two-dimensional bandwidth storage

structure to store data and complete Gaussian elimination on this compressed storage

Algorithm 2 forward modeling on shared memory system
imput: m
create T threads
t ← index of threads
freq[t]←(t)
([t], [t])← finit Element (freq(t))
K[t] ← K[t]+ [t]
P[t] ← P[t]+ [t]

(freq[t])← gauss(K[t], P[t])
if(calculation) then

[t]← derivative Element (freq[t])
[t]← [t]+ [t]
(freq[t])← gaussd(K[t], [t])

endif
join threads
calculate ,

javascript:void(0);
javascript:void(0);

International Journal of Grid and Distributed Computing

Vol. 9, No. 9 (2016)

Copyright ⓒ 2016 SERSC 75

structure which is shown in figure 4. A basic Gaussian elimination CUDA program is given

in Code 1.

In Code 1, offset represent the location before the first element of first row of the

coefficient matrix in each block. The matrix moves up row by row in the loop and

synchronization function syncthreads() has been invoked by each cycle for threads

synchronization in a block. idx express thread relative position in the working triangle.

In order to reduce the traffic of global memory and improve the CUDA application

efficiency, data are firstly loaded into the shared storage and then read out by each thread to

complete the calculation.

4.2.3. CUDA based Matrices Computation and Cholesky Decomposition

NVIDIA now supports CUDA implementation of BLAS function library called cublas

which provides support for transposed matrix multiplication. We directly invoke the routine

to calculate cross-product matrix and the key codes are presented in Code 2. In calculation

of matrices that depend on Jacobian, Occam algorithm firstly by partial derivative

calculation to get weighted Jacobian matrix WJ, then calculate WJWJ T . The low dimension

is ND and the high is NP, so the first column of matrix WJ is saved first in accordance with

the principle of column-major order in Fortran. But in the real calculation, the data are

calculated from top to bottom row by row, and this sequence will cause some cache

conflicts. Therefore, the original program has been modified by storing WJ
T
 instead of WJ,

so as to keep the data calculation order same with the storage order to increase the cache hit.

In the transposed matrix multiplication, let TWJA  , and the original equation change to

WJWJAA TT  .

Code 2 Cross-matrices computation on CUDA

lerr = cublasCreate(h)

d_WJT = WJT

I = cublasSsyrk_v2(h, CUBLAS_FILL_MODE_UPPER,

CUBLAS_OP_N, nParams, ND, 1., d_WJT, nParams, 0.,

d_WJTWJ, nParams)

WJTWJ = d_WJTWJ

CULAtools also provide the CUDA version of LAPCK routine library and we realize the

Code 1 The process of coefficient matrix elimination

offset = (blockIdx%x-1)*height*width

idx = ID(threadIdx%x)

do i=1,NNODE-1

 if(threadIdx%x <= NBAND) then

 pivot(threadIdx%x) = S(offset+threadIdx%x)

 endif

 call syncthreads()

 temp=K(offset+idx)

temp=temp-pivot((idx/width)+1)/pivot(1)*pivot(idx/width+MO

D(idx,width))

 K(offset+idx) = temp

 if(threadIdx%x <= NBAND .and. threadIdx%x /= 1) then

 K(offset+threadIdx%x) = pivot(threadIdx%x)/pivot(1)

endif

 offset = offset+width

 call syncthreads()

enddo

International Journal of Grid and Distributed Computing

Vol. 9, No. 9 (2016)

76 Copyright ⓒ 2016 SERSC

Cholesky decomposition by calling device kernel cula_device_SPOSV. The key codes are

presented in Code 3.

Code 3 Cholesky decomposition on CUDA

lerr = cula_initialize()

d_aMat = A

d_pwk4(:,1) = B

lerr = cula_device_SPOSV('U', N, 1, d_aMat, N, d_pwk4, N)

CALL CULA_CHECK_STATUS(lerr)

x(:) = d_pwk4(:,1)

The output of matrix multiplied by its transpose is always symmetric matrix, so in

calculating the cross-product matrix, only the upper triangle need to be saved, thus to

reduce the storage space.

5. Implementation and Experimental Results Analysis

5.1. The Testing Platform

All testing are implemented on the small heterogeneous cluster we have built. The

cluster includes 4 compute nodes connected via gigabit network. Each compute node

configure an Intel Core i5-3470 CPU with 4 physical cores and 8 GB dual channel DDR3

host memory, and an NVIDIA GTX 680 GPU with 1536 stream processing units and 2GB

GDDR5 device memory. As a whole, this platform provides 16 CPU cores and four GPUs.

The operating system is CentOS 6.4 and the development tool is the Cluster Development

Kit of PGI company, which includes C/C + + and Fortran compilers that directly support

MPI, OpenMP and CUDA programing model and provides performance analysis and

debugging tools at the same time.5.2 Inversion model design.In order to assess the actual

execution efficiency of the MT Occam algorithm in parallel, six inversion models of two

scales (only model 1 and 5 are shown) have been designed. Four main parameters of two

scale model are shown in table 1. The largest number of inversion is limited to 20.

Table 1.The Parameters of Inversion Model

scale rN
mN NE （y×z） nfre

1 21 889 103×35 20

2 41 1549 193×35 36

On the basis of scale 1 model, scale 2 increase the frequency number and measuring

points, refine the finite element grid and the inversion model mesh.

Model 1 (see Figure 5) is designed as a horst with resistivity of 1000 Ω.m and the cross

section size of 5 Km by 12.5 Km. The upper part is a 100 Ωm homogeneous layer. Model 2

(see Fig. 6) is designed as 2 2D prisms with different resistivity in the uniform half space.

The resistivity of the half space is 100Ω.m which is covered by a high resistance layer. For

scale 1 models, the survey points are fixed to 21 and the forward grid is 105(vertical) x

35(horizontal). The inversion grid number (model blocks) is 889 and the number of

frequency points is 20. For scale 2 models, the number of survey points increases to 41 and

forward grid density increase to 193 x 35. Accordingly, the inversion grid number increases

to 1549 and the number of frequency points increases to 36. The starting model of inversion

is 100 Ω.m homogeneous half spaces. In order to simulate real environment, 5% random

noises have been added to the theoretical data.

International Journal of Grid and Distributed Computing

Vol. 9, No. 9 (2016)

Copyright ⓒ 2016 SERSC 77

Figure 5. Schematic Diagram of Model 1(scale 1)

Figure 6. Schematic Diagram of Model 5(scale 1)

5.3. The Experimental Results Analysis

We have calculated inversions for 6 model of scale 1 with serial and hybrid parallel

algorithms. The deviation values are defined as the differences (absolute value) of model

misfit and roughness in each iteration between serial and parallel algorithms.

Figure 7. Error Curve of Model 1(scale 1)

Figure 8. Error Curve of Model 5(scale 1)

The inversion process statistical results are given in Table 2 and Table 3 respectively for

serial and parallel algorithms. The results indicate that there is a subtle difference of

forward calculation counts between serial and parallel modes with some individual models.

By program tracing and analysis, we found that it is caused by different floating point

) ? Ω 10 log (M

1 . 2
2 . 5

80

40
20
10
5 . 0

150

D
ep

th
/K

m

X/Km
0 10 - 10 - 20 20

log10 (ρ/Ωm)

D
ep

th
/K

m

X/Km

Inversion iteration

er
ro
r

error of misfit

error of roughness

Inversion iteration

er
ro
r

error of misfit

error of roughness

International Journal of Grid and Distributed Computing

Vol. 9, No. 9 (2016)

78 Copyright ⓒ 2016 SERSC

arithmetic precision of CPU and GPU and the final inversion results have not been affected.

Table 2. Inversion Process Statistical Results of Scale 1 Models

Model

Iterations used Forward counts
Execution

time(ms) Speedup

ratio
serial parallel Serial parallel serial parallel

1 5 5 69 69 125.86 20.84 6.04

2 20 20 156 160 324.23 55.14 5.88

3 15 15 129 129 261.90 48.48 5.40

4 6 6 58 58 113.82 16.00 7.11

5 20 20 134 134 298.02 48.76 6.11

6 10 10 205 219 371.76 181.37 2.05

Table 3. Inversion Process Statistical Results of Scale 2 Models

Model

Iterations used Forward counts
Execution

time(ms) Speedup

ratio
serial parallel Serial parallel serial parallel

1 5 5 53 53 510.97 36.27 14.09

2 20 20 208 169 2317.87 139.42 16.62

3 20 20 161 161 2185.22 130.89 16.70

4 6 7 54 64 526.84 46.15 11.42

5 20 20 509 248 3947.62 168.02 23.49

6 20 20 185 187 2254.37 142.41 15.83

Figure 9. Inversion Result of Model 1(scale 1)

Figure 10. Inversion Result of Model 1(scale 2)

Figure 9-12 show the output results of the parallel inversion for model 1 and model 5 of

scale 1 and scale 2, with black solid line to outline the theory model structure. In the case of

model 1, inversion results has no much differences between scale 1 and scale 2 and the

inversion process is relatively stable. But as to model 5, the inversion results of scale 2 are

) ? M Ω 10 log (电 lg阻率

1 . 2
2 . 5

80
40
20
10
5 . 0

150

0 10 - 10 - 20 20
log10 (ρ/Ωm)

X/Km

D
ep

th
/K

m

? (Ω 10 log

1 . 2
2 . 5

80
40
20
10
5 . 0

150

X/Km
0 10 - 10 - 20 20

log10 (ρ/Ωm)

D
ep

th
/K

m

International Journal of Grid and Distributed Computing

Vol. 9, No. 9 (2016)

Copyright ⓒ 2016 SERSC 79

relatively closer to the theoretical model compare to scale 1. Compare this hybrid parallel

scheme with pure messaging model of document [16, 17, 18, 21], the speedup ratio have

large improvement and the scheme is feasible. In our tests, the speedup ratios vary from

model to model, depending on the amount of calculation mapped to different levels. On the

whole, the models with larger calculation such as scale 2 models have lager speedup ratio.

In the case of 4 nodes environment we have built, scale 1 models obtain the maximum

speedup ratio of 7.11 and scale 2 models achieve a speedup ratio as high as 23.49, showing

that this scheme is more suitable for models with multi survey points, multi frequency

points and big density grid.

Figure 11. Inversion Result of Model 5(scale 1)

Figure 12. Inversion Result of Model
5(scale 2)

6. Conclusions

In this paper, we have constructed a hybrid programing environment for a small cluster

by combining the message passing interface MPI, OpenMP programming and CUDA

programing based on share memory. We realized the MT Occam inversion algorithm in this

environment, including Gaussian elimination, Jacobian matrix calculation, cross products

and Cholesky decomposition. We utilized several theoretical models to test this hybrid

method and have deeply analyzed the experiment results.

MT Occam algorithm has relatively large amount of calculation, and their potential

parallelism of multiple level is obvious especially in its forward calculation. So it can be

implemented with a hybrid parallel model, on which the compute tasks with different

granularity are mapped to different level. Compare with pure message passing interface, the

hybrid parallel model can achieve greater speedup ratio. In our experiments, the speedup

ratio is up to 23.49. The study also show that with the constant division of computing tasks,

the communication overhead also rise gradually, with the maximum of 30% of the total

computing time in our three level model. This indicates that data communication has

become the main limiting factors of this solution efficiency and further optimization for

communication need to be down.

) ? M 10 (Ω log 电阻率

1 . 2
2 . 5

80

40
20
10
5 . 0

150

0 10 - 10 - 20 20
log10 (ρ/Ωm)

D
ep

th
/K

m

X/Km

D
ep

th
/K

m

X/Km

International Journal of Grid and Distributed Computing

Vol. 9, No. 9 (2016)

80 Copyright ⓒ 2016 SERSC

Acknowledgments

The work reported in this paper has been supported by The National Natural Science

Foundation of China under research project 41264005 and project 41374079. The authors

would like to express sincere gratitude to professor Steven Constable for providing the

source code of MT Occam inversion. We would also like to thank the anonymous reviewers

for their comments and valuable suggestions.

References

[1] Constable S.C, Parker R L, Constable C G. Occamy The National Natural Science Foundation of China

under research project 41264005. The authors would like to express sin.

[2] Catherine deGroot-Hedlin and Steven Constable. Occam inversion: a practical algorithm for generating

smoothrical Anomaly[J].J. Geomag. Geoelectr., 1993,45: 985–999

[3] Ou Yang L H , Wang J L , Wu J S. The Application of OCCAM method to the inversion of surface wave

dispersion curves[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2003,

25(1):1-4

[4] Yang C F , Lin C Y , Chen J Y, et al. One-dimensional inversion for the magnetotelluric data in Lanzhou

region by OCCAM'S and generaL inverse methords[J]. Northwestern Seismological Journal, 2002,

24(4): 289-294.

[5] Zhou D Q, Tan H D,Wang W P. The OCCAM inversion in FAEM data processing[J].Geophys Ical &

Geochem Ical Exploration, 2006,30(2):162-165

[6] Hu Z Z , Hu X Y , Wu W L,et al Compared study of two-dimensional magnetotelluric inversion

methods.Coal Geology &Exploration, 2005, 33(1): 64-68.

[7] Wu X P, Xu G M.Improvement of Occampared study of two-dimensionalta Geophysical Sinica, 1998,

41, (4): 547-554.

[8] Siripunvaraporn W, Egbert G. An efficient data-subspace inversion method for 2-D magnetotelluric

data[J]. Geophysics, 2000,65(3):791-803

[9] Chen X B.New forward and inversion algorithms and a visual intergrated system for MT

data[D].Institude of Geology,China Seismological Bureau,2003

[10] Chen X B,Zhao G Z,Tang J,et al. An adaptive regularized inversion algorithm for magnetotelluric

data[J].Chinese Journal Of Geophysics, 2005,48(4):937-946

[11] Newman GA, Alumbaugh DL. Three-dimensional massively parallel electromagnetic inversion elluric

data[J].Chinese ,China Seismological Burea

[12] Zyserman FI,Santos with domain decomposition for three-dimensional magnetotelluric modeling[J].

J.Appl.Geophys, 2000,44(4):337-351.

[13] Chen J C, Dai G M. Micro-Computer Networked Computing and 2.5-D CSAMT Forward Parallel

Computing[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1997,19(2):

103-107.

[14] Tan HD,Tong T, Lin C H. The parallel 3D magnetotelluric forward modeling algorithm[J]. Applied

Geophysics, 2006,3(4): 197-202.

[15] Liu Y,Wang J Y.PC cluster based magnetotelluric 2-D Occamforward modeling algorithm[J]. Applied

Geophysics, 2006,3(4): for petroleum, 2006,45(3):311-315.

[16] Liu Y. PC-Cluster Based Parallel Computation Research on 2-D Magnetotelluric Occam Inversion[D].

China University of Geosciences,Wuhan.2006

[17] Li Y,Hu X Y, Kim K, etal. Research of 1-D magnetotelluric parallel computation based on

MPI[J].Progress in Geophysics, 2010,25(5):1612-1616.

[18] Li Y,Hu X Y,Wu G J,et al.Parallel computation of 2-D magnetotelluric forward modeling based on

MPI.Seismology and Geology,2010,32(3):392-401.

[19] Hu X Y,Li Y,Yang W C,et al. Ｔhree-dimensional magnetotelluric parallel inversion algorithm using

data space method[J]. Chinese Journal Of Geophysics, 2012,55(12): 3969-3978

[20] Lin C H,Tan H D,Tong T.Parallel rapid relaxation inversion of 3D magnetotelluric data[J],Applied

Geophysics, 2009,6(1): 77-83.

[21] Chen L J.Research on parallel computation of 3-D borehole-surface EM based on MPI[D]. Chengdu

University of Technology,2006

[22] Wang J Y. Geophysical inversion theory [M] Wuhan: China university of geosciences press.1998

[23] Constable S C, Parker R L, Constable C G. Occam-D borehole-sur practical algorithm for generating

smooth models from EM sounding data[J]. Geophysics,1987,52(1):289-300

International Journal of Grid and Distributed Computing

Vol. 9, No. 9 (2016)

Copyright ⓒ 2016 SERSC 81

Authors

Yu Liu, He was born in China in 1961 and received his Ph.D.

degree at the China University of Geoscience in 2006. He has been a

professor of computer science at the Guilin University of

Technology in China since 2007. His research interests are in

parallel computing technique and geophysical inversion.

Renhao Xiong. He was born in China in 1987 and received M.S.

degree in computer science at the Guilin University of Technology

in China in 2016. His current research interests include parallel

algorithms and scientific computations.

Yi xiao, He was born in China in 1989 and received M.S. degree

in computer science at the Guilin University of Technology in China

in 2015. His current research interests include parallel algorithms

and scientific computations.

International Journal of Grid and Distributed Computing

Vol. 9, No. 9 (2016)

82 Copyright ⓒ 2016 SERSC

