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Abstract 

According to the defects that community detection algorithm in unknown complex 

networks has a pre-parameter. We propose Adaptive Label Propagation Algorithm 

(ALPA) to detect community structures in complex networks. The ALPA algorithm find 

out all disjoint Maximal Clique (MC) and let each MC share the identical weight and 

unique label so as to reduce the redundant labels and uncontrollable factors. The stability 

of ALPA algorithm is enhanced by synchronous update during iterations. Meanwhile it 

will converge easily due to the termination condition that all of the vertexes have the 

label. During iterations we use the adaptive threshold method to overcome the 

pre-parameter limitation. Compared with other community detection algorithms in 

synthetic networks and real networks, our experiments show that ALPA algorithm not 

only improves the tolerance of mixing parameter, but also enhances its robustness. 

 
Keywords: Complex Networks, Community Detection, Overlapping Community, Label 

Propagation, Adaptive Threshold 
 

1. Introduction 

With the rapid developments of intelligent terminals and the extensive applications of 

computing and communications technology, the amount of network data has proliferated 

in recent years. These networks can be abstracted as the graph in data structure. 

Furthermore, individuals and relationships can be regarded as vertexes and edges 

respectively. Similar to the network of relationships among individual in real life, it can be 

divided into some sub graphs, the relationship of vertexes in these sub graphs is very 

close. We defined the subgraph as community.  

Community is the most meaningful property of network. That is, the entire network is 

made up of several communities. Generally, community is a set of vertexes with similar 

properties. Such as the same belief, resources, preferences, requirements in social network. 

If a vertex belongs to at least two communities, we regard it as overlapping vertex, while 

the network as a complex network of overlapping communities. Community overlapping 

is one of the most important features of complex networks [1-2], and overlapping vertexes 

plays a special role in it. 

We detect community structure in complex networks and each vertex belongs to 

community by the topology of the network and vertex information. Community represents 
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real group, members in it have the same interest or similar behavior. Community detection 

can reveal some hidden relationships and further explain some phenomenon. And it can 

also provide support for users with accurate personalized service. Therefore, community 

detection algorithm has great theoretical significance and practical application value in 

areas such as network analysis, functional evolution and forecast. 

In recent years the study of community detection have received wide attention in 

scholars, the related research results can be illustrated from different angles. Firstly, Palla 

et al. proposed CPM algorithm [3] based on complete subgraph. They allow vertexes 

belong to multiple communities at the same time, so overlapping community detection 

began to get wide attention and quickly becomes research hotspot. CPM algorithm thinks 

that community structure is made up of adjacent clique, a vertex can belong to several 

clique, so it can detect overlapping community. But some experience has shown that the 

CPM algorithm has a high time complexity and difficult to reach effective results when 

dealing with large-scale and higher-density complex networks. Secondly, Ahn et al. 

proposed LINK algorithm [4] based on link clustering. In the LINK algorithm, the Edge 

set is first divided into subsets, and then the results of division are translated into 

community structures of corresponding vertex. Thirdly, GN algorithm [7] based on 

betweenness. The GN algorithm deletes edges that have the largest betweenness by 

repeating to detect communities. GN algorithm need to recalculate betweenness after 

removing an edge. So it’s time complexity is higher. Fourthly, algorithms based label 

propagation. Steve extended LPA algorithm [8], presented multi-label propagation 

algorithm called COPRA[9], to find overlapping community in large scale complex 

networks. In COPRA every vertex is given a unique label when the algorithm is initialized 

and each vertex can belong to up to v communities. Like LPA, time complexity of 

COPRA is linear. But in unknown complex networks we have no methods to evaluate 

number of communities that a vertex belongs to up to. Moreover, if the number of 

communities a vertex belongs to have a large difference, COPRA has difficult to detect a 

more accurate community structure by adjusting the parameters v. 

 

2. Adaptive Label Propagation Algorithm 

We propose Adaptive Label Propagation Algorithm (ALPA) to detect community 

structures in complex networks (ALPA).Like COPRA, the multi-label propagation was 

used to find overlapping communities. But the ALPA algorithm does not need to consider 

the problem of the parameters in any complex networks, so it has an excellent adaptability 

to the unknown complex networks. The ALPA algorithm has three main procedures: 

initialization, label propagation and post processing. 

Definition 1 (Maximal Clique). The complex network is defined as an undirected 

graph G= {V, E}, and V denote vertex set, E⊆V×V, denote edge set in complex network. 

We find out induced complete graph with e (
i

v ,
j

v ) as the initial edge that 
i

v  and 
j

v  are 

maximal degree adjacent vertexes and their label sets are empty set. By iteration, their 

adjacent maximal degree vertex is constantly joined. This induced complete graph is 

called 𝐺𝑚, it’s also called clique. If 𝐺𝑚 ⊆ G and no other complete graph 𝐺𝑡 ⊆ G and 

𝐺𝑚 ⊂ 𝐺𝑡, we call 𝐺𝑚 Maximal Clique(MC). 

Definition 2 (overlapping vertex). 
i

C  and 
j

C  are two different communities, if 

vertexes 𝑣𝑖 ∈ 𝐶𝑖 ∩ 𝐶𝑗, we call 𝑣𝑖 overlapping vertex.  

Definition 3 (merge community). If exists community 
i

C and 
j

C ( i j ), 
i j

C C . 

Delete 
i

C  and save
j

C . 
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b:{(1,1)} 

c:{} 

d:{(1,1)} 

a:{(1,1)} 

e:{(2,1)} 

f:{(2,1)} 

g:{(2,1)} 

2.1. Initialization 

In COPRA algorithm each vertex is given a unique label in initialization, but during 

initial iterations vertexes receive different label that possible affect community detection 

quality, so the COPRA is unstable. To further enhance stability of the algorithm, we first 

consider reducing the number of labels in complex networks. Therefore we find out all 

disjoint MC in complex network and initialize vertexes of each MC with a weight and 

unique label. The approach can reduce redundant labels significantly, and enhance its 

stability. CPM has difficult to detect community in large-scale and higher-density 

complex networks due to its all clique tactic. In this paper we find out all disjoint MC to 

avoid consuming a lot of time in large-scale and higher-density complex networks. MC is 

the core unit of community through analysis of complex networks topology structure. A 

community at least contains one MC. In other words, vertexes belong to MC, must belong 

to the same community. So the community consists of MC and vertexes connected to MC. 

To sum up, initialization of the ALPA algorithm is shown below. 

(1) Set 𝐶𝑖 = ∅, 𝐶𝑖 is label set of vertex 
i

v ; 

(2) Set id=1; 

(3) By definition 1 find out one MC, and set (id, 1) ∈ 𝐶𝑖, where id is label number and 1 

is the label weight; 

(4) id=id+1; 

(5) Repeat (3)-(4), until no vertexes meet the requirements, initialization terminate. 

Figure 1. Result of After Initialization 

We find out two MC in the Figure 1 by label initialization process, (a,b,d) and (e,f,g) 

respectively . Labels and weights are 1 for all vertexes respectively of the first MC, but in 

the second MC, vertex labels are 2 respectively, but the weights are still 1, result as shown 

in Figure 1. After initialization, vertexes of MC have label and weight, while the vertexes 

out of MC are not. By the model of small world in complex networks, if the vertex has 

neighbors, it would get a label in the algorithm iterations. 

 

2.2. Design Alternatives 

We describe alternatives briefly in this section. After initialization some vertexes get 

labels and weights, which would become seed vertex in propagation process. Each vertex 

label is a set of pair (c,x), where c is label number and x is the label c weight. The function 

b𝑡(𝑐, 𝑥) is the weight value of label c in vertex x at the tth iteration. We use the following 

definition which is shown in formula (1). The vertex will inherit its neighbor vertexes' 

labels and weights which according to formula (1) at each iteration. 
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b𝑡(𝑐, 𝑥) = b𝑡−1(𝑐, 𝑥) +
∑ 𝑏𝑡−1(𝑐,𝑦)𝑦∈𝑁(𝑥)

|N(x)|
                     (1) 

Where N(x) denotes the neighbor set of vertex x. Comparing to the asynchronous 

update mode, synchronous update label disseminate the results more stability
 [10]

. 

Therefore we use synchronous update mode: the vertex label update in the tth iteration 

depends on the results in the (t-1)th iteration. It will take into account that no matter the 

vertex belong to a community or not, which is related to the distribution of vertex degree. 

So a vertex has L labels, weight of each label should not less than 1/L. Each vertex has a 

different number of labels, so L is variable. We define 1/ L as adaptive threshold. After 

each iteration the label pair will be deleted which is less than the adaptive threshold. 

Finally, normalize them so that weights of all labels for x vertex sum to 1. The specific 

iteration process is shown as follows. 

(1). Set iteration number t = 1; 

(2). Disrupt the order of vertexes, get a random sequence X; 

(3). According to random sequence X update the vertex labels by formula (1); 

(4). Delete the label pair whose weight less than 1 / L after each iteration, where L is the 

length of vertex label set. If all label weights of one vertex are less than 1 / L, we retain 

the largest label pair. When the largest label pair isn't unique, one of them is chosen 

randomly. 

(5). Normalized the label weights of vertex, which are to be retained. 

(6). If each vertex has at least one label, the algorithm terminates. 

(7). Otherwise let t = t + 1, repeat (2) - (6). 

(8). Algorithm terminated, vertexes that have the same label belong to the same 

community. 

Figure 2. Result After Label Propagation 

Figure 2 shows the results produced by the label update rules. After the first iteration, 

labels and weights of the vertexes as follows: c:{(1,1)}, b:{(1,2)}, d:{(1,2)}, 

e:{(1,1/3),(2,5/3)}, f:{(2,2)}, g:{(1,1/3),(2,5/3)}, a:{(1,3/2),(2,1/2)}. If the label spread 

farther that might affect the quality of the community detection. We avoid it by the fourth 

step of iteration rule. Therefore, the results of the first iteration are processed as follows. 

The vertex e has two labels, and their corresponding threshold is 1/2 respectively. 

According to our rule, delete label pair of the label weight below 1/2. So the vertex e 

reserved label is 2. That is e:{(2,5/3)}. For vertex g, the solutions are almost the same, 

delete label weight below 1/2, final result is the label 2, that is g:{ (2,5/3). Then the label 

weights of all vertexes are normalized. The final results are as follows: c:{(1,1)}, 

b:{(1,1)},d:{(1,1)}, e:{(2,1)}, f:{(2,1)}, g:{(2,1)}, a: {(1,3/4),(2,1/4)}. After first iteration, 

all vertexes have the labels, the algorithm achieves termination condition. Therefore, the 

network contains two communities: {a,b,c,d} and {a,e,f,g} respectively. According to 

b:{(1,1)} 

c:{(1,1)

d:{(1,1)} 

a:{(1,3/4), 

(2,1/4) } 

e:{(2,1)} 

f:{(2,1)} 

g:{(2,1)} 
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definition 2, vertex a is an overlapping vertex. 

 

2.3. Termination 

Like COPRA, simultaneous multi-label propagation cause our algorithm iteration will 

not converge to the vertex label remains unchanged state. We try to follow COPRA 

algorithm termination conditions, but did not get a good quality of community detection. 

We also try to limit the number of iterations, the results are still unsatisfactory. Therefore, 

we need a new termination condition. 

In our algorithm, the number of community identifiers equal to the number of MC 

which has no intersection in complex networks, and with the continuously iteration the 

number of labels will gradually reduce, even reduced to one label. In order to prevent the 

spread of community identifiers too far which lead to the formation of a super-large 

community, even one community. We use all of the vertexes in complex network having 

the label as the algorithm termination condition. However, few relationships between 

vertexes in the network maybe have not been calculated when the ALPA algorithm 

terminates. The experience shows that these vertexes are usually not overlapping vertexes 

and they have a label that is sufficient. So when the algorithm terminates even if losing 

some relationships, the quality of community detection is not affected.  
 

2.4. Post Processing 

When the algorithm terminates, some vertexes contain more than one label, each vertex 

whose label contains community identifier c is simply allocated to community c. In order 

to improve the quality of community detection, we need post-processing to detect the 

generated community. If the length of vertex 
i

v  
label set in community is greater than 1 

(L>1), it indicates that the vertex is overlapping vertex. So the vertex 
i

v  is placed in the 

corresponding multiple communities. However, some sub-communities have formed. It 

will be deleted according to Definition3. 
 

2.5. Complexity 

The time complexity of each step is estimated as below. n is the number of vertices in 

the complex network and k is average degree of all vertices, H is the number of MC and m 

is the average number of vertexes in each MC. 

(1). Set 𝐶𝑖 = ∅, takes time ( )O n . To find out all disjoint MC takes time

( 1)
( ( 1) )

2

n n
O H m k


  . The time for the whole phase is therefore

( 3)
( ( 1) )

2

n n
O H m k


  . 

(2). Labels update phase, T is the number of iterations when the algorithm terminates. 

Each vertex label update have four steps, it’s shown as follows. 

(a) Receive new label of neighboring vertexes; 

(b) Summing the same label with the neighbor vertexes; 

(c) Delete the noise label according to adaptive threshold; 

(d) Normalized the vertex label weights. 

So the time for the whole phase is ( )OTkn . And post-processing, the total time is 

( )O n . 

For a complex network, the whole time complexity is therefore
2 5

( ( ) ( 1) )
2 2

n
O Tk n H m k    . 
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3. Experiments 

 
3.1. Methodology 

Now，there are two ways to evaluate the performance of the ALPA algorithm. One is to 

run the algorithm on real-world network dataset. A problem is how to judge the 

community detection quality because we usually do not know the real communities that 

are present in the original data. The other method is to use randomly generated synthetic 

networks based on LFR
[11]

 network generator and compare the known communities with 

those found by the ALPA algorithm. A benefit of this method is that we can analyze the 

algorithm’s performance in detail. The drawback is that synthetic networks might not 

share the properties of real networks. 

For synthetic networks, LFR network generator produces benchmark networks that 

are claimed to possess properties found in real networks, such as number of vertex, 

heterogeneous distributions of degree and community size. Although not described in [11], 

the generator also allows communities to overlap, with the restriction that every 

overlapping vertex belongs to a fixed number of communities. To evaluate overlapping 

communities on the synthetic networks, we use the Normalized Mutual Information (NMI) 

measure of Lancichinetti et al [12] in the experiments reported in this paper. 

0, 1NMI     , it measures the closeness of the found communities to the real 

communities.  

The benchmark networks parameters of our experiments are: the mixing parameter 

( 0. 1, 0. 8u     ), each overlapping vertex belongs to two communities (
m

O =4). The 

exponents of the power-law distribution of vertex degrees (
1

t =2) and community sizes 

(
2

t =2). The remaining parameters are: the number of vertices (n), the average degree (k), 

and the maximum degree (
max

k ), the minimum community size (
mi n

C ), the maximum 

community size (
max

C ), and the number of overlapping vertices ( no ). They are shown in 

table 1. 

Table 1. LFR Benchmark Network Remaining Parameters 

Network ID n k 
max

k  
mi n

C  
max

C  
no  

S1 1000 10 20 10 20 20 
S2 
S3 

1000 
5000 

10 
20 

20 
100 

20 
20 

50 
100 

20 
100 

S4 5000 40 100 40 100 500 
 

For real networks, the most common measure is modularity [13-14]. Nicosia et al [15] 

designed a variant that is defined for overlapping communities. So we use this overlap 

modularity (
ov

Q ) measure for the experiments in this paper. The 
ov

Q is defined as 

formula (2). 

𝑄ov =
1

2𝑚
∑ (𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
)𝛿(𝐶𝑖 , 𝐶𝑗)𝑖𝑗                      (2) 

Where m denotes the number of edges, and 𝑘𝑖, 𝑘𝑗 is degree of vertex i and j. A 

denotes the adjacency matrix of the network, the vertexes i and j are adjacent, Aij = 1, 

otherwise Aij = 0. If the vertexes i and j in the same community，𝛿(𝐶𝑖, 𝐶𝑗)=1，else 

𝛿(𝐶𝑖, 𝐶𝑗)=0. When i=1, j=2, and j=1, i=2, the set of vertexes is the same contribution to 

ov
Q . For ease of calculation we evolved formula (2) into the formula (3). 
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𝑄ov =
1

𝑚
∑ (𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
)𝛿(𝐶𝑖, 𝐶𝑗)

i<j
𝑖𝑗                      (3) 

 

3.2. Comparison with Other Algorithms 

In this section, we use synthetic networks to compare the performance of ALPA with 

some other algorithms. We use benchmarks network as shown table 1 for comparison. The 

network size is either 1000 or 5000. The vertex degree is 10, 20 or 40. The vertex max 

degree is either 20 or 100. The overlapping vertex is 20,100 or 500. Community sizes are 

in the range 10–40 or 20–100, the mixing parameter μ varies from 0.1 to 0.8 and other 

parameters are fixed. 

 

Figure 3. NMI of ALPA and Some Other Algorithms on S1 (a), S2 (b), S3 
(c) and S4 (d) 

In Figure 3, the algorithm parameters about:(1)COPRA,v=4.(2)CPM,k=3.(3)GCE, 

α=1.0.About COPRA and ALPA, NMI is average result of running 10 times on every 

benchmark network dataset. These results show that LPA is more no effective for 

overlapping community detection. Parameter v is equal to 4 in COPRA algorithm, and this 

parameter fits overlapping community number of our synthetic network dataset. But the 

figure 3 shows that NMI of experiment is not satisfactory. In small networks, CPM and 

ALPA have the best quality of community detection, but CPM is instability in bigger 

networks, and it can’t detect community in dense network. Meanwhile, GCE algorithm 

can’t detect community in small networks when community structure is not obvious.  

In addition, the COPRA algorithm is unstable because of excessive redundancy label. 
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The ALPA algorithm at least three vertexes have a unique label, moreover experiments 

show that label number of ALPA is about 5% of the number of network vertexes. So 

ALPA reduced the risk of label selected during iterations, and therefore ALPA has more 

stability than COPRA. It is worth mentioning that ALPA algorithm still remains good 

community detection quality when the community structure is not obvious, which is 

related to our definition about MC. Therefore, MC is core of the community. It is also the 

key factor that the ALPA algorithm achieves better quality and stability.  

The real networks that we use and their sizes are listed in table 2. We have also 

compared four other classic community detection algorithms on our real networks using 

formula (3). Table 2 shows information of five real network datasets and modularity 
ov

Q  

of these algorithms running on them. GCE algorithm has better community detection 

quality when community structures on synthetic networks are obvious. But 
ov

Q  of GCE 

is zero on real network “CA-hepPH”. ALPA gives the best modularity than the other four 

algorithms for network tested, except “football”. On football dataset, 
ov

Q  of ALPA is 

0.63, but 
ov

Q  of COPRA is 0.65. The difference is very small too. 

Table 2. Comparison of ALPA with Other Algorithms on Real 
Networks 

Name Vertices Edges ov
Q   

ALPA GCE COPRA CPM LPA 

Karate 34 78 0.43 0.35 0.05 0.24 0.31 

Dolphins 62 159 0.56 0.49 0.47 0.44 0.33 

Football 115 613 0.63 0.60 0.65 0.20 0.50 

Power 4941 6594 0.95 0.08 0.15 0.21 0.23 

CA-hepPH 11204 117649 0.51 0.00 0.42 0.00 0.46 

 

Therefore the experimental results on the synthetic network and real network show 

ALPA algorithm improves the tolerance of the parameters u, it can obtain better 

community detection quality when community structures are not obvious. In other words, 

ALPA algorithm is not affected by the network size and community structure, more 

suitable for community detection on various types of unknown complex networks.  

 

4 Conclusions 

 
4.1. Contributions 

We propose a new algorithm called ALPA, to detect overlapping communities in 

complex networks by label propagation. Found MC and used unique label to initialize 

vertex in MC. compared with COPRA and LPA, our method decrease redundant label, 

and therefore dramatically decreasing the random factors. MC strategy also improves 

community detection quality, especially in complex networks with less obvious 

community structures. Adaptive threshold method delete redundant labels avoiding all 

labels owned all vertices, and this strategy overcome pre-parameter limitations in 

unknown complex networks.  

So ALPA algorithm has ability to detect community structure in any complex networks, 

it is particularly suitable for community detection in real commercial complex network, 

and its result can provide support for accurate personalized service. 
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4.2. Future Work 

There are at least two directions in which this work could be extended. One is 

extending definition of MC. When there are multiple vertices simultaneously eligible to 

join MC, whether we should consider allowing them to join at the same time? In general, 

they should belong to the same community. Another is to develop faster implementations. 

The algorithm is highly amenable to parallel implementation because each vertex can be 

updated independently during each propagation step, as a result of its use of synchronous 

updating. Parallelization implementation can make the ALPA algorithm more quickly 

detect community in complex networks with millions of vertices. 
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