
International Journal of Control and Automation 

Vol. 9, No. 6 (2016), pp.277-288 

http//dx.doi.org/10.14257/ijca.2016.9.6.26 

 

 

ISSN: 2005-4297 IJCA 

Copyright © 2016 SERSC 

Calibration and Gray-level Image Generation for the SR4500 ToF 

Camera 
 

 

Hui Zhang1, Xuewen Rong1*, Yibin Li1, Bin Li1, Qin Zhang2  

and Junwen Zhang1 

1School of Control Science and Engineering, Shandong University,  

Jinan, China 
2School of Electrical Engineering, Jinan University, Jinan, China 

rongxw@sdu.edu.cn, cse_zhangq@ujn.edu.cn 

Abstract 

This paper proposes a novel distance calibration and gray-level image generation 

method for the SR4500 Time of Flight (ToF) camera. For the distance measurement, the 

Gaussian Process Regression (GPR) model is proposed to calibrate the range error. With 

this model, fewer parameters need to be estimated and the model complexity is reduced. 

In order to eliminate the error data caused by the object edge, the distance threshold 

which determined by the range data of the current pixel is selected to remove the mixed 

pixel. To acquire gray-level images from the amplitude data, the amplitude histogram is 

used to select the amplitude threshold of the reflected light, and grayscale images can be 

generated through normalizing the amplitude value with this threshold. The experiment 

results illustrate the feasibility and effectiveness of the proposed algorithms. 
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1. Introduction 

Monocular vision, stereo vision and panoramic vision are widely used in the field of 

mobile robot. Monocular vision can provide the color information, but hard to acquire the 

range data of the scene. Stereo vision obtains the depth information of the environment 

through matching the corresponding points from two images, but it has the drawback of 

the low frame rate [1]. Though the panoramic vision has the advantage of providing the 

360-degree field of view and high efficiency, it also needs to solve the implementation of 

the hardware. In recent years, a new generation of active cameras, which based on the 

Time-of-Flight principle, has been developed. The main advantages with respect to other 

3D measurement techniques are the possibility to acquire data at video frame rates and 

obtain 3D point clouds without scanning and from just one point of view [2]. It is a new 

suitable choice for the environment perception and modeling in the field of robotics. 

In the 1990s, the first all-solid-state 3D-cameras based on the Time-of-Flight principle 

became available on the market [3]. In recent years, this kind of camera becomes more 

and more popular and has been widely used in the field of mobile robotics, automated 

vehicle and interactive entertainment. In particular, some research on obstacle detection 

[4], pose estimation [5], terrain traversability analysis [6], 3D object reconstruction [7] 

and simultaneous localization and mapping (SLAM) [8] for mobile robotic applications 

have been done. At the same time, calibration models of look-up-Tables [9], sinusoidal 

functions [10] and high-order polynomial [11] are proposed to improve the accuracy of 

the TOF camera. Using these models can improve the accuracy to some extent, but it also 

faces the problem of huge amount of data, complex function composition and high-order 

computation. 

In recent years, the SR4500 TOF camera provides a new choice for environment 

perception in the field of mobile robotics. In order to solve the problem of distance 
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calibration and gray-level image generation of the SR4500, a detailed study is performed 

in this paper. The main contribution in this context is that the Gaussian Process 

Regression (GPR) model is used to calibrate the range error. With this model, fewer 

parameters need to be estimated, and solves the problem of high-order computation 

and complex function composition when using error models of polynomial or 

sinusoidal functions. In order to eliminate the error data caused by the object edge, 

the distance threshold which determined by the range data of the current pixel is 

selected to remove the mixed pixels. To acquire gray-level images from the 

amplitude data, the amplitude histogram is used to select the threshold of reflected 

light, and grayscale images are generated through normalizing the amplitude value 

with this threshold, by means of this method the generated gray value can be 

dispersed on the majority of the gray scale range. 

The remainder of this paper is organized as follows: the principle of TOF camera is 

given in Section 2. Section 3 proposes a novel calibration model to improve the range 

accuracy and the method of removing mixed pixels is also discussed. The algorithm of 

grayscale image generation is proposed in Section 4. Section 5 shows the experiment of 

distance calibration, mixed pixel removing and gray-level image generation, and an 

environment perception experiment is done in an outdoor environment. Finally, a short 

summary is given in Section 6. 

 

2. TOF Camera Principle 

The operation mode of the TOF camera is based on the Time-of-Flight principle. The 

observed scene is illuminated by modulated infrared light which is reflected by visible 

objects and gathered in an array of solid-state image sensors. By measuring the travel time 

of light, the distance at each pixel is determined: 

 

2

t
d c   (1) 

where d  is the distance between sensor and object; c is the speed of light; t  is the time 

between emitting and receiving. 

According to the form of emitted light pulse, there are two different types of Time-of-

Flight principle, direct Time-of-Flight principle and indirect Time-of-Flight principle, 

which are shown in Figure 1. In the first case, the runtime of a travelled light pulse is 

directly measured using arrays of single-photon avalanche diodes (SPADs) [12]. This 

distance measurement has high precision and suits for the long-range detection, but In 

order to reach a distance accuracy of a few millimeters, the clock accuracy has to be as 

low as a few picoseconds [13]. 
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(a) Direct principle                     (b) Indirect Principle 

Figure 1. Time-Of-Flight Distance Measurement Principle 

The other method uses amplitude modulated light and obtains distance information by 

measuring the phase difference between the reference signal and reflected signal [14]. The 

emitted light is modulated in amplitude with a sinusoidal modulation. The received 
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sinusoidal modulated signal is sampled four times in each cycle, at ¼  period phase shifts, 

e.g. 90° phase angle. From the four samples ( ( 0), ( 1), ( 2), ( 3)c c c c    ), the offset B, the 

amplitude A and the phase shift   can be calculated: 

 ( 0) ( 1) ( 2) ( 3)

4

c c c c
B

     
  (2) 

 2 2( ( 0) ( 2)) ( ( 1) ( 3))
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c c c c
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     
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 
 (4) 

The scheme of the phase shift measurement principle is reported in Figure 2, B is the 

mean intensity of the received signal and A is its amplitude. The received signal is offset-

shifted in intensity with respect to the emitted signal mainly because of the additional 

background light. 



received

signal

Time

I
n
t
e
n
s
i
t
y

A

B

emitted 

signal



( 3)c ( 2)c ( 1)c ( 0)c 

 

Figure 2. Scheme of the Phase Shift Measurement Principle 

The distance d  is then derived from the phase shift  : 

 

2 2
d

 


  (5) 

where λ is the modulation wavelength.  

 

3. Distance Data Processing 
 

3.1. Distance Calibration with GPR 

In the last few years, some work on distance calibration has been done and many 

models are used to adjust the range measurement errors, such as look up Tables model, 

high-order polynomial model and sinusoidal model. But in this paper, we proposed a 

novel approach which using the GPR [15,16] model to solve this problem. 

The GPR is a new machine learning method by the context of Bayesian theory and the 

statistical learning theory [17]. It is widely used to solve the high-dimensional, small-

sample or nonlinear regression problems. By using a set of training points, a GPR can 

provide a prediction of the unknown function with an associated uncertainty over a 

continuous domain [18]. Compared with other models, the GPR model needs no high-

order computation and complex function composition and has fewer parameters to be 

estimated, so it is suitable for this problem. 
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A GP is determined by its mean function ( )m x  which is always assumed to be zero 

and a covariance function ( , ')k x x : 

 ( ) ~ ( ( ), ( , '))f x GP m x k x x  (6) 

where  

  ( ) ( )m x E f x  (7) 

  ( , ') ( ( ) ( ))( ( ') ( '))k x x E f x m x f x m x    (8) 

For the regression problem: 

 ( )y f x    (9) 

where f  is the function value, y  is the observed target value and assuming polluted 

by the independent identically distributed Gaussian noise  ~
2(0, )nN  .  

the prior on the noisy observations becomes 

 2cov( ) ( , ) ny K X X I 

 
(10) 

where 
pq is a Kronecker delta which is one if p = q and zero otherwise. 

Then, the joint distribution of the training outputs y  and the test outputs 
*f  according 

to the prior is 

 2

*

* * * *

( , ) ( , )
~ 0,

( , ) ( , )

n
y K X X I K X x

N
f K x X k x x

   
     

    
 

(11) 

if there are n  training points and 
*n  testing points then 

*( , )K X x  denotes the 
*n n  

matrix of the covariance evaluated at all pairs of training and testing points, and similarly 

for the other entries 
*( , )K x X , ( , )K X X  and 

* *( , )K x x . 

The predictive distribution for testing locations 
*x is given by 

 
* *| , ,f X y x ~

* *( ,cov( ))N f f


 
(12) 

where 

 1

* *( , )f K x X K y


  (13) 

 1

* * * * *cov( ) ( , ) ( , ) ( , )f K x x K x X K K X x 

 
(14) 

with 
2( , ) nK K X X I  . 

Equations (13) and (14) provide the basis of the range error estimation process.  

There are numerous covariance functions that can be used to model the spatial 

variation between the data points, e.g. Linear, Exponential, Squared Exponential. A 

widely used is the squared-exponential kernel given as:  

 
2 11

( , ') exp( ( ') ( '))
2

T

fk x x x x x x     

 

(15) 

where 
2( )diag l ,   is the length-scale matrix, a measure of how quickly the 

modeled function changes in the directions x and y; 
2

f  is the scaling parameter. The set 
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of  2 2, ,f n     are referred to as the hyperparameters that fully determine the GPR, 

and are always determined through Maximum Likelihood Estimation. 

Because of the range error is the function of one variable about distance, then the 

covariance function   (15) can be rewritten as: 
 2

2

2

( ')
( , ') exp( )

2
f

x x
k x x

l


 


 

(16) 

 

3.2. Mixed Pixels Removing Method 

As shown in the Figure 3(a), the range data from the scene contains mixed pixels 

caused the object edge, which degrades the data acquired on the borders of the object 

greatly. S. May used angle   for thresholding jump edges [1]. In this paper, we use a 

similar method to remove the mixed pixel.  
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(a) Mixed pixel                                       (b) Threshold selection 

Figure 3. Illustration of Mixed Pixel Removing 

Through the distance d  of the observation point 
1p at current pixel and the angular 

resolution   of the camera, we can calculate distance threshold between the neighboring 

data points 
1p and 

2p : 

 *2 *sin( / 2)threshold k d 

 
(17) 

where  =0.39°; k  is a scale factor.  

Then, the distance between 
1p  and its eight neighborhood points will be calculated. If 

one of the distances exceeds the threshold, the point 
1p  is regarded as mixed pixel.  

 

4 Gray-level Image Generation Algorithm 

The SR4500 camera does not generate the color data of the scene but the amplitude 

information of the reflected signal with the value from 0 to 0xFFFF. In order to improve 

the availability of the amplitude information of the reflected light, a normalization 

approach is used to translate the amplitude value to 0-255, and the resulting image is more 

looking like a conventional gray-level camera image. 

In this paper, the amplitude histogram is used to accept the overall situation of the 

amplitude data, and a threshold is selected out to determine the amplitude upper limit. 

Through this threshold, the amplitude data is normalized to 0-255. 

Figure 4(a) shows the amplitude histogram. We can see that the max amplitude value at 

this picture is about 18000, but most of the data is less than 5000, and the data which is 

greater than 5000 are rarely and very scattered. In Consideration of the continuity of the 

amplitude, the point which’s intensity is zero and the number of elements before this point 

are greater than 98 percent of the total is selected as the break point. For the Figure 4(a), 

the threshold is shown in the Figure 4(b) and its value is 4542. 
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Figure 4. Threshold Selection Using Amplitude Histogram 

The normalization equation is: 
 ( , ) min

m
( , ) *255

mx ina

P i j
P i j





 (18) 

where ( , )P i j  is the amplitude value of each pixel; max  is the threshold of the 

amplitude value and min  is the minimum of all amplitude value 

 

5. Experiment Results 

The following sections describe the experiment of distance calibration, mixed pixel 

removing and gray-level image generation. The SR4500 camera is selected as the 

experimental device. This camera is the fourth-generation ToF cameras produced by 

MESA in Switzerland. It is based on the principle of the continuous wave time-of-flight 

method and can provide range image, amplitude image and confidence image, which are 

shown in Figure 5.  

    
  (a) Scene image        (b) Range image       (c) Amplitude image     (d) Confidence image 

Figure 5. Raw Output Images from the SR4500 

5.1. Distance Calibration Experiment 

The distance measurement of the SR4500 camera is influenced by many factors, such 

as integration time, internal temperature and ambient light. Because of the SR4500 

combines the optical feedback loop and temperature compensations, so the influence of 

the integration time is considered only in this paper. 

In order to evaluate the systematic distance measurement error of the SR4500 camera, 

the range error distribution of the center pixel is investigated. The camera is set up on a 

photographic tripod and paralleled to a vertical white board (Figure 6a). The Figure 6b 

shows the camera view and the central pixel is at the cross area. The distance between the 

camera and the board is accurately measured using Bosch DLE40 laser range finder 

(Figure 6c).  
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           (a) Testing Scene                  (b) Camera View                  (c) DLE40 

Figure 6. Experiment Setup for Evaluate the Range Errors 

The histogram of the 1000 distance measurements measured by the central pixel with 

an integration time of 10.3ms for the distance of 1006mm, 1983mm and 2993mm is 

generated. The Figure 7 shows that the measured distance is very close to the 

approximated value and it follows Gaussian distributions. 
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Figure 7. Histogram of the 1000 Distance Measurements at Different 
Distance 

In order to study the influence of different integration time, distance measurements 

with respect to the integration time of 5.3ms, 10.3ms, 15.3ms and 20.3ms at different 

position are measured. The panel is positioned from 1000mm to 4200mm with five-

centimeter interval . Ten consecutive frames are acquired for each panel position, and the 

mean  , standard deviation std  and range error err  are calculated through: 

 

1

n

i

i

d

n
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(19) 
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


 

(20) 

 err ref   (21) 

where 
id is the distance data delivered by the camera; ref is the distance reference 

value; n is set to10 in the above equation. 

The 95% confidence interval for the range error distribution is shown in Figure 8. The 

result exhibits that the oscillating error appeared with the increasing of the distance and 

the range error standard deviation is in inverse proportion with respect to the integration 

time. On the other hand, though the influence of integration time to the mean of the range 

error is small, it is greater to the range error standard deviation. Considering the stability 

of the range data, the integration time which is greater than 10.0ms is suggested to be 

selected in the future application. 
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(a) 5.3ms                                                             (b) 10.3ms 

1000 1500 2000 2500 3000 3500 4000 4500
-5

0

5

10

15

20

25

Distance/mm

R
an

ge
 e

rr
or

/m
m

             
1000 1500 2000 2500 3000 3500 4000 4500
-5

0

5

10

15

20

25

Distance/mm

R
an

ge
 e

rr
or

/m
m

 
(c) 15.3ms                                                         (d) 20.3ms 

Figure 8. Range Error of the Center Pixel at Different Integration Time 

From Figure 8 we can see that the range error is not the same at different integration 

time but the difference between each other is small, so a set of range error is selected from 

the four as training points to predicate the error at arbitrary distance, and the range data at 

the other integration time is calibrated by this group of predicted value. The selection is 

realized through calculating the sum of squared difference with each other, and the Figure 

8(a) is excluded because of the big fluctuation. The result is shown in Figure 9. From this 

figure we can see that the range error with the integration time of 15.3ms is less than the 

other so it is selected as the training points. 
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Figure 9. Training Points Selection 

Then, the equation (13) and equation (16) are used to predict the range error from 

1000mm~4200mm. The result is shown in Figure 10, the black line is the estimated value 

of range error and the red points represent the calibrated range error. As can be seen from 

this Figure, after applying the GPR error model the range error goes down from 15mm to 

5mm in the 1000~4200 mm distance measurement, and it is can meet the requirements of 

perception in the field of robotics. 
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(c) 15.3ms                                                            (d) 20.3ms 

Figure 10. Calibration Result at Different Integration Time 

5.2. Mixed Pixels Removing Experiment 

This experiment illustrates the performance of the mixed pixels removing algorithm. 

The level ground with a box placed there is selected as the experimental subject, which is 

shown in Figure 11(a).  

Figure 11(b) is the raw 3D scene acquired by the SR4500, we can see that there are 

many scatter plots between the top surface of the box and the ground. In order to remove 

these points, the equation (17) is used to select the mixed pixel. Figure 11(c) shows the 

result and the mixed pixels are shown with red color. Figure 11(d) is the 3D scene after 

removing mixed pixels. We can see that though this method is convenient to realize, the 

mixed pixels can be removed well. 
 

    

(a) Scene Image           (b) 3D Scene          (c) Pixels Selection        (d) Pixels Removing 

Figure 11. Mixed Pixels Removing 

5.3. Gray-level Image Generation Experiment 

An amplitude image captured by the SR4500 camera is used to verify the gray-level 

image generation algorithm, and the result is shown in Figure 12.  

Figure 12(a) is the raw amplitude data and the maximum is about 19000; Figure 12(b) 

is the normalization result of using the maximum of amplitude value, this method can 

acquire the grayscale data but the majority of the value is less than 50; Figure 12(c) is the 

normalization result of using the threshold and most of the data is greater than 100; Figure 

12(d) is the gray-level image generated with the proposed algorithm. From this 

experiment we can see that by means of proposed method, the amplitude value can be 
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dispersed on the majority of the gray scale range and increases the resolution of the gray 

value. 
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(a) Raw data                         (b) Normalization without threshold 
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Figure 12. Normalization of the Amplitude Value 

5.4. Outdoor Experiment 

Based on the analysis above, a perception experiment in an outdoor environment is 

done, which is shown in Figure 13(a). The Digital Elevation Map (DEM) is generated 

according to the range data. From this experiment we can see that the precise 3D 

environment map and grayscale images can be obtained in the outdoor environment and 

the grayscale image can adapt to high background light levels. At the same time, we have 

installed this camera in the quadruped robot, and researches of mapping and obstacle 

detection are ongoing. 

 

     
(a) Environment perception experiment                      (b) Application 

Figure 13. Outdoor Experiment 

6. Conclusion and Future Work 

ToF cameras can provide both range images and amplitude images at video frame rates 

without scanning and from just one point of view, so it is well suited for the 

environmental perception under complex condition. In this paper, some tests relative to 

the new and more powerful SR4500 camera have been reported, and three novel 

approaches are proposed to solve the problem of range error calibration, mixed pixels 

removing and gray-level image generation.  
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1) First, compared with distance error model using polynomial or sinusoidal functions, 

the GPR model is used in this paper. With this model, fewer parameters need to be 

estimated   and the high-order computation and complex function composition are 

avoided. After been calibrated, the range error goes down from 15mm to 5mm. 

2) Second, In order to eliminate the error data caused by the object edge, the distance 

threshold which determined by the range data of the current pixel is selected to remove 

the mixed pixel. This method is convenient to realize and can remove the mixed pixel 

well. 

3) Third, the amplitude histogram is used to select the threshold of reflected light, and 

gray-level images are generated through normalizing the reflected light with this 

threshold. By means of this method the generated gray value can be dispersed on the 

majority of the gray scale range. 

These three approaches enable the usage of this camera, and based on the proposed 

methods, the work on environment information collection for mobile robot is ongoing. 

Besides that, further studies should be done in order to fully use the sensors abilities and 

exploit its potentialities, such as obstacle detection, terrain information recognition, pose 

estimation and simultaneous localization and mapping.  
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