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Abstract 

In this paper, we propose that when a random network graph model that prefers to 

close two-hop chains and transform them to triangles as part of link formation. We 

hypothesize that such a model would generate random network graphs with high 

clustering coefficients and a larger variation in node degree, compared to that of the 

well-known Erdos-Renyi (ER) model. We refer to the proposed model as two-hop 

neighbor preference (THNP)-model that prefers to pair a node with any of its two-hop 

neighbors rather than to an arbitrary node. The probability of link formation is still 

governed by the formulation used to generate links in the ER model. We observe the 

THNP-model to generate random network graphs wherein the clustering coefficient of a 

node decreases with increase in node degree (resembling closely to several of the real-

world network graphs), and the graphs still exhibit a Poisson-style distribution for the 

node degree and path length.  

 

Keywords: Two-Hop Neighbors, Random Network Graphs, Clustering Coefficient, 

Node Degree Distribution, Complex Network Analysis. 

 

1. Introduction 

With the growth of social networks and the availability of data about several real-world 

networks (like biological networks, citation networks, etc), there has been a significant 

interest to analyze these complex networks from a graph theoretic point of view. A crucial 

step in analyzing a complex real-world network is to extract the degree distribution of the 

vertices in the network and compare it with well-known distributions (e.g., Poisson, 

Gaussian, Exponential, Power-law, etc) of networks [1] generated from theoretical models 

using the same parameters (like the average node degree, standard deviation of node 

degree, etc) as that of the real-world network. Once the equivalent theoretical graph 

model for a real-world network is identified, one can effectively analyze the various 

characteristics of the real-world network based on the parameters and analytics metrics of 

the graph model identified.  

The results of the analysis of certain real-world networks indicate that the degree 

distribution of the vertices in these networks does not closely match with any of the well-

known distributions. For example, we observe (from Figure 1) that the degree distribution 

of some sample real-world networks studied in this paper is a Poisson-curve 

(characteristic of random networks) [2], but with a long tail (characteristic of scale-free 

networks) or sometimes even with a long head. If these real-world networks are modeled 

as a random network, then one cannot capture the presence of a few, but appreciable 

number of vertices that have a significantly larger degree than the rest, as well as cannot 

capture the decreasing nature of the clustering coefficient of the vertices with increase in 

node degree (the clustering coefficient of the vertices in a random network is independent 

of node degree and is simply equal to the probability of a link between any two nodes) 

[3]. On the other hand, if these real-world networks are modeled as a scale-free network 
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[4], then one would wrongly capture the degree distribution of vertices with lower degree 

(while scale-free networks are expected to have a larger number of vertices with lower 

degree, the real-world networks shown in Figure 1 have only fewer vertices with lower 

degree). Thus, the motivation of the observations from Figure 1 is that we need a random 

network graph model that captures the presence of smaller, but appreciable percentage of 

vertices with both lower degree as well as higher degree (i.e., larger variation in node 

degree), and also at the same time capture the complex inverse relationship between 

clustering coefficient and node degree. 

 

     

 

    

   

         Karate Club Network             US Politics Book Network       C. Elegans Neural 
Network 
        (34 nodes, 78 edges)              (105 nodes, 441 edges)          (297 nodes, 2148 
edges) 

Figure 1. Degree Distribution and Clustering Coefficient vs. Degree for Real-
World Networks 

 

In this paper, we propose that whenever we are looking for a link to be setup for a node 

u, we give preference to the two-hop neighbors of node u, rather than to an arbitrary node 

that may or may not be a two-hop neighbor of node u before the establishment of the link. 

We hypothesize that the proposed approach could lead to the closure of several two-link 

chains as triangles - contributing to a larger clustering coefficient for the vertices as well 

as contribute to a larger variation in node degree among the vertices, compared to the 

well-known Erdos-Renyi (ER) model [5] for random networks. The ER model has a 

characteristic of generating random network graphs with lower variation in node degree 

(the degree of a majority of the vertices lies close to the average degree) and lower 

clustering coefficient (the clustering coefficient for any vertex in an ER random graph is 

close to the probability of a link between any two nodes). According to the proposed two-

hop neighborhood preference (THNP) approach, if we are to setup a new link for a node u 

and decide whether the node is to be paired with a randomly chosen candidate node x 

(with which node u does not yet have a link), we consider node x along with the two-hop 

neighbors of node u (i.e., there exists two-hop chains, say u-w-v involving links u-w and 

w-v) and randomly choose one among the nodes (from the expanded candidate list) with a 

probability (plink) as the neighbor node. The plink value used in the THNP model is the 

same as the plink value used in the ER model and is obtained by dividing the average node 

degree of the real-world network by number of nodes - 1. Unlike the ER-model based 
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random network graphs, the THNP-model based random network graphs exhibit an 

inverse relationship for the clustering coefficient vs. node degree as well as a larger 

spectral radius ratio for node degree (i.e., larger variation in node degree) [6]. We 

evaluate the relative proximity (similarity) of the graphs generated according to the THNP 

model and the ER model with that of the real-world network graphs by computing the 

rooted sum of the mean square difference values for the average node degree, average 

clustering coefficient, average path length and the spectral radius ratio for node degree. 

We observe the THNP-model based random network graphs to be relatively more similar 

to the real-world network graphs considered, compared to that of the ER-model based 

random network graphs. 

The rest of the paper is organized as follows: Section 2 presents the proposed THNP 

model for generating random network graphs with a larger clustering coefficient and 

higher variation in node degree. Section 3 reviews the ER-model, presents the real-world 

network graphs considered in this paper and illustrates a comparative analysis of the ER-

model and the THNP-model with that of the real-world network graphs with respect to the 

analytics metrics mentioned above. Section 4 discusses related work. Section 5 concludes 

the paper. Throughout the paper, we use the terms 'node' and 'vertex', 'link' and 'edge', as 

well as 'network' and 'graph' interchangeably. They mean the same. 

 

2. Two-Hop Neighbor Preference (THNP) Model 

Let there be a total of N nodes among which we need to generate a random network 

with a larger clustering coefficient and higher variation in node degree. Let plink be the 

probability for a link between any node pair considered. Initially, all nodes are considered 

to be isolated in the network. We consider a set S of all possible node pairs (a network of 

N nodes has N(N-1)/2 node pairs). The network generation proceeds in iteration. In each 

iteration, we pick a node pair u-x from the set S and randomly pick one among the two 

vertices (u or x) as the node for which we attempt to setup a link during that iteration. For 

the sake of discussion, we assume (without loss of generality that between the two 

vertices u or x) that vertex u gets selected as the vertex for which we attempt to setup a 

link. Let C be the list of candidate vertices with which we could setup a link for u. We add 

vertex x as the first vertex to the list C. We then consider all the two-hop neighbors v of u 

(i.e., connected through a chain u-w-v where w is the direct neighbor of u) that are not 

directly connected to vertex u and add them to the list C. We randomly pick a vertex (say, 

vertex v) from the list C. We generate a random number randNum in the range [0...1]. If 

randNum ≤ plink, we setup a link between u and v; otherwise not. If a link between u and v 

gets setup, we remove the pair u-v from the set S. Irrespective of the outcome of the 

iteration, we remove the pair u-x from the set S and continue with the next iteration. We 

repeat the above steps in each iteration until the set S becomes empty. Figure 2 presents 

the pseudo code for the THNP-algorithm. 

 
------------------------------------------------------------------------------------------------------------

----- 

Input: Number of Nodes, N; Probability of a Link, plink 

Output: Set of Links, E 

Auxiliary Variables: Set of Node Pairs, S; Candidate List of Vertices, C; Candidate 

Vertex 

Initialization: E = ϕ 

Begin THNP Algorithm 

1 for every vertex u = 1 to N do 

2  for every vertex v = u+1 to N do 

3   S = S  {(u, v)} 
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4  end for 

5 end for 

6 while (S ≠ ϕ) do 

7  Select a pair (u, x) randomly from S 

8  S = S - {(u, x)} 

9  C = ϕ 

10  Generate a random number r in the range [0...1] 

11  if r ≤ 0.5 then 

12   C = C   {x} 

13   Candidate Vertex = u  

14  else 

15   C = C   {u} 

16   Candidate Vertex = x 

17  end if 

18  for every vertex wNeighbor(Candidate Vertex) do 

19   for every vertex v Neighbor(w) do 

20    if v Neighbor(Candidate Vertex) then 

21     C = C  {v} 

22    end if 

23   end for 

24  end for 

25  Pick a vertex v randomly from the list C 

26  C = C - {v} 

27  Generate a random number randNum in the range [0...1] 

28  if randNum ≤ plink then 

29   E = E   {(Candidate Vertex - v)} 

30   S = S - {(Candidate Vertex, v)} 

31  end if 

32 end While 

33 return E 

End THNP Algorithm 

----------------------------------------------------------------------------------------------------------- 

Figure 2. Pseudo Code for the Two-Hop Neighbor Preference-based 
Random Network Generation Model 

 

With regards to the time-complexity: lines 1-5 are executed in Θ(N
2
) time, where N is 

the number of nodes in the network. The while loop from lines 6-32 runs for a total of 

N(N-1)/2 = Θ(N
2
) iterations - one iteration for each node pair. For each such iteration, 

lines 7-17 and 25-31 can be executed in Θ(1) time; lines 18-24 involve a traversal of the 

two-hop neighborhood of a vertex. If K = 2L/N is the average degree of a node [3] in the 

final network with a total of L links, each execution of lines 18-24 takes on average Θ(K
2
) 

time (as essentially the neighborhood of each of the K neighbors of a node is explored as 

part of the search for two-hop neighbors). Hence, lines 18-24 could be considered to be of 

complexity Θ(L
2
/N

2
) for each of the Θ(N

2
) iterations. Thus, each iteration of the while 

loop from lines 7-30 could be considered to take Θ(L
2
/N

2
) time and for a total of Θ(N

2
) 

iterations, the time-complexity for lines 6-32 is Θ(L
2
). Hence, the overall time-complexity 

of the algorithm to generate a random graph under the THNP model is Θ(N
2
) - for lines 1-

5 + Θ(L
2
) - for lines 6-32 = Θ(N

2
 + L

2
). 

 

 

2.1. Relevance to Social Networks 
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As new links get added, the number of two-hop neighbors of a node increases and there 

are high chances that a node u gets linked with one of its two-hop neighbors rather than to 

a vertex not in its two-hop neighborhood. In social networks, if a user intends to pair with 

someone in the network, the user is more likely to prefer pairing with someone who is 

known to his/her neighbors rather than pairing with an unknown stranger. Several social 

media networks, including Facebook, have been designed to suggest friends of friends as 

possible candidates to send friend requests. Thus, the two-hop neighbor preference model 

is very well applicable to model friendship-based interactions in social networks. Note 

that if more neighbors of the Candidate Vertex have a particular vertex as their two-hop 

neighbor, then the vertex has greater chances of becoming a neighbor of the Candidate 

Vertex. This is in tandem with how links are formed in social networks like Facebook. If a 

user A gets a Friend Request from two users B and C and is in a situation of accepting just 

one of these Friend Requests, then user A is more likely to accept the Friend Request from 

the user who has relatively larger number of common friends. 

 

2.2. Example to Illustrate the Execution of the THNP Model 

Figure 3 presents an example to illustrate the execution of an iteration of the THNP 

model to setup a link. Let a pair (3, 5) be removed from the set S and considered for the 

possibility of setting up a link for Candidate Vertex = 3 (chosen randomly among vertices 

3 and 5). Since vertex 3 is chosen as the Candidate Vertex, the other vertex (vertex 5) is 

included to the list C of vertices that could be paired with the Candidate Vertex. We now 

look for the two-hop neighbors of the Candidate Vertex (vertex 3) and include them to the 

list C. Note that a two-hop neighbor vertex could be included multiple times to the list C, 

with one entry per neighbor. We observe vertex 8 having two entries in the list C because 

of it being the neighbor of vertices 4 and 7. The other two-hop neighbors (vertices 1 and 

6) have only one entry in the list C as they are the neighbor of only one of the neighbors 

of the Candidate Vertex 3. We randomly pick a vertex from the list C = {1, 8, 5, 6, 8}. As 

is observed in the simulations, vertices that have multiple entries in the list C have a 

relatively larger chance of being selected (increasing the number of closed triangles and 

hence increasing the average clustering coefficient of the entire network), we observe 

vertex 8 to be selected as the vertex with which the Candidate Vertex 3 will set up a link.  

 

 

Figure 3. Example to Illustrate the Execution of an Iteration of the THNP 
Model 

 

2.3. Impact of the Preference for More Commonly Occurring Two-Hop Neighbors 

Figure 4 illustrates the impact on the average clustering coefficient and average path 

length with regards to preference for link formation to a more commonly occurring two-

hop neighbor (vertex 8) vis-a-vis preference to a random two-hop neighbor (vertex 6). We 
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notice that the setting up of link 3-8 closes two chains 3-4-8 and 3-7-8 into triangles 

(contributing to a larger average clustering coefficient of 0.21), but could increase the 

number of hops from vertices 4, 5 and 6 to the rest of the vertices (contributing to a 

slightly larger path length of 1.96); on the other hand, setting up of link 3-6 closes only 

one chain 3-7-6 (contributing to a lower average clustering coefficient of 0.10), but 

relatively decreases the number of hops on the shortest paths between a majority of the 

node pairs (an average path length of 1.89). We thus notice that giving preference to the 

more commonly occurring two-hop neighbor could even double the average clustering 

coefficient at the expense of a very modest increase (less than 5% increase) in the average 

path length.  

 

     

     Preference to More Commonly Occurring  Preference to a Random Two-Hop Neighbor 
                         Two-Hop Neighbors 

Figure 4. THNP Model - Impact of the Preference to More Commonly 
Occurring Two-Hop Neighbor over a Random Two-Hop Neighbor 

 

3. Simulations 

In this section, we discuss the simulation results observed when the real-world 

networks are modeled based on the proposed THNP model vis-a-vis the well-known 

Erdos-Renyi (ER) model for random networks. We evaluate the proximity (similarity) of 

the theoretical graphs generated with the THNP and ER models with that of the graphs 

abstracting real-world networks using analytics metrics such as (i) Average Clustering 

Coefficient-CC; (ii) Average Path Length-PL; (iii) Average Degree-K and (iv) Spectral 

Radius Ratio for Node Degree-SRK. The proximity value is modeled as the square root of 

the sum of the squares of the relative differences with respect to the above analytics 

metrics for the theoretical graph (abbreviated as ThG - could refer to the THNP or ER 

model graph) and the real-world network graph (abbreviated as RwG in equation 1). 

According to this formulation, the targeted (desirable) proximity value is 0 - indicating 

that the theoretical graph model captures the fundamental characteristics of a real-world 

network graph as close as possible. 
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3.1. Erdos-Renyi Model 

We simulate the generation of a random graph under the ER model as follows: The 

input parameters are the number of nodes N and probability of link between any two 

nodes, plink. We accumulate a set S of all possible pairs of nodes. We proceed in iterations. 

In each iteration, we randomly remove a pair (u, v) from the set S and generate a random 

number randNum in the range [0...1]. If randNum ≤ plink, we setup the link u-v; otherwise 

not.  

 
------------------------------------------------------------------------------------------------------------ 

Input: Number of Nodes, N; Probability of a Link, plink 

Output: Set of Links, E 

Auxiliary Variables: Set of Node Pairs, S 

Initialization: E = ϕ 

Begin ER Algorithm 

1 for every vertex u = 1 to N do 

2  for every vertex v = u+1 to N do 

3   S = S  {(u, v)} 

4  end for 

5 end for 

6 while (S ≠ ϕ) do 

7  Select a pair (u, v) randomly from S 

8  S = S - {(u, v)} 

9  Generate a random number randNum in the range [0...1] 

10  if randNum ≤ plink then 

11   E = E   {(u - v)} 

12  end if 

13 end While 

14 return E 

End ER Algorithm 

------------------------------------------------------------------------------------------------------------ 

Figure 5. Pseudo Code for the Erdos-Renyi (ER) Random Network 
Generation Model 

 

The pseudo code (shown in Figure 5) for the above procedure of generating a random 

graph under the ER model could be adapted from the pseudo code described in Figure 2. 

The overall time-complexity of the algorithm to generate a random graph of N nodes and 

L links under the ER model is Θ(N
2
) as it is the time-complexity to run the for loop from 

lines 1-5 plus the time-complexity of the while loop from lines 6-13, both of which could 

be done in Θ(N
2
) time. 

 

3.2. Analytics Metrics 

In this sub section, we briefly introduce the metrics used in the analysis. 

Clustering Coefficient: The clustering coefficient of a node is the probability that any 

two neighbors of a node are connected [3]. Quantitatively, the clustering coefficient of a 

node is calculated as the ratio of the actual number of links connecting the neighbors of 

the node divided by the maximum number of possible links between the neighbors of 

the node. For a node with degree K (i.e., K neighbors), the maximum number of possible 

links between the neighbors of the node is K(K-1)/2. The clustering coefficient of a 

network (used in formula 1) is the average of the clustering coefficients of the nodes. 

The clustering coefficient of a node with an average degree of K = 2L/N could be 

computed in Θ(K
2
) = Θ(L

2
/N

2
) time as it would require to explore the neighborhood of 
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each of the K neighbors of the node. The time-complexity to compute the clustering 

coefficient of a network would be then Θ(NK
2
) = Θ(L

2
/N). 

Path Length: The length of a path between two nodes u and v is the minimum 

number of hops on the shortest path between u and v. The average path length (used in 

formula 1) is the average of the path length across all node pairs in the network. The 

path length of all node pairs could be represented in the form of a distance matrix and 

could be efficiently computed by running the Floyd's All Pairs Shortest Path algorithm 

[7] of time-complexity Θ(N
3
) on a graph of N vertices.  

Degree: The degree of a node (i.e., the number of neighbors for a node) is the number 

of links incident on the node. The average degree of a network (used in formula 1) is the 

average of the degree values of all the nodes in the network. The degree of a node can 

be computed in Θ(K) = Θ(L/N) time and the average degree of a network of N nodes 

could be computed in Θ(NK) = Θ(L) time. 

 

 

Figure 6. Example to Illustrate the Execution of the Power Iteration Method 
to Compute the Spectral Radius of the Adjacency Matrix for a Network 

Graph 

 

Spectral Radius Ratio for Node Degree: The spectral radius ratio for node degree is 

the ratio of the principal eigenvalue (a.k.a. spectral radius) of the adjacency matrix [8] of 

the network graph and the average degree of the nodes in the network. The spectral 

radius of a graph (denoted λsp(G)) is computed using the Power-Iteration method [8] of 

time-complexity Θ(N
3
) involving at most N iterations; in each iteration, we compute the 

principal eigenvector of a graph based on its adjacency matrix (A). The principal 

eigenvector Xi+1 during the (i+1)
th
 iteration is given by AXi+1/||AXi+1||, where Xi is the 

principal eigenvector of the graph at the end of the i
th
 iteration and ||AXi|| is the 

normalized value of the product of A and Xi. To start with, Xi = [1, 1, ..., 1] - a column 

vector of all 1s corresponding to the number of vertices in the graph.  

The Power-iteration method (example illustrated in Figure 6) stops when the 

normalized value of ||AXi|| converges, and the converged normalized value is the spectral 

radius. If Kmin, Kavg and Kmax are respectively the minimum, average and maximum values 

for the node degree, it has been established that Kmin ≤ Kavg ≤ λsp(G) ≤ Kmax [9]. 

Accordingly, the spectral radius ratio for node degree (SRK), calculated as λsp(G)/Kavg, 

will always be greater than or equal to 1.0. 
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3.3. Real-World Network Datasets 

In this section, we introduce the six real-world network datasets [10-11] studied in the 

paper. We consider these six networks to be representatives of real-world networks with a 

broader range of values for the spectral radius ratio for node degree (i.e., to represent real-

world networks with a broader range of values in the variation of node degree). The real-

world networks are listed (in the increasing order of their spectral radius ratio for node 

degree) as follows (the abbreviations used to refer to the networks are indicated in 

parenthesis, immediately following the network name):  

(i) US Football Network (FN): This is a network of 115 teams (representing Division I-

A colleges) who played in the Fall 2000 Football season in the US. The nodes represent 

the teams and there is an edge between two nodes if the corresponding teams played 

against each other during the season [10].  

(ii) US Politics Books Network (PN): This is a network of 105 books related to US 

Politics sold in Amazon.com. Each book represents a node and there is an edge between 

two nodes u and v if someone who bought a book corresponding to node u also bought the 

book corresponding to node v and vice-versa [10].  

(iii) Karate Club Network (KN): This is a social network of 34 members of a karate 

club at a US university in the 1970s. The members represent the nodes and there is an 

edge between two nodes if the corresponding members are friends [10].  

(iv) C. Elegans Neural Network (EN): This is a network of 297 neurons in the 

hermaphrodite Caenorhabditis Elegans [10]. Each neuron is a node and there is an edge 

between two nodes if the corresponding neurons interact with each other (in the form of 

chemical synapses, gap junctions and neuromuscular junctions).  

(v) Les Miserables Network (LN): This is a co-occurrence network of 77 characters in 

the novel "Les Misèrables" by Victor Hugo. Each character represents a node and there is 

an edge between two characters if they co-occurred in at least one chapter of the book 

[10].  

(vi) US Airports Network (AN): This is a network of 332 airports in the US during 

1997. Each node is an airport and there is an edge between two nodes if there is a direct 

flight between the two corresponding airports [11].  

In Figure 7, we depict the six real-world networks using the Gephi [12] visualization 

and analysis tool. The layout algorithm used is the Fruchterman Reingold layout [13] 

algorithm. The color of the vertices (varied from white to black: grayscale) is a measure 

of the clustering coefficient of the vertices - the darker/blacker the color of a vertex, the 

larger is its clustering coefficient and vice-versa. The size of the vertices is a measure of 

the degree of the vertices - the bigger the size of a vertex, the larger is its degree and vice-

versa. For all the networks, except the US Football Network (FN), we observe that nodes 

of larger size (i.e., nodes having a larger degree) are pale (white or close to white) in 

color; whereas, the nodes of smaller size (i.e., nodes having a smaller degree) are 

relatively more darker (black) in color. This illustrates the inverse correlation between 

node degree and clustering coefficient typically observed in real-world networks. A key 

motivation for the work in this paper is to develop a random network model that can also 

display such an inverse correlation between node degree and clustering coefficient, unlike 

the well-known ER model (according to which the clustering coefficient is independent of 

node degree).  
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     US Football Network (FN)         US Politics Books Network (PN)              Karate Network (KN) 
 

          

 C. Elegans Neural Network (CN)        Les Misèrables Network (LN)    US Airports Network (AN) 

Figure 7: Visualization of the Real-World Networks (Degree vs. Clustering 
Coefficient) 

 

In order to model the real-world network as a random graph under the ER and THNP 

models, we estimate the probability of link (plink) between any two nodes in the 

theoretically modeled network to be <KRwG> / N-1, where <KRwG> and N are respectively 

the average degree of the vertices and the total number of nodes in the real-world 

network. Figure 8 presents a comparative look at plink and the analytics metrics with 

respect to the average degree of the six real-world networks. We observe plink and average 

correlation coefficient to decrease with increase in the average degree; whereas, the 

average path length and spectral radius ratio for node degree appear to be almost 

independent of the average node degree. 

 

3.4. Proximity Evaluation 

In this section, we evaluate the proximity (similarity) of the theoretically generated 

random graphs under the THNP and ER models with that of the corresponding real-world 

networks. We use the estimated probability for a link between any two nodes (estimated 

as discussed in Section 3.3) and the number of nodes for the real-world networks to 

generate the corresponding random networks under both the THNP and ER models. For 

each real-world network (number of nodes and estimated plink values as parameters), we 

generated 100 instances of the random networks (under each of the two models: THNP 

and ER) and averaged the values for the analytics metrics. For each real-world network 

and the corresponding two random networks, we evaluated the analytics metrics (degree, 

clustering coefficient, path length and spectral radius ratio for node degree) with respect 

to their average values and distribution, wherever applicable.  
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Degree                 Clustering Coefficient                 Path Length          Spectral Radius Ratio 

            Node Degree 

Figure 8: Visualization of the Proximity of the Real-World Networks and the 
Corresponding Random Networks Generated under the THNP Model (based 

on the Analytics Metrics) 
 

   

Degree                 Clustering Coefficient                 Path Length          Spectral Radius Ratio 
            Node Degree 

Figure 9. Visualization of the Proximity of the Real-World Networks and the 
Corresponding Random Networks Generated under the ER Model (based on 

the Analytics Metrics) 

Figures 8 and 9 show respectively the proximity of the average values of the analytics 

metrics for the random networks under the THNP and ER models in comparison with that 

obtained under the real-world networks. We observe the THNP model to generate random 

networks whose average clustering coefficient is very much aligned with that of the 

corresponding real-world networks (in four of the six cases); whereas, the average 

clustering coefficient of random networks generated under the ER model are nowhere 

near the values observed for the real-world networks. We also observe the THNP-model 

random networks to exhibit relatively larger values for the spectral radius ratio for node 

degree (compared to the ER model) and incur SPR values that are relatively closer to that 

obtained for real-world networks. The tradeoff is that the average path length of the 

THNP-model random networks is slightly larger than that obtained for the corresponding 

real-world networks and the ER-model random networks. The average node degree values 

for the THNP-model random networks are slightly smaller than the average node degree 

values for the corresponding real-world networks and the ER-model random networks. 

This is attributed to the preference for triangle closure using two-hop neighbors (as is 

observed in the example shown in Figure 4). Though triangle closure involving three 

nodes (say nodes u, v and w) could facilitate a path length of one hop involving any two 

of these three nodes, we observe that preference for triangle closure (rather than adding 

the link to arbitrarily connect any two nodes) only increases the chances of observing a 

larger path length between any two nodes in the network.  

Figure 10 illustrates a quantitative comparison of the relative proximity of the random 

networks generated under the THNP and ER models to the corresponding real-world 

network. The proximity values are computed using equation (1) with regards to the 

average values for the four analytics metrics: degree, clustering coefficient, path length 

and the spectral radius ratio for node degree. The ideal proximity value desired is 0; we 

observe the THNP model to incur a proximity value that is less than 0.5 for five of the six 

real-world networks analyzed and less than 0.25 for three of the six networks. On the 
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other hand, the ER model incurs a proximity value that is greater than 0.5 for all the six 

real-world networks analyzed.  

The proximity values for the random networks under the ER model are larger than the 

proximity values for the random networks under the THNP model by factors of 2-7 for 

five of the six real-world networks. We also observe the THNP model to be of very close 

proximity to the real-world networks that exhibit a moderate variation in node degree 

(i.e., for spectral radius ratio for node degree values of the real-world networks in the 

range of 1.1 to 1.5). These are the categories of real-world networks (like the Politics 

Books Network and the Karate Network) that are neither completely random nor 

completely scale-free, and the ER model or the Barabasi-Albert (BA) model [4] for scale-

free networks cannot effectively model them. This is where the proposed THNP model 

fits the bill. It could effectively model random networks that have a longer tail and/or a 

longer head (i.e., those networks that look like a combination of random networks and 

scale-free networks).  
 

 

Figure 10. Quantitative Evaluation of the Proximity of the Random Networks 
under the THNP and ER Models with that of the Corresponding Real-World 

Networks (based on the Analytics Metrics) 

 

4. Related Work 

In [14], the authors proposed a model to generate random graphs with degree 

distribution that follows power-law [4]. In [15], the authors propose a model for scale-free 

random graphs (the network size increases with the addition of one node at a time) in 

which each new vertex is added to m of the existing nodes with a probability proportional 

to the degree of the existing nodes plus a strictly positive constant (the latter is associated 

with introducing randomness in node selection). It was observed that the expected 

clustering coefficient of the scale-free random network generated with the above approach 

is asymptotically proportional to logn/n. The THNP model differs from the above model 

because the candidate list of nodes available for setting up a link for a node u are the two-

hop neighbors of u and a randomly chosen node v that is originally considered for the 

link. 

In [16], the authors propose a model for creating random intersection graph as follows: 

Let W be the set of all n vertices; let D1, D2, ..., Dn be randomly created subsets of the n 

vertices; two vertices u and v are considered to be linked in the graph if they are in at least 

s of the n subsets of vertices, where s ≥ 1 is a model parameter. It is observed in [17] that 

the random intersection graphs exhibit a linear inverse relationship between clustering 

coefficient and node degree (i.e., the clustering coefficient of a node is proportional to k
-1

 

where k is the node degree). In this paper, we observe that the clustering coefficient-

degree relationship need not be simply linear. The random intersection graph model is not 

sufficient to model the complex inverse relationship between clustering coefficient and 

node degree, as seen in several real-world networks.  
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5. Conclusions 

The high-level contributions of this paper is the proposal of a random network graph 

model that captures the inverse relationship between node degree and clustering 

coefficient as well as exhibits a relatively larger variation in node degree matching close 

to real-world networks whose degree distribution exhibits a random network-like Poisson 

curve with a long tail and/or long head. We accomplish the above by preferring triangle 

closure for link formation during the evolution of the random network; a node gives 

preference to attach to its two-hop neighbors (to facilitate triangle closure) rather than to 

an arbitrary node. Accordingly, we refer to the proposed model as Two-Hop 

Neighborhood Preference (THNP)-based random network model. The THNP model is 

very much suitable for modeling real-world social networks wherein associations (like 

Friendships in Facebook) are predominantly initiated based on the two-hop neighborhood 

information (like Friends of Friends as in Facebook). The THNP model can be run just 

with the knowledge of the number of vertices and number of edges in the real-world 

network graph. To the best of our knowledge, the proposed THNP model is the first such 

model for random networks wherein the clustering coefficient of the nodes decreases with 

increase in node degree (as in the case of real-world networks) and still exhibits a 

Poisson-style degree distribution. 
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