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Abstract 

We study the simplified control for a novel class of four-dimensional (4-D) fractional-

order chaos in this paper. Firstly, a novel class of 4-D fractional-order chaos is 

introduced, which can express many actual projects. Secondly, a new simplified 

controller based on sliding mode theory which needs only one single control input is 

designed for the control of the proposed class systems. Furthermore, the controller can 

stabilize the systems with uncertainty and external disturbance. Finally, numerical 

simulations including 4-D fractional-order hyperchaos, 4-D Lorenz-Stenflo chaos as a 

special case and three-dimensional (3-D) simplified fractional-order Lorenz chaos as 

another special case are employed to demonstrate the universality and effectiveness of the 

sliding mode. The proposed scheme can be easily generalized to similar fractional-order 

chaos. 
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1. Introduction 

With the emergence of integer calculus, fractional calculus also appeared. However, 

for a long time, fractional calculus has not attracted much attention because of the 

difficulty for solving mathematical equations. In recent years, as the fast development of 

computer processing, scholars paid more attention to the fractional calculus [1, 2]. And it 

was found that, fractional calculus is more universal in actual project. Especially for 

systems with memory and hereditary factors, fractional calculus could describe these 

systems better such as electromagnetism [3], memristor [4], finance system [5], power 

system [6]. 

Chaos has been widely studied for the great potential to secure communication and 

signal processing. Many new integer-order chaos have been put forward, for instance, 

Chen system [7], Lorenz-like chaos [8], a 4-D simplified Lorenz system [9], a new 

hyperchaotic system [10]. By introducing fractional calculus to chaotic systems, people 

have proposed a lot of fractional-order chaos, for example, fractional-order Chen chaos 

[11], the complex T chaos [12], a new chaos without equilibrium points [13], the unified 

system [14]. 

Chaotic vibration is harmful to many nonlinear actual projects. So how to eliminate 

and control chaos become attractive. There already are many results for control or 

synchronization of integer-order chaos [15-17]. However, as we all know, fractional-order 

chaos has different controllability region with chaos of integer-order. So people have paid 

much attention to fractional-order chaos control. For example, the controller design for a 

fractional-order Lipschitz system is investigated in [18]. In [19], a fuzzy control scheme is 

designed to stabilize a representative fractional-order financial chaotic system. In [20], a 

sliding mode strategy is presented for adaptive control of a novel fractional-order chaos. 

A new double-wing fractional-order chaos is proposed, then chaos control of the system is 

completed by a novel sliding mode in [21]. In [22], control of a stochastic fractional-order 
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chaos with random and uncertain parameters considered is investigated. In [23], 

synchronization of a class of integer-order and fractional-order chaos is finished. The 

dynamic behavior of fractional-order complex Lorenz chaos is analyzed and 

corresponding control scheme is designed in [24]. However, most of the existing research 

results are for specific systems which have poor general applicability. Designing of 

control scheme for general class of fractional-order chaos is quite few, and there is almost 

no literature about chaos control of a class of 4-D fractional-order chaos which is 

considered in our paper.  

As we all know, sliding mode is an effective and robust control strategy. People have 

applied it to control chaos because it can drive the state which is not on the sliding surface 

to the steady state in limited time [25, 26]. However, there are almost no relevant 

outcomes about sliding mode control for general class of 4-D fractional-order chaos. Can 

sliding mode be applied to the proposed general class of 4-D fractional-order chaos 

control? If the hypothesis is true, what are the specific mathematical derivation and 

application conditions? There are no relevant results. It is worthy of studying. Besides, the 

uncertainty and external disturbance often exist in actual projects. Therefore, it is 

necessary and meaningful to ensure the applicability of the designed controller for 

practical systems.  

Motivated by the above analysis, some advantages of our research are drawn. Firstly, a 

general class of 4-D fractional-order chaos is introduced, which is a general form for 

many practical systems. Furthermore, a new simplified sliding mode control scheme 

which needs only one single control input is designed for the stabilization of the proposed 

4-D fractional-order chaos even the system with external interference, which is of great 

convenience for the lowering of controller complexity. Finally, numerical simulations 

including a 4-D fractional-order system, a 4-D integer-order chaos as a special case and a 

3-D fractional-order chaos as another special case are presented to demonstrate the 

universality and effectiveness. 

The contents of our paper are given as: The general class of 4-D fractional-order chaos 

is given in Section 2. In Section 3, with Lyapunov stability theory and sliding mode 

method, a new simplified sliding mode control scheme for the proposed system is 

introduced. In Section 4, numerical simulations are implemented. Section 5 draw the 

conclusions. 

 

2.  System Description 

A novel class of 4-D fractional-order chaos is presented as: 
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Table 1. List of Fractional-Order Chaos Published 
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where i ( 1,2,3,4)q i   are the orders of the system, which satisfy i0 1q  ; The state 

variables are wzyx ,,, ; The smooth functions ( ), ( ), ( )f g h    and ( )p   are in
4R →R space 

respectively, and rcba ,,, are known constants which are non-negative. 
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Remark 2.1 Note that the proposed 4-D fractional-order nonlinear chaotic systems (1) 

can describe a lot of fractional-order nonlinear chaos which have been performed in the 

Numerical simulations of part 4 and listed in Table 1.  

 

3. Simplified Sliding Mode Controller Design 

Adding controller u(t) to the introduced fractional-order system (1). Then we can get 

the controlled system as follows: 
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Our aim is to achieve the chaos control of system (2), there are two steps for 

designing the sliding mode controller. Firstly, a switching surface should be formed 

to ensure the state trajectories can be controlled to the sliding motion. Then, the 

sliding mode S=0 should be completed, and the state trajectories which are not on 

the sliding surface can be controlled to the steady state. 

We select the sliding surface as: 

 1 11 11
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where 

 ( ) ( , , , ) ( , , , ) ( , , , )t y g x y z w z h x y z w w p x y z w rx        ,  (4) 

When the system is operating on the sliding mode, one can be got: 
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Differentiating (5), one gets 
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From (7), we can get the dynamics of the system on sliding mode: 
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From (2) and (8), we can get the equivalent sub-controller based on sliding mode 

theory: 
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To ensure the state trajectories which are not on the sliding surface can be 

controlled to the steady state, the discontinuous reaching control law is designed as: 

 ( ) ( )du t K sign s  ,     (10) 
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and K is the controller gain. 

Now, by combining the equivalent control law (9) and discontinuous reaching 

control law (10), the total controller could be presented as follows:  

eq d( ) ( ) ( )

( , , , ) ( , , , ) ( , , , ) ( , , , ) ( )
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Theorem 1 As to the general four-dimensional fractional-order nonlinear chaos (2), 

if the controller gain K < 0 is satisfied, the controller (12) can drive the state 

trajectories to the sliding mode S=0 in limited time. 

Proof  We construct the Lyapunov function as: 

 21

2
V S ,      (13) 

One has 
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According to Lyapunov stability theorem, the conditions (V>0, V <0) is satisfied 

and this completes the proof. Thus, the proposed class of fractional-order chaos (2) 

can be controlled to the sliding surface S=0 with the controller (12) in a limited 

time. 

Remark 3.1 For practical systems which can be modeled by the class system (2), 

when the uncertainty and disturbance is considered, system (2) can be presented as: 
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where ),,,( wzyxg  is the uncertainty which is bounded as 1( , , , )g x y z w d  , and 

)(t  is external disturbance which is bounded as 2( )t d  . When the controller gain 

1 2( )K d d   , the controller (12) can drive the state trajectories to the sliding mode S=0 

in limited time. 

Proof  We select (13) as the Lyapunov function, one gets 
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Therefore, with the input uncertainty and external disturbance considered, when 

the controller gain 
1 2( )K d d   , the controller (12) can make the system state to 

the sliding mode S=0 in limited time. 

Remark 3.2 If the fractional orders of the fractional-order system (2) are 1q = 2q = 3q  

= 4q = 1 , then the control of an integer-order system can be achieved by the 

controller (12). 
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4. Numerical Simulations 

To evaluate the effectiveness of the designed controller, we perform three 

representative examples in this section. The simulation results are modeled in 

MATLAB software using the fractional predictor-corrector algorithm [27]. 

 

  

 
Figure 1. State Time Domain of Fractional-Order Hyperchaos (17) 

       a ; b ; c ; d .x t y t z t w t     

Case 1: Non-commensurate 4-D fractional-order hyperchaos 

Fractional-order hyperchaotic Lorenz system is considered as [28]: 
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where the fractional orders are: 1 =0.99, 2 =0.98, 3 =0.97, 4 =0.98, r=1, [a, b, 

c]=[10, 8/3, 28]. Figure 1 shows the state time domain without controller which 

exhibits chaotic vibration. 

Considering (3) and (12), we can get the sliding surface ( )S t  and the 

corresponding ( )u t : 
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Figure 2. State Time Domain of Controlled Fractional-order hyperchaos (17) 

       a ; b ; c ; d .x t y t z t w t     

When the controller gain 0.1K   , Figure 2 present the simulation results with 

initial value [1, -2, 3, 1]. The state trajectories of system (17) under the controller 

(19) are presented in Figure 2. 

Now an uncertainty term ( ) 0.1sin( ) cos( ) sin(2 )g x y z       and an external 

disturbance ( ) 0.01sin( )t t   are considered, where 1( , , , ) 0.1g x y z w d    and 

2( 0.01t d  ） . Corresponding simulation results of the state responses under the 

designed controller (19) are shown in Figure 3, which show the effectiveness of the 

proposed scheme. 
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Figure 3. State Time Domain of Controlled Fractional-order Hyperchaos (17) 
with Uncertainty 

        a ; b ; c ; d .x t y t z t w t     

Case 2: 4-D integer-order chaos as a special case 

The 4-D Lorenz-Stenflo chaos is presented as [29]: 
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When a=1, b=0.7, c=1, d=26, system (20) is chaotic. Figure 4 shows the chaotic 

state of system (20) when the controller is not added. 

Considering (3) and (12), we can get the sliding surface ( )S t  and the 

corresponding controller:  
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Figure 4. State Trajectories of Lorenz–Stenflo System (20) 

       a ; b ; c ; d .x t y t z t w t     

We set the initial value x=1, y=-1, z=3, w=-2 and 0.1K   . The state responses of 

system (20) with the controller (22) are shown in Figure 5. The state can be 

stabilized in a limited time, which shows the applicability for special case of 

integer-order chaos. 

 

 

Figure 5. State Responses of Controlled Lorenz-Stenflo System (20) 

       a ; b ; c ; d .x t y t z t w t     

Case 3: 3-D fractional-order chaos as another special case 

We select fractional-order simplified Lorenz chaos given as [30]: 
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where 
1 2 3 0.995q q q    are the orders of the system, 1c  . Figure 6 shows the 

state time domain of system (23) which performs a chaotic behavior. 

 

Figure 6. State Time Domain of Fractional-order Simplified Lorenz Chaos 
(23) 

     a ; b ; c .x t y t z t    

Considering (3) and (12), the sliding surface ( )S t  and the corresponding 

controller ( )u t  could be given as: 

 1 11 1
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 ( ) ( ) (24 4c) 10 ( ) sign( )u t y t y t K S       ,   (25) 

The simulation results of system (23) under the controller (25) are illustrated in 

Figure 7, when the controller gain 0.01K   , and initial value [1, 1.2, 2.3]. It shows 

the validity for the special case of 3-D fractional-order chaos. 

 

Figure 7. State Time Domain of Controlled Fractional-order Simplified 
Lorenz Chaos (23) 

     a ; b ; c .x t y t z t    
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From the above simulations of case 1, case 2 and case 3, we can clear see when 

the controller was added, state responses of the system can be stabilized in limited 

time, which shows the effectiveness and robustness of the proposed method. 

 

5. Conclusions 

A new simplified sliding mode control method was designed for the control of a 

novel 4-D fractional-order chaos. Three typical examples were given and 

corresponding results were simulated to prove the effectiveness and generalization 

of the proposed scheme. Case 1 presents the control of non-commensurate 4-D 

fractional-order chaos. Case 2 shows the control of 4-D integer-order Lorenz-

Stenflo system, which shows the integer chaos can be regarded as a special case. 

Maybe it brought some new perspective to cognize the relationship between integer 

and fractional chaos. Case 3 shows that the control of 3-D fractional-order chaos 

can be implemented by this method, which shows the general applicability. In 

practical systems, with the uncertainty considered, the proposed control method is 

of great significance because of its good robustness and simple realization. The 

approach is easy to implement and also can be applied to other relevant systems. 

In the future, we will continue studying the advanced control scheme for 

fractional-order chaos. 
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