
International Journal of Grid Distribution Computing

Vol.8, No.2 (2015), pp.133-142

http://dx.doi.org/10.14257/ijgdc.2015.8.2.13

ISSN: 2005-4262 IJGDC

Copyright ⓒ 2015 SERSC

Research on Semantic Web Service Composition Based on Binary

Tree

Shengli Mao, Hui Zang and Bo Ni

Computer School, Hubei Polytechnic University, Huangshi, China

maoshengli123@163.com

Abstract

With the rapid development of cloud computing and service computing, Web services are

combined to form the composite service with a large granularity is an important research

direction at present. The current service composition methods have the problems of low

composition efficiency and accuracy, this paper proposes a semantic Web service

composition method based on the binary tree. This method uses the ontology semantic

reasoning relationship and binary tree theory to composite Web services. The composition

relations between Web service interfaces are mainly considered. The approach can enhance

the efficiency and accuracy of service composition, and the experiments are used to validate

and analyze the proposed methods.

Keywords: Web Service, Composition, Binary Tree, granularity

1. Introduction

In the modern era of service-oriented software engineering, the technologies about

Web services get more and more attention in the researcher work [1, 2]. Service

composition refers to assemble atomic services to form composite services with

complicate functions and large granularity according to service relations and user’s

requests. This can help to meet user’s requirements better [3].

There is some research work about service composition at present, and the research work

uses all kinds of methods and different mechanisms to realize service composition. In mainly

includes the following aspects: realizing service composition according to user’s specific

requests and the relationship between them. For example, some methods use the formal

methods to verify the service composition and validation; some methods realize service

composition from the non-functional level. These methods realize service composition from

different aspects and they can enhance service composition efficiency. But these methods

don’t consider the semantic relationship and the composition accuracy will be influenced. At

the same time, they don’t consider the semantics when do the matching calculation according

to user’s requests. This leads to users can’t find the needed composite services accurately. In

addition, the efficiency of these service composition methods is very low.

In order to solve above problems, this paper proposes a semantic Web service composition

method based on binary tree. This method uses ontology to annotate service interface firstly,

then it does the matching calculation from the semantic level to find the services that can be

composited. The binary tree is used to construct the composite services with large granularity,

and it can help enhance efficiency and accuracy of service composition. The operations (like

find, merge nodes) about binary tree can be used to find the atomic and a set of composite

services with correlation quickly to meet user’s personal requirements. This method can

enhance service discovery efficiency.

International Journal of Grid Distribution Computing

Vol.8, No.2 (2015)

134 Copyright ⓒ 2015 SERSC

In Section 2, we introduce the overall architecture of our proposed methods. How to

use binary tree theory to realize semantic Web service composition is given in section

3. In Section 4, we discuss the related research work of service composition. We use

experiment to analyze and validate the proposed method in Section 5. Finally, the

conclusion and the future research work are discussed.

2. Overall Architecture

This paper presents a Web service composition approach on the basis of binary tree,

and its architecture is shown in Figure 1. It mainly includes the following aspects:

ontology annotation, service composition, binary tree merge, request analysis, service

selection.

Ontology

ws1 ws2 ws3 wsn……

Web Services

annotation

Semantic Web

Services

ws1 ws2 ws3

ws4

ws5

ws6 ws7 ws8

ws9

ws10

ws1 ws2 ws3

ws4

ws5

ws6 ws7 ws8

ws9

ws10

ws12

ws11

User

merge

Request Analysis

Result

ws1 ws3 ws6

request

service composite

service selection

Figure 1. Semantic Web service Composition Based on Binary Tree

In the above figure, it uses concepts and semantic relations among concepts in

ontology to annotate the interface of Web services firstly, and this can lay the

foundation of matching calculation from the semantic level. Then it does matching

calculation between service input and output to determine the composition relationship

between services. Then it uses the basic binary tree theory to construct composite

service tree. The services which realize specific topic can form service binary tree with

small size, and these trees can be merged to form binary tree with large size. The

corresponding services can be composited to realize more functions and topics. Finally,

the user’s requests will be analyzed, and this method can discover the atomic service

and composite services with the correlations in the composite service binary tree. The

efficiency and accuracy of service composition and service discovery can be improved.

3. Semantic Web Service Composition based on Binary Tree

International Journal of Grid Distribution Computing

Vol.8, No.2 (2015)

Copyright ⓒ 2015 SERSC 135

3.1. Binary tree and ontology semantic

Binary Tree

Tree is a kind of important nonlinear data structure, and it is a data element (in the tree are

called nodes) according to the structure of the branch relations organization. Binary tree is an

ordered tree which has at most two subtrees of each node. The root of the subtree is called left

subtree and right subtree. Each node of the binary tree has only two subtrees at most, and it

means there is no node whose degree is more than 2. The subtree of binary tree has the

division of left and right, and the order can’t be reversed.

Ontology Semantic Reasoning

Ontology can be used to describe concepts and the semantic relations between concepts. It

includes concepts, properties, instances, concept relations, rules etc., and it can supply the

formal definition and axiom.

Definition 1. Ontology={Cset, Rset}

 Cset={ci, i∈1, 2...n}, ci is a concept in Cset of Ontology.

 Rset={<ci, rx, cj>, ci, ci∈ Cset, i, j∈ 1, 2...n, rx∈ {SubclassOf, SuperClassof,

Intersectionof}, x∈1, 2...m}, Rset is the concept relation set of Ontology.

OWL is an ontology description language which is used mostly; we can use commonly

ontology reasoners (such as OWL-API, Pellet, Hermit, Jena) to do semantic reasoning and get

results based on the specific rules. The semantic relations between concepts mainly include

Equivalent, SuperClassOf, SubClassOf, Intersection and Fail. They can represent the relations

of Exact, Plugin, Subsume, Intersect and Fail [4] between concepts.

Web Service

In the consideration of input and output of Web service, we use ontology concepts to

annotate the service interfaces. The definition is shown in the following Definition 2.

Definition 2. Web Service(ws)={Input, Output}

 Input={Ii, Ii∈Cset, i∈1, 2...ni}, Ii is an input element in Input of ws.

 Output={Oj, Oj∈Cset, j∈1, 2...nj}, Oj is a output element in Output of ws.

3.2. Web Service Composition Algorithm

On the basis of the above definition, the following Algorithm 1 gives the process of how to

realize semantic Web service composition using the binary theory.

Algorithm 1. Web service composition algorithm

Input: Ontology, WSset={wsi, i=1,2,….snum}

Output: Btreews

1: Btreews← , val←0, node←

2: foreach web service wsi∈WSset

3: Using Ontology in annotate the interface of wsi in WSset

4: node←new Node(wsi.Input, wsi.Output)

5: Btreews.add(node)

6: end foreach

7: foreach web service wsi∈WSset

8: foreach web service wsj∈WSset

9: if(wsi != wsj) then

10: val←matchIO(wsi.Output, wsj.Input)

International Journal of Grid Distribution Computing

Vol.8, No.2 (2015)

136 Copyright ⓒ 2015 SERSC

11: if(val>) then

12: node←new Node(wsi.Input, wsj.Output)

13: node.leftchild←ND(wsi)

14: node.rightchild←ND(wsj)

15: Btreews.add(node)

16: Get the realizing topic of service wsi and wsj to composite

17: end if

18: end foreach

19:end foreach

19:Similar to step 7~19, merge the new nodes in Btreews

20:return Btreews

The above algorithm gives the process of how to use the binary tree theory to realize

semantic web services composition. The initialization work is done through step 1. This

algorithm uses the ontology to annotate the service interfaces in WSset firstly. It will create a

tree node for each service and add it into Btreews, as seen in step 2-6. The interface (Input and

Output) of every two services (SerA, SerB) are done matching calculation. The services whose

matching value is more than the threshold will be constructed as a new tree node. Its left

subtree is SerA and its right subtree is SerB. The input of new composite service node is the

input of SerA and its output is the output of SerB. The corresponding topic will be determined,

as seen in step 7-19. Using the same method, we can get more binary trees and merge these

binary trees into a large binary tree which realizes more complicate and large topics. Finally,

return Btreews.

3.3. Web Service Selection Algorithm

Based on service composition, how to realize service selection according to user’s request

will be given in the following Algorithm 2. It can find the atomic and a set of services with

correlation between them to meet user’s personal requirements.

Algorithm 2. Web service selection algorithm

Input: RE, Btreews, WSset

Output: rws

1: rws← ,ws← , lenode← , rinode←

2: foreach web service wsi∈WSset

3: if((matchIO(RE.ReInput, wsi.Input)+matchIO(RE. ReOutput, wsi.Output))/2 >) then

4: rws←rws∪wsi

5: end if

6: end foreach

7: Find the binary tree to realize the RE

8: foreach node noi∈Btreews

9: ws←Change(Btreews.noi)

10: if((matchIO(RE.ReInput, ws.Input)+matchIO(RE. ReOutput, ws.Output))/2 >) then

11: lenode←noi.leftnode

12: rinode←noi.rightnode

13: find the subnode iteratively until the bottom node

13: rws←rws∪Change(Btreews.lenode)

14: rws←rws∪Change(Btreews.rinode)

15: end if

16:end foreach

17:return rws

International Journal of Grid Distribution Computing

Vol.8, No.2 (2015)

Copyright ⓒ 2015 SERSC 137

In the above algorithm, RE represents user’s request. It selects the atomic service which

can meet user’s request firstly. The matching calculation is done from the aspect of Input and

Output to select the services whose matching value is large than the threshold, as seen in step

2-6. When to find composite services, the binary tree which is interested for users will be

selected firstly, and this can narrow the service search scope, as seen in step 7. On the basis of

searching the nodes which can meet user’s request, it finds the left and right subtree nodes of

the node recursively till the nodes in the lowest layer. Then it adds services of these nodes

into rws. Finally, return rws.

4. Related Work

There are lots of research work about web service composition and service discovery.

The service discovery methods are often used on the basis of particular service

composition approach and users can find the composited services to meet their needs

efficiently according to specific requests. The service composition research work

mainly concentrates on the following two aspects: the first one refers to composite Web

services according to users’ requirement; the second one refers to find the composite

services quickly based on compositing different services. This paper mainly

concentrates on the second research work.

Lee, et al., propose a scalable and efficient web services composition method based on a

relational database [5], they develop a web services composition search system called PSR.

The PSR system stores the graph into tables and computes answers for semantic web services

composition search in advance by joining Tables. In [6], the authors present an approach

realizing larger granularity service composition for business users, which is based on

prefabricated and modifiable templates and constraint solving. The business users can

construct applications just like assembling hardware by composing larger granularity and

reusable modules. In [7], Wang, et al., have proposed a service composition method for

tradeoff between satisfactions of multiple requirements. Tradeoff strategies are proposed for

genetic algorithm and a service composition method is put forward for tradeoff between

satisfactions of multiple service requirements. The authors in [8] introduce a user-oriented

approach which aims to simplify service composition. The authors leverage the plentiful

information residing in service tags, both from service descriptions (such as WSDL) and the

annotations tagged by users.

Ding, et al., in [9] present a use-centric service composition method synthesizing multiple

views. The user’s requirements are transferred to operations on multiple views through

business data. And the corresponding service composition construction algorithm has been

proposed for immediate decision-making. In [10], Hwang, et al., propose a dynamic web

service selection approach for reliable web service composition, and the finite state machine

theory is used to realize service composition for users. Yang, et al., in [11] propose a QoS

pruning-based top-k automatic service composition method. A forward service filtering

algorithm is employed for reducing solution spaces and a greedy-based pruning algorithm is

designed for backward searching for Top-k QoS optimal solutions efficiently. Zhang, et al.,

have proposed a web services outsourcing manager framework via a mathematical model for

dynamic business processes configuration using existing web services to meet customers’

requirements [12]. They use a novel mechanism to map a service selection problem into a

solution space {0, 1} to utilize global optimization algorithms such as Genetic Algorithms

(GA).

The above research work uses the different approaches and mechanisms to composite

services, but some of these approaches don’t consider the semantic features of services.

This leads to low efficiency and accuracy of service composition. When to realize

International Journal of Grid Distribution Computing

Vol.8, No.2 (2015)

138 Copyright ⓒ 2015 SERSC

service composition, the efficiency and accuracy of some approaches are too low to

influence the performance. Based on semantic annotation of service interface using

ontology, we use the binary tree theory to organize services which have the composition

relations. The composite service with large granularity can be formed, and the

efficiency and accuracy of service composition and discovery can be enhanced.

5. Experiment

5.1. Experiment Environment

We ran our experiments on an AMD A6-4400M APU with Radeon(tm) HD Graphics

machine with 2 GB memory running Windows7 Professional. Our algorithms were

implemented using Java and MySQL. We mainly use the publicly available service

retrieval test collection OWLS-TC v4 (http://projects.semwebcentral.org/projec ts/owls-

tc/). This dataset includes more than 1000 services in the format of .wsdl and .owls.

And the corresponding user’s request and ontology are also included, and the concepts

in the all the ontologies can be used to annotate to services in the dataset.

5.2. Experiment Analysis

This paper proposes a kind of semantic Web service composition method based on

binary tree theory. This section designs some experiments to compare the time and

accuracy of service composition and discovery of the proposed method with other

approaches.

Experiment 1. Semantic annotation time

This experiment mainly compares the time of using ontology to annotate different numbers

of services semantically. In the condition of following different number of services: 100, 200,

300, 400, 500, 600, 700, 800, 900 and 1000, we annotate the interface (Input and Output) of

services and statistic the using time. The experiment result is shown in Table 1.

Table 1. Comparison of Semantic Annotation Time of Different Service
Numbers

service numbers 50 150 250 350 450 550 650 750 850 1000

Time(s) 13 30 51 74 89 108 134 174 194 213

Through Table I we can see the service interface annotation time is largely different in the

case of different service numbers. The using time of becoming large as the number of

services increases. In addition, we can see the interface annotation time of 10 services is

about 2s.

Experiment 2. Comparison of service composition time and numbers

On the basis of service annotation, this experiment compares and analyzes the service

composition time and number in the case of using binary tree theory to composite Web

services with different numbers. The experiment is done in the following service numbers:

100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000. The experiment result is shown in

Figure 2 and 3.

http://projects.semwebcentral.org/projec%20ts/owls-tc/
http://projects.semwebcentral.org/projec%20ts/owls-tc/

International Journal of Grid Distribution Computing

Vol.8, No.2 (2015)

Copyright ⓒ 2015 SERSC 139

Figure 2. Comparison of Web Service Composition Time

Figure 3. Comparison of Web Service Composition Numbers

Through the above Figure we can see the time of service composition is different in the

case of different service numbers. The service composition time is gradually increased as the

number of services increases. The time of compositing 100 services is about 3s. In addition,

the number of composite service shows the trend of rapid growth, and most of the services

can be combined.

Experiment 3. Comparison of service composition accuracy of different semantic relations

In the case of different service numbers: 100, 200, 300, 400, 500, 600, 700, 800, 900 and

1000, this experiment compares and analyses the service composition accuracy in the

condition of different semantic relations: EquivalentOf, SubClassOf, SuperClassOf and

Intersection. The experiment result is shown in Figure 4.

International Journal of Grid Distribution Computing

Vol.8, No.2 (2015)

140 Copyright ⓒ 2015 SERSC

Figure 4. Comparison of Web Service Composition Numbers of Different
Semantic Relations

Through Figure 4 we can see the number of composite service gets rapidly growth as the

service number increases and in different semantic relations. The number of composite

service is the most of all when the semantic relationships are Intersection between concepts.

The number is the least of all when the relationship is EquivalentOf, and SubClassOf,

SuperClassOf is followed. This is because it only considers the equivalent relationship and

the number of matching service will be reduced. When the relationship is Intersection, it

considers all the different semantic relations between concepts and the number of matching

services will be increased.

Experiment 4. Comparison of service discovery time and accuracy

It helps to find the composite services accurately and quickly after realizing semantic Web

services composition. Based on realizing service composition using binary tree theory, we

call the method which finds the atomic and composite services according to user’s request as

the BTComposition method. And the Random method means it does not use any composition

methods for service composition and discovery. When the number of services is 1000, we use

the above two methods to deal with the services and find the needed services. In the case of

different numbers of service requests: 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, we

compare and analyze the time and accuracy of service discovery. The result experiment is

shown in Figure 5 and 6.

Figure 5. Comparison of Service Finding Accuracy

International Journal of Grid Distribution Computing

Vol.8, No.2 (2015)

Copyright ⓒ 2015 SERSC 141

Figure 6. Comparison of Service Selection Time

Through the figure we can see the service finding discovery accuracy of

BTComposition method is less than Random method, and it is about 92%~96%. This is

related to the service composition accuracy of BTComposition method. In addition, the

service discovery efficiency of BTComposition method is largely than Random method

apparently. The using time of the former method is less than the latter; this is because

the services are combined through the BTComposition method. And users can quickly

locate the binary tree which realize the specific topic, thus the efficiency of finding

atomic service and composite service can be enhanced.

6. Conclusion

In service computing, the atomic services can’t meet user’s personal requirements

usually and it needs to find composite services according to specific request. In order to

solve the problem of low efficiency and accuracy of service composition and service

discovery, this paper uses the binary tree theory to composite semantic Web services on

the basis of annotating Web services on the internet. The composite services with large

granularity can be formed. It also discusses how to find the atomic services and set

services which can be composited accurately and efficiently according to user’s request.

Finally, it uses experiments to validate the proposed methods.

The future research work mainly includes the following aspects: composite and

discover the semantic Web services from the aspect of services process; Using

document topic generation model-LDA method to composite services in further based

on the binary tree service composition, and it helps to realize service composition and

discovery efficiently; Consider the service clustering and non-functional properties of

services to enhance service discovery efficiency in further.

Acknowledgements

This research project was supported by the Educational Commission of Hubei Province of China

under grant No. b2014034.

References

[1] M. P. Papazoglou, P. Traverso, S. Dustdar and F. Leymann, “Service-Oriented Computing: A Research

Roadmap”, International Journal of Cooperative Information Systems, vol. 17, no. 2, (2008), pp. 223-255.

International Journal of Grid Distribution Computing

Vol.8, No.2 (2015)

142 Copyright ⓒ 2015 SERSC

[2] K. Gottschalk, S. Graham, H. Kreger and J. Snell, “Introduction to Web services Architecture”, IBM

Systems Journal, vol. 41, (2002), pp. 170-177.

[3] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi and S. Weerawarana, “Unraveling the Web Services

Web: an Introduction to SOAP, WSDL, and UDDI, Internet Computing”, IEEE, vol. 6, (2002), pp. 86-93.

[4] M. Barhamgi, D. Benslimane and B. Medjahed, “A Query Rewriting Approach for Web Service

Composition”, IEEE Transactions on Services Computing, vol. 3, no. 3, (2010), pp.206-222.

[5] D. Lee, J. Kwon, S. J. Lee, S. Park and B. Hong, “Scalable and Efficient Web Services Composition Based

on a Relational Database”, Journal of Systems and Software, vol. 84, (2011), pp. 2139-2155.

[6] H. T. Hu, G. Li, Y and B. Han, “An Approach to Business-User-Oriented Larger-Granularity Service

Composition”, Chinese Journal of Computers, vol. 28, no. 4, (2005), pp. 694-703.

[7] X. Z. Wang, Z. J. Wang, X. F. Xu and Y. Liu, “A Service Composition Method for Tradeoff Between

Satisfactions of Multiple Requirements”, Journal of Computer Research and Development, vol. 48, no. 4,

(2011), pp. 627-637.

[8] X. Z. Liu, G. Huang and H. Mei, “A User-Oriented Approach to Automated Service Composition”, IEEE

International Conference on Web Services, (2008), pp. 773-776.

[9] W. L. Ding, Q. Wang and S. Zhao, “A User-Centric Service Composition Method Synthesizing Multiple

Views”, Chinese Journal of Computers, vol. 34, no. 1, (2011), pp. 131-142.

[10] S. Y. Hwang, E. P. Lim, C. H. Lee and C. H. Chen, “Dynamic Web Service Selection for Reliable Web

Service Composition”, IEEE Trans. on Services Computing, vol. 1, no. 2, (2008), pp. 104-116.

[11] R. T. Yang, S. Q. Zhang and W. C. Dou, “A QoS Pruning-Based Top-k Automatic Service Composition

Method”, ACTA electronica sinica, vol. 40, no. 7, (2012), pp. 1489-1491.

[12] L. J. Zhang and B. Li, “Requirements Driven Dynamic Services Composition for Web Services and Grid

Solutions”, Journal of Grid Computing, vol. 2, (2004), pp. 121-140.

Authors

Mao Shengli, he is a lecture in Computer School of Hubei

Polytechnic University. His current research interest is computer network.

Zang Hui, he is a lecture in Computer School of Hubei Polytechnic

University. His current research interest is data. mining.

Ni Bo, he is a PhD candidate in Computer School of Wuhan

University. He is a teacher in Computer School of Hubei Polytechnic

University. His current research interests include CSCW, CAD&CG,

QOS in high speed network.

