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Irreducible symplectic varieties from moduli spaces

of sheaves on K3 and Abelian surfaces

Arvid Perego and Antonio Rapagnetta

Abstract

We show that the moduli spaces of sheaves on a projective K3 surface are irreducible
symplectic varieties, and that the same holds for the fibers of the Albanese map of
moduli spaces of sheaves on an Abelian surface.

1. Introduction and main results

A holomorphic symplectic form on a complex manifoldX is an everywhere nondegenerate, closed,
holomorphic 2-form on X. A complex manifold admitting a holomorphic symplectic form is
called a holomorphic symplectic manifold. We let hp,0(X) be the dimension of the vector space
H0

(
X,Ωp

X

)
.

A connected compact Kähler manifold X is an irreducible symplectic manifold if it is holo-
morphic symplectic, simply connected and h2,0(X) = 1. In particular, an irreducible symplectic
manifold has even complex dimension and trivial canonical bundle.

By the Bogomolov decomposition theorem, irreducible symplectic manifolds are one of the
three types of manifolds which are building blocks for compact Kähler manifolds with numerically
trivial canonical bundle. There are very few known deformation classes of irreducible symplectic
manifolds, namely:

(1) a compact, connected smooth complex surface is an irreducible symplectic manifold if and
only if it is a K3 surface;

(2) if S is a K3 surface and n ∈ N with n ⩾ 2, the Hilbert scheme Hilbn(S) of n points
on S is an irreducible symplectic manifold of dimension 2n (see [Bea83, Théorème 3 and
Proposition 6]);

(3) if T is a 2-dimensional complex torus and n ∈ N with n ⩾ 2, the generalized Kummer variety
Kumn(T ) is an irreducible symplectic manifold of dimension 2n (see [Bea83, Théorème 4
and Proposition 8]);

(4) there are two more known deformation classes: OG6, in dimension 6, and OG10, in dimen-
sion 10 (see [O’G99, O’G03]).

A possible way to obtain new examples of varieties behaving like irreducible symplectic man-
ifolds is to enlarge the family of varieties we are considering by including singular varieties. This
is a very natural step, in particular in view of the minimal model program (MMP).
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ISV from moduli spaces of sheaves

Indeed, if X is a connected complex projective manifold with κ(X) = 0, if the MMP works
for X, then it produces a birational map X 99K Y , where Y has terminal singularities and nef
canonical divisor. Assuming the abundance conjecture, we get that a multiple of KY is trivial.
So, for the classification of projective varieties whose Kodaira dimension is 0, it is central to
extend the Bogomolov decomposition to normal projective varieties having terminal singularities
and torsion (that is, numerically trivial by [Kaw85, Theorem 8.2]) canonical divisor.

A singular version of the Bogomolov decomposition theorem has recently been obtained. For
singular projective varieties with Kawamata log terminal (klt) singularities, this is [HP19, Theo-
rem 1.5] (whose proof is the combination of several results contained in [GGK19, Dru18, GKP16,
DG18]), extended to compact Kähler spaces with log terminal singularities and numerically triv-
ial canonical bundle by [BGL22, Theorem A].

The role played by irreducible symplectic manifolds in the Bogomolov decomposition theorem
is played in these generalizations by irreducible symplectic varieties, whose definition was first
given in [GKP16]. We will present the definition of an irreducible symplectic variety only in the
projective setting since this is the one we will need in the present paper (for a more general
definition, see [BGL22]).

We need the following notation: ifX is a normal algebraic variety andXreg is the smooth locus
of X whose open embedding in X is j : Xreg → X, for every p ∈ N such that 0 ⩽ p ⩽ dim(X),
we let

Ω
[p]
X := j∗Ω

p
Xreg

=
(
∧pΩX

)∗∗
,

whose global sections are called reflexive p-forms on X. A reflexive p-form on X is then a holo-
morphic p-form on Xreg.

If f : Y → X is a finite, dominant morphism between irreducible normal algebraic varieties,

there is a morphism of reflexive sheaves f∗Ω
[p]
X → Ω

[p]
Y , induced by the usual pull-back morphism

of forms on the smooth loci, giving a morphism f [∗] : H0
(
X,Ω

[p]
X

)
→ H0

(
Y,Ω

[p]
Y

)
, called the

reflexive pull-back morphism.

We first recall the definitions of a symplectic form and a symplectic variety (see [Bea00]).

Definition 1.1. Let X be a normal algebraic variety.

(1) A symplectic form on X is a closed reflexive 2-form σ on X which is nondegenerate at each
point of Xreg.

(2) If σ is a symplectic form on X, the pair (X,σ) is a symplectic variety if for every resolution
f : X̃ → X of the singularities of X, the holomorphic symplectic form σreg := σ|Xreg

extends

to a holomorphic 2-form on X̃.

(3) If (X,σ) is a symplectic variety and f : X̃ → X is a resolution of the singularities over which
σreg extends to a holomorphic symplectic form, we say that f is a symplectic resolution.

We now define irreducible symplectic varieties following [GKP16]. Recall that if X and Y are
two irreducible normal projective varieties, a finite quasi-étale morphism f : Y → X is a finite
morphism which is étale in codimension 1.

Definition 1.2. An irreducible symplectic variety is a normal projective varietyX with canonical

singularities that has a symplectic form σ ∈ H0
(
X,Ω

[2]
X

)
such that for every finite quasi-étale

morphism f : Y → X, the exterior algebra of reflexive forms on Y is spanned by f [∗]σ.
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Remark 1.3. If X is a normal projective variety, by the definition of Ω
[p]
X , we have H0

(
X,Ω

[p]
X

)
=

H0
(
Xreg,Ω

p
Xreg

)
. Theorem 1.4 of [GKKP11] implies that if X is quasi-projective with klt sin-

gularities and π : X̃ → X is a log-resolution, then for every p ∈ N such that 0 ⩽ p ⩽ dim(X),
the sheaf π∗Ω

p

X̃
is reflexive. This implies in particular (see [GKKP11, Observation 1.3]) that

H0
(
X,Ω

[p]
X

)
≃ H0

(
X̃,Ωp

X̃

)
.

The definition of irreducible symplectic variety is motivated by the description of the algebra
of holomorphic forms of an irreducible symplectic manifold, which is spanned by a holomorphic
symplectic form (see [Bea83, Proposition 3]).

By [GGK19, Corollary 13.3], an irreducible symplectic variety X is simply connected, so the
Z-module H2(X,Z) is free. Moreover, the fact that irreducible symplectic varieties are simply
connected together with the Bogomolov decomposition theorem imply that smooth irreducible
symplectic varieties are irreducible symplectic manifolds.

Remark 1.4. A symplectic resolution Y of an irreducible symplectic variety X is an irreducible
symplectic manifold. Indeed, X is klt and simply connected, so Y is simply connected as well

(see [Tak03]), and by [GKKP11, Theorem 1.4], we have h0
(
Y,Ω2

Y

)
= h0

(
X,Ω

[2]
X

)
= 1 since X is

irreducible symplectic. Anyway, there are symplectic varieties having an irreducible symplectic
manifold as a symplectic resolution but which are not irreducible symplectic varieties, as in the
following.

Example 1.5. If X is a K3 surface and m ⩾ 2, then Y = Symm(X) has Hilbm(X) as symplectic
resolution, but it is not an irreducible symplectic variety since Xm is a finite quasi-étale cover
of Y .

Examples of irreducible symplectic varieties in dimension 4 are known (see [Per20] for an
overview). Among them, we cite the partial resolution of the quotient of Hilb2(S) for S a K3
surface (respectively, Kum2(T ) for T an Abelian surface) by the action of a symplectic involution
[Men15, KM18], and the quotients of Hilb2(S) by the action of a symplectic automorphism of
order 3, 5, 7 or 11 (see [Men18, Men22]).

The aim of this work is to provide a wide family of examples of irreducible symplectic varieties
in higher dimension.

1.1 Notation and main results of the paper

The aim of the present paper is to provide families of irreducible symplectic varieties using moduli
spaces of sheaves on K3 or Abelian surfaces.

In the following, S will be a projective K3 surface or an Abelian surface, and we let H̃(S,Z) :=
H2∗(S,Z). An element v ∈ H̃(S,Z) will be written v = (v0, v1, v2), where vi ∈ H2i(S,Z) and
v0, v2 ∈ Z. It will be called Mukai vector if v0 ⩾ 0, v1 ∈ NS(S) and if when v0 = 0, either v1 is
the first Chern class of an effective divisor, or v1 = 0 and v2 > 0. Moreover, we let ρ(S) be the
rank of the Néron–Severi group of S.

Recall that H̃(S,Z) has a pure weight 2 Hodge structure and a compatible lattice structure
given by the Mukai pairing (·, ·) (see [HL97, Definitions 6.1.5 and 6.1.11]). We let v2 := (v, v) for
every Mukai vector v, and we call H̃(S,Z) the Mukai lattice of S.

If F is a coherent sheaf on S, we define its Mukai vector as

v(F ) := ch(F )
√

td(S) = (rk(F ), c1(F ), ch2(F ) + ϵ(S)rk(F )) ,

where ϵ(S) := 1 if S is K3 and ϵ(S) := 0 if S is Abelian.
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Now let v be a Mukai vector on S, and suppose that H is a polarization which is general with
respect to v (see Definition 2.8). We write Mv(S,H) (respectively, M s

v (S,H)) for the moduli
space of Gieseker H-semistable (respectively, H-stable) sheaves on S with Mukai vector v.

If S is Abelian and v2 > 0, we have a dominant isotrivial fibration av : Mv(S,H) → S× Ŝ (see
[Yos01, Section 4.1]), where Ŝ is the dual of S. We let Kv(S,H) := a−1

v (0S ,OS) and Ks
v(S,H) :=

Kv(S,H) ∩M s
v (S,H). The morphism av is known to be the Albanese morphism of Mv(S,H) if

v is primitive (see [Yos01, Theorem 0.1]); we will show that this holds in all the cases we will
consider (see Corollary 3.7).

If no confusion on S and H is possible, we drop them from the notation. Moreover, we will
always write v = mw, where m ∈ N and w is a primitive Mukai vector on S.

If M s
v ̸= ∅, then it is a holomorphic symplectic quasi-projective manifold of dimension v2 +2

(see [Muk84]).

If m = 1 and S is K3, then M s
v ̸= ∅ if and only if v2 ⩾ −2 (see [Yos99a, Theorem 0.1]).

If S is Abelian, then M s
v ̸= ∅ if and only if v2 ⩾ 0 (see [Yos01, Theorem 0.1], and compare with

[KLS06, Section 2.4]). If w2 > 0, then Mv and Kv are normal, irreducible projective varieties
(see [KLS06, Theorem 4.4] and [PR14, Remark A.1]).

If v2 ⩽ 0, we have a precise description of Mv and Kv:

(1) If v2 < 0 and S is K3, then Mv is either empty or a point (see [Muk87]). If S is Abelian,
then Mv = ∅ (see [Yos01]).

(2) If v2 = 0 and S is K3, then Mv is either a K3 surface (if m = 1, see [Muk87]) or a symmetric
product of a K3 surface (see [KLS06, Section 1]), in which case Mv is not irreducible
symplectic (see Example 1.5).

(3) If v2 = 0 and S is Abelian, then Mv is either an Abelian surface A (if m = 1, see [Muk87])
or a symmetric product of an Abelian surface A (see [KLS06, Section 1]). Then Mv is not
simply connected, and the fiber of the sum morphism Mv → A is either a point (if m = 1)
or a symplectic variety which is not irreducible symplectic (the proof of this is similar to
Example 1.5).

Because of this, we will only be interested in Mukai vectors v such that v2 > 0. We will need
the following.

Definition 1.6. Let m, k ∈ N with m, k > 0. A Mukai vector v on S will be said of type (m, k)
if v = mw for a primitive Mukai vector w ∈ H̃(S,Z) such that w2 = 2k.

If S a projective K3 surface or an Abelian surface, v is a Mukai vector of type (m, k) on S
and H is a polarization on S that is general with respect to v, then Mv is a nonempty, irreducible,
normal projective variety of dimension 2m2k+2 (see [KLS06, Theorem 4.4]), which is symplectic
and whose smooth locus is M s

v . If S is Abelian and (m, k) ̸= (1, 1), then Kv is a nonempty,
irreducible, normal projective variety of dimension 2m2k − 2, which is symplectic and whose
regular locus is Ks

v . If (m, k) = (1, 1), then Mv is isomorphic to S × Ŝ and Kv is a point.

The first result we will prove is the following.

Theorem 1.7. Let m, k ∈ N with m, k > 0, and for i = 1, 2, let Si be a projective K3 or Abelian
surface, vi a Mukai vector on Si of type (m, k) and Hi a polarization on Si which is general with
respect to vi.

(1) If S1 and S2 are both K3 surfaces or both Abelian surfaces, then Mv1(S1, H1) and
Mv2(S2, H2) are deformation equivalent, and the deformation is locally trivial.
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(2) If S1 and S2 are two Abelian surfaces, then Kv1(S1, H1) and Kv2(S2, H2) are deformation
equivalent, and the deformation is locally trivial.

Remark 1.8. In Theorem 1.7, and all along the paper, we will say that a morphism f : X → T of
complex varieties is a locally trivial deformation of a complex variety X if T is connected and f
is a proper flat morphism verifying the following two conditions (see [FK87]):

(1) There is a point t0 ∈ T such that X = f−1(t0).

(2) For every x ∈ X , the deformation germ (X , x) → (T, f(x)) is isomorphic to the trivial
deformation

(
f−1(f(x)), x

)
× (T, f(x)) of the germ

(
f−1(f(x)), x

)
.

Remark 1.9. The deformation relating Mv1(S1, H1) and Mv2(S2, H2) in Theorem 1.7 is ob-
tained using only deformations of the moduli spaces induced by deformations of the base sur-
faces Si together with the Mukai vectors and the polarizations (see Section 2.3 for the definition)
and isomorphisms between moduli spaces induced by Fourier–Mukai transforms. In particular,
Mv1(S1, H1) and Mv2(S2, H2) are locally trivially deformation equivalent in the algebraic cate-
gory.

As a consequence of Theorem 1.7, starting from K3 surfaces (respectively, Abelian surfaces),
we get a single locally trivial deformation class for every pair (m, k) of strictly positive integers.

The proof of Theorem 1.7 is the content of Section 2 of the present paper. For m = 1, it is due
to several authors (see [Muk84, Bea83, O’G97, Yos99a, Yos01]). For (m, k) = (2, 1), the proof
of Theorem 1.7 is in [PR13]. The deformation equivalence in Theorem 1.7(1) is basically due to
Yoshioka: for Mukai vectors with positive rank, it is [Yos03, Proposition 3.6]; the rank 0 case
is not explicitly stated but can be obtained as in [Yos09, Corollary 3.5]. As it is an important
result which plays a central role in our paper, we decided to include a complete proof. The local
triviality of the deformation follows from [Nam06, Main Theorem].

Yoshioka’s original proof of the deformation equivalence involves two main technical tools:
deformations of K3 or Abelian surfaces inducing deformations of the moduli spaces, and Fourier–
Mukai transforms. As a by-product of it, one gets the nonemptyness and normality of the moduli
spaces. Based on his proof of the deformation equivalence of the moduli spaces, and using a differ-
ent argument to deal with particular cases, Yoshioka also proves their irreducibility (see [Yos03,
Theorem 3.18]).

The proof of Theorem 1.7(1) we propose is a re-elaborated version of Yoshioka’s proof that we
tried to keep as elementary as possible. It uses the same tools together with [KLS06, Theorem 4.4],
which proves the irreducibility and the normality of the moduli spaces independently of [Yos03]
and [Yos09] (and which implies the irreducibility and the normality of the Kv, as shown in [PR14,
Remark A.1]).

We observe that the proof of [KLS06, Theorem 4.4] uses the fact that if v is primitive and
v2 ⩾ 0, then Mv ̸= ∅, which was proved by Yoshioka in [Yos99a] and [Yos01], independently of
[Yos03] and [Yos09] (compare with [KLS06, Section 2.4]).

The use of [KLS06, Theorem 4.4] allows us to minimize the technicalities involved in the proof
of the deformation equivalence of moduli spaces. The only Fourier–Mukai transforms we will use
are those corresponding to tensorization with line bundles: the one whose kernel is the ideal of
the diagonal (for K3 surfaces), and the one whose kernel is the Poincaré bundle (for Abelian
surfaces). We only need to check the preservation of the semistability under these functors in the
most natural direction (see Section 2.4).

The aim of Section 3 is to show the following, which is the main result of this paper.
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Theorem 1.10. Let m, k ∈ N with m, k > 0, and let S be a projective K3 or Abelian surface, v
a Mukai vector on S of type (m, k) and H a polarization on S which is general with respect to v.

(1) If S is K3, then Mv(S,H) is an irreducible symplectic variety.

(2) If S is Abelian and (m, k) ̸= (1, 1), then Kv(S,H) is an irreducible symplectic variety.

Theorem 1.10 provides an answer to [GGK19, Question 14.10]: it implies that, for general
polarizations, all moduli spaces of sheaves on a projective K3 surface (and all the fibers of the
Albanese morphism of moduli spaces of sheaves on Abelian surfaces) are irreducible symplectic
varieties, with the only exception of symmetric products.

The examples of irreducible symplectic varieties given in Theorem 1.10 naturally fall into
three main cases:

(1) If S is K3, then Mv is smooth if and only if m = 1 (and Mv is deformation equivalent to
Hilbk+1(S)). If S is Abelian, then Kv is smooth if and only if m = 1 (it is a point if k = 1,
a K3 surface if k = 2 and deformation equivalent to Kumk−1(S) if k ⩾ 3).

(2) If S is K3, then Mv has a symplectic resolution if and only if (m, k) = (2, 1) (which is in the
deformation class OG10). If S is Abelian, then Kv has a symplectic resolution if and only if
(m, k) = (2, 1) (which is in the deformation class OG6).

(3) In all other cases, Mv and Kv have terminal singularities and no symplectic resolutions.
Indeed, both Mv and Kv are normal, irreducible projective varieties having a symplectic
form on their smooth loci, and their singular loci have codimension at least equal to 4 (see
for example [KLS06]). The main result of [Fle88] implies that they are symplectic varieties,
and by [Nam01, Corollary 1], they have terminal singularities. As shown in [KLS06], the
moduli spaces Mv and Kv are locally factorial and do not admit any symplectic resolution.

The proof of Theorem 1.10 uses Theorem 1.7 to reduce to a surface S such that NS(S) = Z ·h,
where h is the first Chern class of an ample divisor H with H2 = 2k. Taking v = m(0, h, 0), if S
is a K3 surface, we show that Mv and M s

v are simply connected; if S is Abelian, we show that Kv

and Ks
v are simply connected (if (m, k) ̸= (2, 1)). We then calculate the numbers h0

(
Mv,Ω

[p]
Mv

)
and h0

(
Kv,Ω

[p]
Kv

)
by comparing them with h0

(
Mv′ ,Ω

p
Mv′

)
and h0

(
Kv′ ,Ω

p
Kv′

)
, where v′ is the

primitive Mukai vector v′ =
(
0,mh, 1−m2k

)
.

Remark 1.11. The irreducible symplectic varieties we get with Theorem 1.10 all have simply
connected smooth locus, up to one exception, namely when S is an Abelian surface and (m, k) =
(2, 1); in this case, the fundamental group ofKs

v is Z/2Z (see [MRS18, Section 4] or Theorem 3.6).
In any case, all the irreducible symplectic varieties we obtain have smooth locus with finite
fundamental group.

Remark 1.12. A natural open question concerns the computation of the fundamental invariants,
that is, the Beauville–Bogomolov form and the Fujiki constant for Mv and Kv in the case where
they do not admit a symplectic resolution. We treat this problem in [PR20].

2. Deformations of moduli spaces

In this section, we study how moduli spaces vary under deformations and isomorphisms. In
Section 2.1, we recall the notion of polarization which is general with respect to a Mukai vector v
and some notions related to that: v-generic polarizations, v-walls and v-chambers. Section 2.2
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is devoted to the morphism av in the case of Abelian surfaces. In Section 2.3, we introduce
deformations of moduli spaces induced by deformations of the datum of a surface S, a Mukai
vector v on S and a polarization H along smooth, connected varieties. In Section 2.4, we study
isomorphisms between moduli spaces coming from Fourier–Mukai transforms.

Section 2.5 is devoted to the proof of Theorem 1.7, which is the main result of Section 2.
Our proof of Theorem 1.7 is heavily based on [KLS06, Theorem 4.4], which asserts that if v is
a Mukai vector on a projective K3 or Abelian surface S and H is a v-generic polarization, then
Mv(S,H) is a normal, irreducible projective variety of the expected dimension. Theorem 4.4
of [KLS06] is based on the nonemptyness of moduli spaces of sheaves for generic polarizations
and primitive Mukai vectors of positive square [Yos01, Theorems 0.1 and 8.1] (compare with
[KLS06, Section 2.4]).

These assumptions could be avoided (following Yoshioka) using [Muk84, Theorem 1.17] and
stronger versions of Propositions 2.29 and 2.33.

2.1 General and generic polarizations

We recall the definition of a v-generic polarization introduced in [HL97] and [Yos01], that we
will use all along the paper, and the notion of a polarization which is general with respect to v,
introduced in [Yos09].

2.1.1 Generic polarizations. In what follows, S will always denote a projective K3 or Abelian
surface and v = (v0, v1, v2) a Mukai vector on S. We will furthermore suppose that when ρ(S) > 1,
if v0 = 0, then v2 ̸= 0 (the case v = (0, v1, 0) will be briefly discussed at the beginning of
Section 2.1.2; see Example 2.7).

We associate with each Mukai vector v of this form a set Wv of divisors on S, whose definition
depends on v0: the case v0 > 0 will be different from the case v0 = 0.

If v0 > 0, we let

|v| = 1
4v

2
0(v, v) +

1
2v

2ϵ(S)+2
0 ,

where we recall that ϵ(S) = 1 if S is K3 and ϵ(S) = 0 if S is Abelian. The rational number |v|
only depends on v0 and v2. If |v| > 0, we define

Wv :=
{
D ∈ NS(S) | −|v| ⩽ D2 < 0

}
,

and we let Wv := ∅ if |v| = 0. We notice that if m, k ∈ N with m, k > 0 and v is a Mukai vector
of type (m, k), then |v| > 0.

If v0 = 0, for every pure sheaf E with Mukai vector v and 0 ̸= F ⊆ E with Mukai vector
u = (0, u1, u2), the divisor associated with the pair (E,F ) is defined as D := u2v1 − v2u1. The
set Wv will then be the set of the nonnumerically trivial divisors associated with all the possible
pairs of this type.

A primitive ample divisor H on S will be called a polarization.1 The set Wv is used to define
the notion of a v-generic polarization as follows.

Definition 2.1. A polarization H is v-generic if H ·D ̸= 0 for every D ∈ Wv.

If ρ(S) = 1, then the ample generator of the Picard group of S is v-generic for every v.

1By a slight abuse of notation, the line bundle OS(H) will usually be denoted by H and will still be called a
polarization.
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If ρ(S) ⩾ 2, there can be polarizations which are not v-generic, and to characterize them we
introduce v-walls and v-chambers. We let Amp(S) be the ample cone of S.

Definition 2.2. If D ∈ Wv, the v-wall associated with D is

D⊥ := {α ∈ Amp(S) |D · α = 0} .

The v-wall associated with D ∈ Wv is a hyperplane in Amp(S). If v0 > 0, then by [HL97,
Theorem 4.C.2], the set of v-walls is locally finite in Amp(S). If v0 = 0, it is even finite (see
[Yos01, Section 1.4]).

Definition 2.3. Suppose ρ(S) ⩾ 2. A connected component of Amp(S) \
⋃

D∈Wv
D⊥ is called a

v-chamber.

By definition, a polarization is v-generic if and only if it lies in a v-chamber. Since the family
of v-walls is locally finite in Amp(S), it follows that a v-generic polarization exists for every
Mukai vector v verifying the conditions above.

Remark 2.4. If H is v-generic and E is a H-semistable sheaf with Mukai vector v, then any
H-destabilizing subsheaf of E has Mukai vector of the form pv for some p ∈ Q. In particular,
if v is primitive and H is v-generic, any H-semistable sheaf with Mukai vector v is H-stable
(compare with [KLS06, Section 2.4]).

An important property of generic polarizations is that changing polarization inside a v-
chamber does not affect the moduli space. More precisely, we have the following (see [Qin93] or
[HL97, Section 4.C]).

Proposition 2.5. Suppose ρ(S) ⩾ 2 and that v is a Mukai vector on S. Let C be a v-chamber,
and suppose H,H ′ ∈ C. A sheaf with Mukai vector v is H-(semi)stable if and only if it is
H ′-(semi)stable. As a consequence, we have natural identifications Mv(S,H) = Mv(S,H

′) and
M s

v (S,H) = M s
v (S,H

′).

We conclude this section with the behaviour of v-genericity with respect to the tensorization
with a line bundle. If v is a Mukai vector on S and L ∈ Pic(S), we let vL := v · ch(L). If
L = OS(D) for some divisor D, then we let vD := vL. Notice that if E is a sheaf such that
v(E) = v, then v(E ⊗ L) = vL.

Lemma 2.6. Let v be a Mukai vector and H a polarization on S.

(1) If v = (r, ξ, a) with r > 0 and L ∈ Pic(S), we have that H is v-generic if and only if it is
vL-generic.

(2) If v = (0, ξ, a), where a ̸= 0 and d ∈ Z is such that d ̸= −a/ξ ·H, we have that H is
v-generic if and only if it is vdH -generic.

Proof. If v = (r, ξ, a) with r > 0, notice that vL =
(
r, ξ + rc1(L), a+ ξ ·L+ rL2/2

)
. Then v and

vL have the same rank, and, as is easily seen, v2 = v2L. Hence |v| = |vL|, so Wv = WvL , and we
are done.

If v = (0, ξ, a), notice that vdH = (0, ξ, a + dξ · H). There is a bijection between Wv ∪ {0}
and WvdH ∪ {0} mapping the divisor associated with a pair (E,F ) to the one associated with
(E ⊗ OS(dH), F ⊗ OS(dH)). Indeed, if D ∈ Wv is associated with (E,F ) and v(F ) = (0, ζ, b),
we get D = bξ − aζ. The divisor associated with (E ⊗OS(dH), F ⊗OS(dH)) is

D′ = D + d(ξ ·H)ζ − d(ζ ·H)ξ ,
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and the bijection maps D to D′ (and conversely). Notice that D ·H = D′ ·H; hence H is v-generic
if and only if it is vdH -generic.

2.1.2 General polarizations. The definition of a v-generic polarization makes perfect sense
even for Mukai vectors of type v = (0, v1, 0), but it is not well adapted to our goals. Indeed, if
v = (0, v1, 0), by defining Wv as before, we see that D ∈ Wv is of the form D = bv1 for some
b ̸= 0. As v1 is the first Chern class of an effective divisor, we get H ·D ̸= 0 for all D ∈ Wv, and
hence every polarization would be v-generic.

Now, the definition of v-genericity is motivated by the fact that if v is a primitive Mukai
vector and H is v-generic, then a H-semistable sheaf with Mukai vector v is H-stable; this holds
if v = (0, v1, v2), where v2 ̸= 0, or if v = (0, v1, 0) and ρ(S) = 1 (as a consequence of Remark 2.4),
but it is no longer true if v = (0, v1, 0) and ρ(S) ⩾ 2, as the following example shows (see [Yos01,
Lemma 1.2]).

Example 2.7. Let S be a K3 surface with NS(S) = Z ·c′⊕Z ·c′′, where c′ and c′′ are the classes of
two irreducible effective curves C ′ and C ′′; for example, S is a generic quartic surface containing
a line. We let j′ and j′′ be the inclusions of C ′ and C ′′, respectively, into S. Denote by v the
primitive Mukai vector (0, c′+c′′, 0), and let M ′ and M ′′ be line bundles on C ′ and C ′′ with Euler
characteristic 0. The sheaves j′∗M

′ and j′′∗M
′′ are H-stable with respect to any polarization H,

and we have v(j′∗M
′) = (0, c′, 0) and v(j′′∗M

′′) = (0, c′′, 0). The sheaf j′∗M
′ ⊕ j′′∗M

′′ is then H-
semistable with Mukai vector v = (0, c′ + c′′, 0), but it is not H-stable since j′∗M

′ and j′′∗M
′′ are

both H-destabilizing.

The definition of a v-generic polarization we have given in the previous section is then not
well adapted to Mukai vectors of the form (0, v1, 0). Because of this, we introduce a different
definition of genericity for polarizations than can be found in [Yos09] (see Definition 1.4 therein
for Mukai vectors (v0, v1, v2) with v0 > 0, and Definition 3.1 if v0 = 0) and that is more suitable
for Mukai vectors of the form (0, v1, 0).

Definition 2.8. Let S be a projective K3 surface or an Abelian surface and v = (v0, v1, v2)
a Mukai vector on S. A polarization H will be called general with respect to v in the following
cases:

(1) Case 1: when v0 > 0. In this case, H is general with respect to v if for every µH -semistable
sheaf E such that v(E) = v and every 0 ̸= F ⊆ E, we have that if µH(E) = µH(F ), then
c1(F )/rk(F ) = c1(E)/rk(E).

(2) Case 2: when v0 = 0. In this case, H is general with respect to v if for every H-semistable
sheaf E such that v(E) = v and every 0 ̸= F ⊆ E, if χ(E)/(c1(E) ·H) = χ(F )/(c1(F ) ·H),
then v(F ) ∈ Qv.

We first prove that this notion is more general than that of v-genericity if v is not of the form
(0, v1, 0).

Lemma 2.9. Let S be a projective K3 surface or an Abelian surface and v a Mukai vector on S
such that if ρ(S) ⩾ 2 and v = (0, v1, v2), then v2 ̸= 0.

(1) If ρ(S) = 1, the ample generator of Pic(S) is both v-generic and general with respect to v.

(2) If ρ(S) ⩾ 2, if a polarization is v-generic, then it is general with respect to v.
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Proof. This is immediate if ρ(S) = 1, so we suppose ρ(S) ⩾ 2. If v = (v0, v1, v2) and v0 > 0,
this is a consequence of [HL97, Theorem 4.C.3]. So we suppose v0 = 0, and hence v2 ̸= 0, and
consider a v-generic polarization H.

To show that H is general with respect to v, let E be a H-semistable sheaf with Mukai
vector v and 0 ̸= F ⊆ E a subsheaf with Mukai vector u = (0, u1, u2). Notice that χ(E) = v2
and χ(F ) = u2.

If χ(E)/(c1(E) ·H) = χ(F )/(c1(F ) ·H), then (u2v1 − v2u1) ·H = 0. Since u2v1 − v2u1 is the
divisor associated with (E,F ), and since H is v-generic, it follows that u2v1 − v2u1 = 0, so that

v(F ) = u = (0, u1, u2) =
u2
v2

(0, v1, v2) ∈ Qv ,

and hence H is general with respect to v.

If ρ(S) ⩾ 2, a polarization H which is general with respect to v is not necessarily v-generic, so
it may lie on a v-wall. Anyway, the moduli space Mv(S,H) is equal to a moduli space Mv(S,H

′),
where H ′ is v-generic. This is the content of the following.

Lemma 2.10. Let S be a projective K3 surface or an Abelian surface and v a Mukai vector
on S. Suppose ρ(S) ⩾ 2 and that if v = (0, v1, v2), then v2 ̸= 0. Suppose moreover that H is
a polarization which lies on a v-wall and is general with respect to v, and let C be a v-chamber
such that H ∈ C (where C is the closure of C in Amp(S)). Then a sheaf E with Mukai vector
v is H-(semi)stable if and only if it is H ′-(semi)stable for every H ′ ∈ C. In particular, we have
identifications Mv(S,H) = Mv(S,H

′) and M s
v (S,H) = M s

v (S,H
′).

Proof. We present a proof of this for a Mukai vector v = (v0, v1, v2) with v0 > 0, the case v0 = 0
being easier. We will only consider semistable sheaves, the case of stable sheaves being similar.

To do so, suppose that E is H ′-semistable but not H-semistable. Then it is µH -semistable
(since µ-semistability is preserved by passing to limits on a wall), and it has a proper subsheaf F
such that pH(F ) > pH(E); this implies that µH(E) = µH(F ), hence c1(F )/rk(F ) = c1(E)/rk(E)
(as H is general with respect to v). But since pH(F ) > pH(E), we get that pH′(F ) > pH′(E),
which is not possible. As a consequence, if E is H ′-semistable, then it is H-semistable.

Conversely, suppose that E is H-semistable but not H ′-semistable. Then E has a proper
subsheaf F such that pH′(F ) > pH′(E). If µH′(F ) > µH′(E), then we must have µH(F ) = µH(E)
(otherwise, the segment [H,H ′] would meet a v-wall inside C), so c1(F )/rk(F ) = c1(E)/rk(E).
Since pH(F ) ⩽ pH(E), we get pH′(F ) ⩽ pH′(E), which is not possible. If µH′(F ) = µH′(E),
by the v-genericity of H ′, this again implies c1(F )/rk(F ) = c1(E)/rk(E); hence we would get
pH(F ) > pH(E), which is again not possible. As a consequence, if E is H-semistable, then it is
H ′-semistable.

As a consequence of Lemmas 2.9 and 2.10, it will be enough to consider v-generic polarizations
in order to get results for polarizations which are general with respect to v, at least in the case
where v = (v0, v1, v2) with either v0 > 0, or v0 = 0 and v2 ̸= 0.

The case v = (0, v1, 0) was not yet considered, and it is indeed a very special case: while all
polarizations are v-generic in this case, it may happen that no general polarizations with respect
to v exist at all. An example of this is the following.

Example 2.11. We use the notation of Example 2.7, and we show that if v = (0, c′ + c′′, 0),
then there is no general polarization with respect to v. Indeed, the sheaf E := j′∗M

′ ⊕ j′′∗M
′′
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is H-semistable for every polarization H, and the Mukai vector of the destabilizing subsheaf
F := j′∗M

′ is v(F ) = (0, c′, 0) /∈ Qv, but

χ(F )/c1(F ) ·H = 0 = χ(E)/c1(E) ·H .

This shows that H is not general with respect to v.

If v = (0, v1, 0) and a general polarization H with respect to v1 exists, the following lemma
implies that H is still general with respect to vH := (0, v1, v1 ·H) and that Mv(S,H) is isomorphic
to MvH (S,H). By Lemma 2.10, it follows that Mv(S,H) is also isomorphic to MvH (S,H

′) for
a vH -generic polarization H ′.

Lemma 2.12. Let S be a projective K3 surface or an Abelian surface and v = (0, v1, v2) a Mukai
vector on S. A polarization H is general with respect to v if and only if it is general with
respect to vH . Moreover, the tensorization with H induces an isomorphism between Mv(S,H)
and MvH (S,H), and between M s

v (S,H) and M s
vH

(S,H).

Proof. The tensorization with a multiple ofH preserves theH-(semi)stability; the lemma follows.

Remark 2.13. As a consequence of Lemmas 2.9, 2.10 and 2.12, if v is a Mukai vector and H
is a polarization which is general with respect to v, then Mv(S,H) is either identified with or
isomorphic to a moduli space Mv′(S,H

′), where H ′ is v′-generic. This will allow us to restrict our-
selves to v-generic polarizations in the proof of the main results of the present paper, and to prove
all the results needed for the proofs of Theorems 1.7 and 1.10 only for v-generic polarizations.

A further reason to consider polarizations which are general with respect to a Mukai vector v
instead of v-generic polarizations is the openness, in the algebraic category, of the locus of the
base of a deformation where a polarization stays general with respect to a Mukai vector. This is
the content of the following proposition.

Proposition 2.14. Let f : X → T be a smooth projective family of K3 surfaces or Abelian
surfaces over a connected algebraic variety T . Let L , H be two line bundles on X , and for every
t ∈ T , let Lt, Ht be the restrictions of L , H to the fiber Xt of f over t. Let vt := (r, c1(Lt), a)
be a Mukai vector on Xt, and suppose that Ht is ample on Xt for every t ∈ T . Then the locus

Tng := {t ∈ T |Ht is not general with respect to vt} ⊆ T

is Zariski closed in T .

Proof. Let us first consider the case r > 0. As an immediate consequence of the definition, the
polarization Ht is not general with respect to vt if and only if there exists a µHt-semistable sheaf
E with Mukai vector vt on Xt admitting a surjective map to a torsion-free sheaf G having the
same Ht-slope as E and such that c1(G)/rk(G) ̸= c1(E)/rk(E).

Since the family of µHt-semistable sheaves with Mukai vectors vt on the fibers of f is bounded
(see for instance [HL97, Theorem 3.3.7]), there is a variety Y with a morphism πY : Y → T and
a Y -flat sheaf EY on XY := Y ×T X such that, for every t ∈ T , every µHt-semistable sheaf with
Mukai vector vt appears as the restriction Ey of EY to {y} ×Xt for some y ∈ π−1

Y (t) ⊆ Y .

By a result of Grothendieck (see [HL97, Lemma 1.7.9]), there exists a finite set I ⊂ Q[x] such
that P ∈ I if and only if there are t ∈ T , y ∈ π−1

Y (t) and a torsion-free quotient of Ey whose
Hilbert polynomial with respect to Ht is P and whose Ht-slope is µHt(Ey).
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For P ∈ I, we let qP,Y : QP,Y → Y be the relative Quot scheme whose fiber over y ∈ Y
parametrizes the quotients of Ey whose Hilbert polynomial with respect to HπY (y) is P and let
Q0

P,Y ⊂QP.Y be the locus parametrizing quotients Ey→Gy with c1(Gy)/rk(Gy) ̸=c1(Ey)/rk(Ey).

Since Lt is the restriction of the global line bundle L, the locus Q0
P,Y is a union of connected

components of QP,Y , and, by construction,

Tng =
⋃
P∈I

πY
(
qP,Y

(
Q0

P,Y

))
.

As a finite union of images of regular morphisms, Tng is constructible, and we can check its
closure in T by the evaluative criterion of properness for the inclusion Tng ⊂ T .

It then remains to prove that if C is a smooth curve, C0 := C \ c is the complement of a
point c and ι : C → T is a morphism such that ι

(
C0

)
⊂ Tng, then we have ι(c) ∈ Tng too. Using

the universal family of the relative Quot scheme QP,Y and replacing C0 with a quasi-finite cover
if necessary, we may assume that there exist two C0-flat families EC0 and GC0 of torsion-free
sheaves on XC0 := C0 ×T X , together with a surjective morphism EC0 → GC0 , such that for
every c ∈ C0, the following two conditions are fulfilled:

(1) The restriction Ec of EC0 to Xι(c) has Mukai vector vι(c) and is µHι(c)
-semistable.

(2) The restriction Gc of GC0 to Xι(c) has the same µHι(c)
-slope as Ec, but c1(Gc)/rk(Gc) ̸=

c1(Ec)/rk(Ec).

As for every coherent sheaf on XC0 , we can extend EC0 to a coherent sheaf EC on XC :=
C ×T X and, by the relative version of Langton’s theorem [Lan75] (for a proof working in the
relative case, see [HL97, Theorem 2.B.1]), we may also assume that its restriction Ec to Xι(c) is
µHι(c)

-semistable.

We need to show that there exists a torsion-free quotient Ec → Gc such that µHι(c)
(Gc) =

µHι(c)
(Ec) and c1(Gc)/rk(Gc) ̸= c1(Ec)/rk(Ec).

By flatness, the Hilbert polynomial with respect to Hι(c) does not depend on c and has to be a
fixed element P ∈ I for every c ∈ C0. The relative Quot schemeQP,C → C, whose fiber over c ∈ C
parametrizes quotients of Ec having Hilbert polynomial P , has a connected component Q0

P,C

containing the sheaves Gc verifying the above condition (2) and, hence, dominating C; by the
projectivity of the relative Quot scheme, the connected component Q0

P,C also surjects onto C.

This implies that there exists a quotient Gc of Ec having Hilbert polynomial P and, since Gc

is in the same connected component Q0
P,C of the Gc for c ̸= c, we see that Gc verifies the above

condition (2) as well, so we have c1(Gc)/rk(Gc) ̸= c1(Ec)/rk(Ec).

If Gc is torsion-free, we see that ι(c) ∈ Tng, and we are done. If Gc is not torsion-free, since Ec

is slope-semistable, by considering its quotient by the torsion subsheaf, we get a torsion-free sheaf
with the same rank and first Chern class, and we are done.

We are left with the case r = 0. Let ϕ : M → T be the relative moduli space associated with
f : X → T , H and L , and let Σ ⊆ M be the closed subset parametrizing strictly semistable
sheaves. Let Σ′ ⊆ Σ be the closed subset parametrizing polystable sheaves of the form F1⊕· · ·⊕Fs

such that v(Fi) ̸∈ Qv for some i ⩽ s. Since ϕ is projective, the image ϕ(Σ′) is closed in T , and,
since Tng = ϕ(Σ′), we are done.

Proposition 2.14 shows that being general with respect to a Mukai vector is an open property
in the Zariski topology; this is remarkable, in particular, in view of the fact that the v-genericity
is only open in the analytic topology (see [PR13, Corollary 4.2]).
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2.2 Yoshioka’s fibration

Here we recall the definition and the main properties of the morphism av : Mv(S,H) → S × Ŝ
introduced by Yoshioka in [Yos99b] and relate it to another morphism used in [O’G03].

We let S be an Abelian surface, Ŝ its dual and P the Poincaré line bundle on S × Ŝ. Fix
a Mukai vector v and a polarization H on S which is general with respect to v, and let Mv(S,H)
be the moduli space of H-semistable sheaves on S with Mukai vector v.

We recall that for a smooth projective variety X, the Grothendieck group K(X) has the
structure of a ring: if F and G are two locally free sheaves, we let [F ] + [G] = [F ⊕ G] and
[F ] · [G] = [F ⊗G]; if F and G are coherent but not locally free, replace them by a finite locally
free resolution of both.

If f : X → Y is a morphism of smooth projective varieties, then we have the pull-back
ring morphism f∗ : K(Y ) → K(X) and the push-forward group morphism f! : K(X) → K(Y ).
Moreover, the determinant map det : K(X) → Pic(X) is well defined.

2.2.1 Yoshioka’s fibration. We now define the morphism av following Yoshioka (see [Yos99b]
and [Yos01]). To do so, fix a coherent sheaf F0 with Mukai vector v. For every coherent sheaf F
on S with Mukai vector v, we set

δv(F) := det
(
p
Ŝ!

(
p∗S([F ]− [F0]) ·

(
[P]− [O

S×Ŝ
]
)))

∈ Pic0
(
Ŝ
)
,

where pS and p
Ŝ
are the two projections of S × Ŝ onto S and Ŝ, respectively, and Pic0

(
Ŝ
)
is the

group of topologically trivial line bundles on Ŝ. Letting

F : Db(S) −→ Db
(
Ŝ
)
, F (E•) := Rp

Ŝ∗
(
p∗SE

• ⊗ P
)

be the Fourier–Mukai functor with kernel P, we then have

δv(F) = det(F (F))⊗ det(F (F0))
∨ ∈ Pic0

(
Ŝ
)
.

Notice that we have an isomorphism Pic0
(
Ŝ
)
≃ S; hence we have a morphism δv : Mv(S,H)→S.

We then let

av : Mv(S,H) −→ S × Ŝ , av(F) :=
(
δv(F),det(F)⊗ det(F0)

∨) .
Now let Kv(S,H) := a−1

v (0S ,OS), where 0S is the zero of the Abelian group S. If v2 > 0, the
morphism

τv : Kv(S,H)× S × Ŝ −→ Mv(S,H) , τ(E , p, L) := τ∗p (E)⊗ L

is a finite étale cover (for a proof of this, see [Yos01, Section 4.2]). We will moreover let
Ks

v(S,H) := Kv(S,H) ∩M s
v (S,H).

2.2.2 O’Grady’s fibration. Another morphism bv : Mv(S,H) → S × Ŝ was used by O’Grady
in [O’G03]. For γ ∈ CH0(S), we let Σ(γ) ∈ S be the sum of the points of the support of
a representative of γ, counted with multiplicities (that is, the Albanese image of γ). For a
coherent sheaf F on S, we let c2(F) ∈ CH0(S) be the second Chern class of F , and we set
β(F) := Σ(c2(F)).

The morphism bv : Mv(S,H) → S × Ŝ is defined by

bv(F) :=
(
β(F),det(F)⊗ det(F0)

∨) .
The relation between av and bv is explained in the following.
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Lemma 2.15. There is an automorphism g : S → S such that bv = (g × id
Ŝ
) ◦ av.

Proof. To prove this, we just need to show that for every F1,F2 ∈ Mv(S,H), we have av(F1) =
av(F2) if and only if bv(F1) = bv(F2). Equivalently, we just need to show that for every F1,F2 ∈
Mv(S,H) such that det(F1) ≃ det(F2), we have δv(F1) = δv(F2) if and only if β(F1) = β(F2).

First suppose det(F1) ≃ det(F2) and δv(F1) = δv(F2), and let Γ := [F1] − [F2] ∈ K(S). As
v(F1) = v(F2) = v and det(F1) ≃ det(F2), the only nontrivial Chern class of Γ (in the Chow
ring of S) is c2(Γ).

Moreover, there is a representative of c2(Γ) of the form Γ :=
∑n

i=1 pi −
∑n

i=1 qi, where
p1, . . . , pn and q1, . . . , qn are points of S. We then notice that Γ ∈ K(S) has the same rank and
Chern classes as the class

Γ′ :=
[
⊕n

i=1Cpi −⊕n
i=1Cqi

]
∈ K(S) .

Notice that if we let F̃ : K(S) → K
(
Ŝ
)
be the morphism induced by F on the level of the

Grothendieck groups, we have

det
[
F̃ (Γ′)

]
= ⊗n

i=1Ppi ⊗ P∨
qi .

As det
(
F̃ (Γ)

)
depends only on the rank and the Chern classes of Γ in the Chow ring of Ŝ,

we get

det
(
F̃ ([F1])

)
⊗ det

(
F̃ ([F2])

)∨
= det

(
F̃ (Γ)

)
= det

(
F̃ (Γ′)

)
= ⊗n

i=1Ppi ⊗ P∨
qi = P∑n

i=1(pi−qi) = PΓ ,

where the equality ⊗n
i=1Ppi ⊗ P∨

qi = P∑n
i=1(pi−qi) follows from the fact that the map S → Ŝ,

p 7→ Pp is a group isomorphism.

Now, notice that as det(F1) = det(F2), we have that δv(F1) = δv(F2) if and only if
det

(
F̃ ([F1])

)
= det

(
F̃ ([F2])

)
. The previous equalities give that this holds if and only if PΓ = OS .

But this is equivalent to Σ
(
[Γ]

)
= 0S , where [Γ] is the class of Γ in CH0(S).

As this class is c2(Γ), we finally get that δv(F1) = δv(F2) if and only if Σ(c2(Γ)) = 0S . This
last condition is equivalent to Σ(c2(F1)) = Σ(c2(F2)), that is, to β(F1) = β(F2), concluding the
proof.

As a consequence, we see that bv is an isotrivial fibration.

2.2.3 Fibers of the Yoshioka fibration. The behaviour of moduli spaces of sheaves on an
Abelian surface S under changing of polarization in the ample cone of S may now be generalized
to the fibers of their Yoshioka (or O’Grady) fibration.

The main result is the following.

Lemma 2.16. Suppose that S is an Abelian surface with ρ(S) ⩾ 2 and that v is a Mukai vector
on S.

(1) If v = (v0, v1, v2) is such that v0 > 0, or v0 = 0 and v2 ̸= 0, let C be a v-chamber.

(a) IfH,H ′ ∈ C, then we have natural identificationsKv(S,H) = Kv(S,H
′) andKs

v(S,H) =
Ks

v(S,H
′).

(b) If H ∈ C is general with respect to v and H ′ ∈ C, then we have natural identifications
Kv(S,H) = Kv(S,H

′) and Ks
v(S,H) = Ks

v(S,H
′).
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(2) If v = (0, v1, 0) and H is general with respect to v, then the tensorization with H induces
an isomorphism between Kv(S,H) and KvH (S,H) and an isomorphism between Ks

v(S,H)
and Ks

vH
(S,H).

Proof. The first item of the statement is an immediate consequence of Lemma 2.10. For the
second, use Lemma 2.12 by noticing that by the very definition of bv, the tensorization with H
maps fibers of bv to fibers of bvH and hence, by Lemma 2.15, fibers of av to fibers of avH .

2.3 Deformations of a surface with a Mukai vector and a polarization

We introduce the main construction we use in what follows. Let T be a smooth, connected
algebraic variety, and use the following notation: if f : Y → T is a morphism and L ∈ Pic(Y ),
then for every t ∈ T , we let Yt := f−1(t) and Lt := L|Yt

.

Definition 2.17. Let S be a projective K3 or Abelian surface, v a Mukai vector on S and H
a polarization on S. Write v = m(r, ξ, a), where ξ = c1(L). If T is a smooth, connected algebraic
variety, a deformation of (S, v,H) along T is a triple (X ,L ,H ), where:

(1) X is a projective, smooth deformation of S along T ; that is, there is a smooth, projective,
surjective map f : X → T such that Xt is a projective surface for every t ∈ T , and there is
a 0 ∈ T such that X0 ≃ S;

(2) L is a line bundle on X such that L0 ≃ L;

(3) H is a line bundle on X such that Ht is ample for every t ∈ T and such that H0 ≃ H.

For every t ∈ T , we will write vt := m(r, c1(Lt), a).

Remark 2.18. Let S be a projective K3 (respectively, Abelian) surface and v = (v0, v1, v2) a
Mukai vector on S. Let T be a smooth, connected variety and f : X → T a smooth, projective
deformation of S such that X0 ≃ S for some 0 ∈ T . Suppose that on X , there are two line
bundles H and L , let H := H0 and L := L0, and suppose that H is ample and that c1(L) = v1.
Then (X ,L ,H ) is a deformation of (S, v,H) along T if and only if Ht is ample for every t ∈ T .
As the set of t ∈ T such that Ht is ample is Zariski open in T , by restricting to a nonempty
Zariski open subset of T , we may assume that (X ,L ,H ) is a deformation of (S, v,H) along T .
Moreover, if we assume that H is general with respect to v, thanks to Proposition 2.14, by
restricting to a smaller nonempty Zariski open subset of T , we may assume that Ht is general
with respect to vt for every t ∈ T .

Let S be a projective K3 (respectively, Abelian) surface, v a Mukai vector on S and H a
polarization on S that is general with respect to v. If (X ,L ,H ) is a deformation of (S, v,H)
along a smooth, connected algebraic variety T , we let ϕ : M → T be the relative moduli space
of semistable sheaves and ϕs : M s → T the relative moduli space of stable sheaves. This means
that for every t ∈ T , we have Mt = Mvt(Xt,Ht) and M s

t = M s
vt(Xt,Ht).

If S is Abelian, let X̂ → T be the dual family, that is, the connected component of the relative
Picard variety g : PicX /T → T containing the section of g corresponding to the family OX . The
dual family is then the smooth projective family whose fiber over t ∈ T is the dual of Xt.
Consider the following condition:

The morphism ϕ : M → T has a section, and X → T is a T -group scheme . (⋆)

If condition (⋆) holds, we have a T -morphism av : M → X ×T X̂ such that for every t ∈ T , the
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restriction morphism av|Mt
is the Yoshioka fibration defined in Section 2.2. If

Z :=
{
(0Xt ,OXt) ∈ Xt × X̂t | t ∈ T

}
⊆ X ×T X̂ ,

we will let K := a−1
v (Z). Restricting the morphism ϕ to K , we get a morphism ϕ0 : K → T ,

whose fiber over t ∈ T is Kt = Kvt(Xt,Ht). A similar definition, but using M s instead of M ,
gives the family ϕs

0 : K s → T .

Remark 2.19. Condition (⋆) is always verified up to shrinking T and taking a finite étale cover
of T thanks to the smoothness of M s over T .

The first result we need is that the families M and K are T -flat over a Zariski open neigh-
bourhood of any t ∈ T such that Ht is general with respect to vt. This is the content of the
following lemma.

Lemma 2.20. Let S be a projective K3 (respectively, Abelian) surface, v a Mukai vector on S and
H a polarization on S that is general with respect to v. Let T be a smooth, connected algebraic
variety and (X ,L ,H ) a deformation of (S, v,H) along T , and assume that condition (⋆) holds
if S is Abelian. Suppose that t ∈ T is such that Ht is general with respect to vt.

(1) The morphisms ϕ : M → T and ϕ0 : K → T are flat at t.

(2) The morphisms ϕs : M s → T and ϕs
0 : K s → T are smooth at t.

Proof. By Remark 2.18, we may suppose that for every t ∈ T , the polarization Ht is general
with respect to vt.

(1) Notice that M (respectively, K ) is connected (since T and the fibers are connected).
Moreover, by [KLS06, Theorem 4.4] (respectively, by [PR14, Remark A.1] for K ), and using
Lemmas 2.10 and 2.12 (respectively, Lemma 2.16), we see that the fibers of ϕ (respectively, ϕ0)
are reduced, irreducible and equidimensional. Now, by [GD66, Théorème 14.4.4], it follows that ϕ
(respectively, ϕ0) is universally open. Using [GD66, Corollaire 15.2.3], we get that ϕ (respectively,
ϕ0) is flat.

(2) This follows from point (1) since ϕs and ϕs
0 have smooth fibers.

Let S be a projective K3 (respectively, Abelian) surface, v a Mukai vector on S and H a
polarization on S that is general with respect to v. By choosing a nontrivial deformation of
(S, v,H) along a smooth, connected variety T , we get a flat, projective deformation ϕ : M →
T of Mv and a smooth quasi-projective deformation ϕs : M s → T of M s

v . Moreover, if S is
Abelian, we get a flat, projective deformation ϕ0 : K → T of Kv and a smooth quasi-projective
deformation ϕs

0 : K s → T of Ks
v . We now prove that this deformation is locally trivial.

Lemma 2.21. Let S be a projective K3 (respectively, Abelian) surface, v a Mukai vector on S
and H a polarization on S that is general with respect to v. Let T be a smooth connected variety
and (X ,L ,H ) a deformation of (S, v,H) along T , and assume that condition (⋆) holds if S is
Abelian.

(1) If p ∈ M and t := ϕ(p) is such that Ht is general with respect to vt, then (M , p) ≃
(Mt, p)× (T, t) as germs of analytic spaces.

(2) If p ∈ K and t := ϕ0(p) is such that Ht is general with respect to vt, then (K , p) ≃
(Kt, p)× (T, t) as germs of analytic spaces.
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Proof. If v is primitive, then ϕ is a smooth, projective morphism, and there is nothing to prove.
If v = 2w, where w is primitive and w2 = 2, this is [PR13, Proposition 2.16] if T is a curve (the
proof given in [PR13] works for polarizations which are general with respect to the Mukai vector).
If T is a smooth connected variety of dimension d ⩾ 2, this implies that the statement holds
along any smooth connected curve through t. By [FK87, Corollary 0.2], the general statement
follows.

For the remaining cases, by [KLS06], the moduli spaces Mt = Mvt(Xt,Ht) and Kt =
Kvt(Xt,Ht) are symplectic varieties which are locally factorial, and, by [Nam01, Corollary 1],
they have terminal singularities. The Main Theorem of [Nam06] tells us that for every p ∈ Mt

(respectively, p ∈ Kt) and for every n ∈ N, the infinitesimal nth order deformation of Mt (re-
spectively, of Kt) induced by ϕ (respectively, by ϕ0), which is flat by Lemma 2.20, is locally
trivial at p; the statement follows again by [FK87, Corollary 0.2].

As a corollary of this, using the Thom first isotopy lemma (see [Dim92, Theorem 3.5]), we
have the following.

Lemma 2.22. Let S be a projective K3 (respectively, Abelian) surface, v a Mukai vector on S and
H a polarization on S that is general with respect to v. Let T be a smooth connected algebraic
variety, let (X ,L ,H ) be a deformation of (S, v,H) along T , and assume that condition (⋆)
holds if S is Abelian.

(1) If p ∈ M and t := ϕ(p) is such that Ht is general with respect to vt, there is an analytic
open neighbourhood U ⊆ T of t such that ϕ−1(U) is homeomorphic over U to Mt ×U and
(ϕs)−1(U) is homeomorphic over U to M s

t × U .

(2) If p ∈ K and t := ϕ0(p) is such that Ht is general with respect to vt, there is an analytic
open neighbourhood U ⊆ T of t such that ϕ−1

0 (U) is homeomorphic over U to Kt × U and
(ϕs

0)
−1(U) is homeomorphic over U to K s

t × U .

2.4 Isomorphisms between moduli spaces

We now describe several isomorphisms that will be frequently used in the proof of Theorem 1.7.
All of them are induced by Fourier–Mukai transforms, either the tensorization with a line bundle
or the one whose kernel is the ideal sheaf of the diagonal (for K3 surfaces) or the Poincaré bundle
(for Abelian surfaces).

2.4.1 Isomorphisms from tensorization with line bundles. Let S be a projective K3 or Abel-
ian surface, and let v = m(r, ξ, a) be a Mukai vector. Recall that if L ∈ Pic(S), we defined
vL := v · ch(L) and that if D is a divisor on S, we let vD := vOS(D) (see Section 2.1 and
Lemma 2.6).

Definition 2.23. Let v, v′ ∈ H̃(S,Z) be two Mukai vectors, and let v = (r, ξ, a), v′ = (r′, ξ′, a′).

(1) If H is a polarization on S, we say that v and v′ are H-equivalent if there is an s ∈ Z such
that v′ = vsH .

(2) If r, r′ > 0, we say that v and v′ are equivalent if there is an L ∈ Pic(S) such that v′ = vL.

The following is the main result about isomorphisms induced by tensorization with a line
bundle,2 which shows that moduli spaces of sheaves corresponding to equivalent (orH-equivalent)

2In Lemma 2.24, by a slight abuse of notation, we let Kv denote not only the fiber of av : Mv → S × Ŝ over
(0S ,OS) but also any other fiber. This is justified since av is an isotrivial fibration, so all its fibers are isomorphic.
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Mukai vectors are isomorphic (and the isomorphism is induced by tensorization with a suitable
line bundle).

Lemma 2.24. Let S be a projective K3 or Abelian surface, v a Mukai vector and H an ample
line bundle on S.

(1) For every d ∈ Z, the morphism

Mv(S,H) −→ MvdH (S,H) , F 7→ F ⊗OS(dH)

is an isomorphism, which induces isomorphisms M s
v (S,H) ≃ M s

vdH
(S,H). If S is an Abelian

surface, it also induces isomorphisms Kv(S,H) ≃ KvdH (S,H) and Ks
v(S,H) ≃ Ks

vdH
(S,H).

(2) If v = (v0, v1, v2) and v0 > 0, L ∈ Pic(S) and H is v-generic, the morphism

Mv(S,H) −→ MvL(S,H) , F 7−→ F ⊗ L

is an isomorphism, which induces isomorphisms M s
v (S,H) ≃ M s

vL
(S,H). If S is an Abelian

surface, it also induces isomorphisms Kv(S,H) ≃ KvL(S,H) and Ks
v(S,H) ≃ Ks

vL
(S,H).

Proof. First, notice that v(F ⊗L) = v(F) · ch(L). To prove the first point of the statement, it is
enough to remark that a sheaf F with Mukai vector v is H-(semi)stable if and only if F⊗OS(dH)
is H-(semi)stable.

For the second point, we need to show that if F is H-(semi)stable, then F ⊗ L is H-
(semi)stable. This is proved for stable sheaves by Yoshioka (see [Yos01, Lemma 1.1]), and the
proof goes through for semistable sheaves.

If S is Abelian, by the definition of the morphism av (see Section 2.2), we have that if F1 and
F2 are in the same fiber of av, then F1⊗L and F2⊗L are in the same fiber of avL . As av and avL
are both isotrivial fibrations, the isomorphism between Mv and MvL obtained by tensorization
with L induces an isomorphism between Kv and KvL .

2.4.2 Isomorphisms from Fourier–Mukai transforms. We now recall two basic results, origi-
nally due to Yoshioka, about isomorphisms between moduli spaces of sheaves over K3 or Abelian
surfaces coming from Fourier–Mukai transforms. Yoshioka’s theorems are stated in a more gen-
eral setting; here we present simplified adapted proofs for the convenience of the reader. We
will only consider the Fourier–Mukai transform whose kernel is the ideal of the diagonal (for K3
surfaces) or the Poincaré bundle (for Abelian surfaces).

We need the following notation: if S a projective K3, we let ∆ ⊆ S×S be the diagonal and I
the ideal of ∆. We have an exact sequence of coherent sheaves on S × S:

0 −→ I −→ OS×S −→ O∆ −→ 0 . (2.1)

We moreover let π1, π2 : S × S → S be the two projections.

If S is an Abelian surface and Ŝ is its dual, we let P be the Poincaré line bundle on S × Ŝ,
π1 : S× Ŝ → S and π2 : S× Ŝ → Ŝ the two projections and ι : S → S the involution acting as −1.

We will moreover consider the functors

FK3 : D
b(S) −→ Db(S) , FK3(E

•) := Rπ2∗
(
π∗
1E

• ⊗L I
)
,

F̂K3 : D
b(S) −→ Db(S) , F̂K3(E

•) := RHomπ1

(
I, π∗

2E
•)
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if S is a K3 surface and

FAb : D
b(S) −→ Db

(
Ŝ
)
, FAb(E

•) := Rπ2∗
(
π∗
1E

• ⊗ P
)
,

F̂Ab : D
b
(
Ŝ
)
−→ Db(S) , F̂Ab(E

•) := ι∗Rπ1∗
(
π∗
2E

• ⊗ P
)

if S is an Abelian surface.

By [Bri99], we know that FK3 and FAb are equivalences of triangulated categories. Moreover,
the functor F̂K3[2] is the right and left adjoint to FK3, so that FK3 ◦ F̂K3 = [−2] (see [Huy06,
Proposition 1.26]), and F̂Ab[2] is the right and left adjoint to FAb, so that FAb ◦ F̂Ab = [−2] (see
[Muk81, Theorem 2.2]).

We will make use of the following definition due to Mukai.

Definition 2.25. Let S be a projective K3 or Abelian surface, G a coherent sheaf on S and F
a Fourier–Mukai functor on Db(S). For i ∈ {0, 1, 2}, we say that G verifies WIT(i) with respect
to F if F (G) = F i(G)[−i].

If S is a projective K3 surface and G is a coherent sheaf on S, then the functor Rπ2∗
(
π∗
1G⊗L ·

)
applied to the exact sequence (2.1) gives the long exact sequence of coherent sheaves on S

0 −→ F 0
K3(G) −→ OS ⊗H0(G) ev−→ G −→

−→ F 1
K3(G) −→ OS ⊗H1(G) −→ 0 −→

−→ F 2
K3(G) −→ OS ⊗H2(G) −→ 0 ,

(2.2)

and if G is torsion-free, the functor RHomπ1(·, π∗
2G) applied to the exact sequence (2.1) gives the

long exact sequence of coherent sheaves on S

0 −→ OS ⊗H0(G) −→ F̂ 0
K3(G) −→

−→ 0 −→ OS ⊗H1(G) −→ F̂ 1
K3(G) −→

−→ G −→ OS ⊗H2(G) −→ F̂ 2
K3(G) −→ 0 .

(2.3)

From now on, we will make use of the following notation.

Notation 2.26. If S is a projective K3 surface and v = (r, ξ, a) is a Mukai vector on S, we let
ṽ := (a,−ξ, r).

If S is an Abelian surface and L ∈ Pic(S), we let L̂ := det(F (L))−1 ∈ Pic
(
Ŝ
)
; moreover, if

ξ = c1(L), we let ξ̂ := c1
(
L̂
)
. Finally, if v = (r, ξ, a) is a Mukai vector on the Abelian surface S,

we let ṽ :=
(
a,−ξ̂, r

) (
which belongs to the Mukai lattice of Ŝ

)
.

Remark 2.27. If H is an ample line bundle on an Abelian surface S, then Ĥ is ample (see [Muk81,
Proposition 3.11]).

The first result we need is the following (see [Yos02, Theorem 3.18]).

Lemma 2.28. Let S be a projective K3 (respectively, Abelian) surface, v = (v0, v1, v2) a Mukai
vector on S and H a polarization on S, and let h := c1(H). Let r, k ∈ N∗ and ξ ∈ NS(S) be
effective, and suppose furthermore that we are in one of the following situations:

(1) we have NS(S) = Zh, v2 = 2k and v0 = r; that is, there are p, a ∈ Z such that v = (r, ph, a)
and v2 = 2k; or

(2) we have v0 = 0, v1 = ξ and v2 = 2k; that is, there is p ∈ Z such that v = (0, ξ, p) and
v2 = 2k.
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Then there is a p0 ∈ N such that if p > p0, every H-semistable sheaf E with Mukai vector v
on S verifies WIT(0) with respect to FK3 (respectively, FAb), and F 0

K3(E) (respectively, F 0
Ab(E))

is locally free with Mukai vector ṽ.

Proof. We let

Vr,k :=
{
v′ = (r, p′h, a′) ∈ H̃(S,Z) | (v′)2 = 2k, 0 ⩽ p′ ⩽ r

}
and

V0,ξ,k :=
{
v′ = (0, ξ, p′) | (v′)2 = 2k, 0 ⩽ p′ ⩽ ξ ·H

}
.

Notice that Vr,k and V0,ξ,k are finite sets. As the family of semistable sheaves with fixed Mukai
vector v is bounded, by Serre’s theorem, there is a T ∈ N such that for every s > T and for
every H-semistable sheaf E ′ with Mukai vector in Vr,k or V0,ξ,k, we have H1(E ′ ⊗ OS(sH)) =
H2(E ′ ⊗OS(sH)) = 0, and the evaluation morphism

H0(E ′ ⊗OS(sH))⊗OS −→ E ′ ⊗OS(sH)

is surjective.

Under the hypotheses of case (1), there are s ∈ N and v′ ∈ Vr,k such that v′sH = v = (r, ph, a).
Notice that if p > p0 := r + rT , then we have s > T . Since tensorization by sH induces
an isomorphism from Mv′(S,H) to Mv(S,H) by Lemma 2.24, we conclude that for every H-
semistable sheaf E with v(E) = v, there is an E ′ ∈ Mv′(S,H) such that E ≃ E ′ ⊗ OS(sH), and
hence H1(E) = H2(E) = 0, and the evaluation morphism

H0(E)⊗OS −→ E

is surjective.

Similarly, under the hypotheses of case (2), there are s ∈ N and v′ ∈ V0,ξ,k such that v′sH =
v = (0, ξ, p), and if p > p0 := ξ ·H + (ξ ·H)T , by the same argument, the same conclusion holds
for every H-semistable sheaf E with v(E) = v.

Now, if S is K3, as H1(E) = H2(E) = 0 and the evaluation morphism H0(E) ⊗ OS → E is
surjective, the exact sequence (2.2) for E implies that F 1

K3(E) = F 2
K3(E) = 0, so that FK3(E) =

F 0
K3(E), which proves that E verifies WIT(0) with respect to FK3.

If S is Abelian, we not only have that H1(E) = H2(E) = 0 and the evaluation morphism
H0(E)⊗OS → E is surjective, but the same holds for E ⊗L for every L ∈ Ŝ (since v(E ⊗L) = v).
By cohomology and base change, it follows that F 1

Ab(E) = F 2
Ab(E) = 0, so that FAb(E) = F 0

Ab(E),
which proves that E verifies WIT(0) with respect to FAb.

We are left with showing that F 0
K3(E) (respectively, F 0

Ab(E)) is locally free and its Mukai
vector is ṽ.

To show this, let us first consider S to be a K3 surface. As E verifies WIT(0) with respect
to FK3, the exact sequence (2.2) applied to E gives the exact sequence

0 −→ F 0
K3(E) −→ H0(E)⊗OS −→ E −→ 0 . (2.4)

We then see that v
(
F 0
K3(E)

)
= ṽ.

As E is a coherent sheaf of pure dimension 2 or 1 on the smooth surface S, the projective
dimension of E is at most 1. Since the sequence (2.4) is exact and H0(E) ⊗ OS is locally free,
this implies that F 0

K3(E) is locally free too.

This completes the proof when S is a K3 surface. The case of Abelian surfaces is easier:
the fact that v

(
F 0
Ab(E)

)
= ṽ is well known. Moreover, as H i(E ⊗ L) = 0 for every L ∈ Ŝ and

367



A. Perego and A. Rapagnetta

for i = 1, 2, we see that E is an IT-sheaf of index 0, and hence F 0
Ab(E) is locally free (see for

instance [BL21, Lemma 14.2.1]).

We are now in the position to prove the main results of this section. The first is the following,
showing that if S is a K3 (respectively, Abelian) surface with Picard number 1 and v is a Mukai
vector on S with positive rank, then FK3 (respectively, FAb) induces an isomorphism between
Mv and Mṽ (see Notation 2.26 for the definition of ṽ).

Proposition 2.29. Let S be a K3 or Abelian surface such that NS(S) = Z ·h, and let h = c1(H)
for an ample line bundle H. Let r, k ∈ N∗, and let v = (v0, v1, v2) be a Mukai vector on S such
that v0 = r and v2 = 2k; that is, there are n, a ∈ Z such that v = (r, nh, a) and v2 = 2k.

(1) If S is K3, there is an n0 ∈ N such that for every n > n0, the functor FK3 induces isomor-
phisms Mv(S,H) ≃ Mṽ(S,H) and M s

v (S,H) ≃ M s
ṽ (S,H).

(2) If S is Abelian, there is an n0 ∈ N such that for every n > n0, the functor FAb induces
isomorphisms Mv(S,H) ≃ Mṽ

(
Ŝ, Ĥ

)
, M s

v (S,H) ≃ M s
ṽ

(
Ŝ, Ĥ

)
, Kv(S,H) ≃ Kṽ

(
Ŝ, Ĥ

)
and

Ks
v(S,H) ≃ Ks

ṽ

(
Ŝ, Ĥ

)
.

Proof. The surfaces involved in the statements and in the proofs of this proposition and of the
related lemmas (that is, a K3 surface S or an Abelian surface S and its dual Ŝ) all have cyclic
Néron–Severi group. In particular, if Σ is such a surface, then NS(Σ) = Z · ℓ, where ℓ = c1(L)
and L is an ample generator.

This allows us to unify and simplify the notation for the Mukai vectors on such a surface Σ:
the Mukai vector v = (r, nℓ, a) will always be written under the simpler form (r, n, a).

Similarly, while discussing (semi)stability, we systematically avoid any explicit reference to
the (essentially unique) polarization. In particular, if E is a coherent sheaf on Σ, we will simply
write p(E) for its reduced Hilbert polynomial with respect to the primitive ample divisor.

Finally, we will use the notation F for both FK3 and FAb, and F̂ for both F̂K3 and F̂Ab.
Making use of this simplified notation, we start the proof of the proposition.

We first notice that by Lemma 2.28, there is an n0 ∈ N such that for every n > n0 and for
every semistable sheaf E with Mukai vector v = (r, n, a) on S, we have that F (E) = F 0(E) is a
locally free sheaf with Mukai vector ṽ.

Our aim is to prove that the locally free sheaf F 0(E) is semistable. Once this is done, it
will imply that F induces an injective morphism fK3 : Mv(S,H) → Mṽ(S,H) if S is K3 and
fAb : Mv(S,H) → Mṽ

(
Ŝ, Ĥ

)
if S is Abelian. By [KLS06, Theorem 4.4], these moduli spaces are

irreducible of the same dimension, so fK3 and fAb are isomorphisms and induce isomorphisms
between the smooth loci of the moduli spaces.

Moreover, if S is Abelian and E , E0 ∈ Mv(S,H), as ι∗ ◦ F̂ : Db
(
Ŝ
)
→ Db(S) is the Fourier–

Mukai transform with kernel P, by the definition of aṽ, we have

aṽ(F (E)) =
(
det

(
ι∗F̂ (F (E))

)
⊗ det

(
ι∗F̂ (F (E0))

)∨
, det(F (E))⊗ det(F (E0))∨

)
=

(
ι∗
(
det(E)⊗ det(E0)∨

)
,det(F (E))⊗ det(F (E0))∨

)
= ε(av(E)) ,

where

ε : S × Ŝ −→ Ŝ × S , ε(p, q) := (ι̂(q), p) ,

and ι̂ : Ŝ → Ŝ is the involution acting as −1.

It follows that E1 and E2 lie in the same fiber of av if and only if F (E1) and F (E2) lie in
the same fiber of aṽ. As av and aṽ are isotrivial fibrations, it follows that the functor F induces

368



ISV from moduli spaces of sheaves

an injection Kv(S,H) → Kṽ

(
Ŝ, Ĥ

)
. Since by [PR14, Remark A.1], we know that Kv(S,H) and

Kṽ

(
Ŝ, Ĥ

)
are irreducible and of the same dimension, the previous injection is an isomorphism

and induces an isomorphism between the smooth loci.

Hence it only remains to prove that the sheaf F 0(E) is semistable. The proof will be by
contradiction, supposing that F 0(E) is not semistable.

This implies that there is a desemistabilizing subsheaf G1 ⊆ F 0(E), that is, a coherent subsheaf
such that p(G1) > p

(
F 0(E)

)
. We may and will choose it to be stable with maximal reduced

Hilbert polynomial; such a G1 is the first term of a Jordan–Hölder filtration of the first term of
a Harder–Narasimhan filtration of F 0(E).

We will moreover let G2 be the quotient of F 0(E) by G1, so that we have an exact sequence

0 −→ G1 −→ F 0(E) −→ G2 −→ 0 . (2.5)

Applying the functor F̂ to it, and using the fact that F̂ ◦F = [−2], we get the two exact sequences

0 −→ F̂ 0(G2) −→ F̂ 1(G1) −→ 0 , (2.6)

0 −→ F̂ 1(G2) −→ F̂ 2(G1) −→ E −→ F̂ 2(G2) −→ 0 . (2.7)

The sheaf G := F̂ 2(G1)/F̂
1(G2) is then a subsheaf of E . Our aim is to show that p(G) > p(E);

this would contradict the semistability of E , hence completing the argument.

In order to prove that p(G) > p(E), we start by collecting in the following lemma some
properties of the sheaf G1.

Lemma 2.30. The sheaf G1 is locally free, verifies WIT(2) with respect to F̂ , and if v(G1) =
(a1,−n1, r1), then a1, r1, n1 > 0, a1 < a, n1 < n and either n1/a1 < n/a, or n1/a1 = n/a and
r1/a1 > r/a.

Proof. The proof of this will be divided in six different steps.

Step 1: the sheaf G1 is locally free. Indeed, otherwise G∗∗
1 would be a locally free subsheaf of

the locally free sheaf F 0(E) with p(G∗∗
1 ) > p(G1), contradicting the maximality of p(G1).

Step 2: if S is K3, then −c1(G1) is effective and nonzero; that is, n1 > 0. As S is K3, by
the exact sequence (2.2), there exists an injection G1 ⊆ F 0(E) ⊆ H0(E)⊗OS . As a consequence,
letting V the generic quotient of H0(E) having rank a1, we also have an injective morphism
G1 ⊆ V ⊗OS .

Since V ⊗OS is a trivial vector bundle having the same rank as G1, we deduce that −c1(G1)
is effective and is zero only if G1 is trivial. Finally, G1 cannot be trivial since it is contained in
F 0(E), which is the kernel of the evaluation morphism H0(E)⊗OS → E and cannot have nonzero
global sections.

Step 3: if S is Abelian, then −c1(G1) is effective and nonzero; that is, n1 > 0. Let Z ⊆ S be
a reduced 0-dimensional subscheme of degree d ≫ 0, that we may and will choose so that for
every L ∈ Pic0(S), no section of E ⊗ L vanishes along Z. We let EZ be the restriction of E to Z
and consider the exact sequence

0 −→ K −→ E −→ EZ −→ 0 .

By construction, for every L ∈ Pic0(S), we have H0(K ⊗ L) = 0.

As a consequence, we have F 0(K) = 0, so, applying F to the previous exact sequence, we get
an inclusion F 0(E) ⊆ F 0(EZ). Now, notice that, as Z is 0-dimensional, F 0(EZ) is a direct sum
of line bundles of degree 0 on Ŝ. As G1 ⊆ F 0(E), we then get an inclusion of G1 in a direct sum
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of line bundles of degree 0 on Ŝ. As a consequence, the rank a1 vector bundle G1 also admits an
injective morphism to a direct sum ⊕a1

i=1Li of a1 degree 0 line bundles on Ŝ. This implies that
−c1(G1) is represented by an effective divisor and is zero only if G1 ≃ ⊕a1

i=1Li.

Finally, the last isomorphism does not hold since it would imply that F 0(E) ⊗ L∗
i admits

a nonzero section. On the other hand, by the projection formula,

H0
(
F 0(E)⊗ L∗

i

)
≃ H0

(
p∗S(E)⊗ P ⊗ p∗

Ŝ
(L∗)

)
≃ H0

(
E ⊗ ι∗F̂ 0(L∗

i )
)
,

and the latter is zero since F̂ 0(L∗
i ) = 0.

Step 4: the sheaf G1 verifies WIT(2) with respect to F̂ . First notice that, by the definition of
G1, its slope µ(G1) is maximal among the slopes of the subsheaves of F 0(E). This implies that
µ(G1) is an upper bound for the slopes of the subsheaves of F 0(E) and G2. Since, by Steps 2
and 3, n1 > 0, the class −c1(G) is effective and nonzero, all subsheaves of F 0(E) and of G2 have
strictly negative slope.

In particular, we see that H0(Gi) = 0 for i = 1, 2. This implies that F̂ 0(Gi) = 0 for i = 1, 2.
If S is K3, this is a consequence of the exact sequence (2.3) applied to Gi; if S is Abelian, the
same argument as before shows that H0(Gi ⊗ L) = 0 for every L ∈ Ŝ; hence F̂ 0(Gi) = 0 by
cohomology and base change.

Now, the exact sequence (2.6) implies F̂ 1(G1) = 0, and we conclude that G1 verifies WIT(2)
with respect to F̂ .

Step 5: we have r1 > 0. As G1 verifies WIT(2) with respect to F̂ , we see that v(F̂ 2(G1)) =
(r1, n1, a1) (this follows from the exact sequence (2.3) applied to G1 if S is K3, and it is well known
if S is Abelian), hence r1 ⩾ 0. If r1 = 0, the morphism F̂ 2(G1) → E in the exact sequence (2.7)
would be trivial (since E is torsion-free and F̂ 2(G1) is torsion). As F̂ is fully faithful, this would
imply that the inclusion morphism G1 → F 0(E) is trivial, leading to a contradiction; it follows
that r1 > 0.

Step 6: conclusion of the proof. We notice that a1 is the rank of G1, which is a locally free
subsheaf of F 0(E), and F 0(E) is a locally free sheaf of rank a. It follows that 0 < a1 < a. As

v
(
F 0(E)

)
= ṽ = (a,−n, r) , v(G1) = (a1,−n1, r1)

and as p(G1) > p
(
F 0(E)

)
, we have either n1/a1 < n/a, or n1/a1 = n/a and r1/a1 > r/a. Finally,

n1 < n follows from n1/a1 ⩽ n/a and a1 < a.

We will moreover need the following property of F̂ 1(G2).

Lemma 2.31. If F̂ 1(G2) ̸= 0, its first Chern class is strictly negative; that is, c1
(
F̂ 1(G2)

)
= mh

with m < 0.

Proof. If S is K3, the exact sequence (2.3) applied to G2 shows that F̂ 1(G2) is an extension of
a subsheaf of G2 by OS ⊗H1(G2), so if F̂ 1(G2) ̸= 0, its first Chern class is strictly negative.

We now suppose that S is Abelian. First of all, recall that F̂ 0(G2) = 0 and that all the
subsheaves of G2 have strictly negative first Chern class (see Step 4 of the proof of Lemma 2.30).

Since F̂ 0(G2) = 0, it follows that F i
(
F̂ 0(G2)

)
= 0 for all i. The spectral sequence

Ep,q
2 := F p

(
F̂ q(G2)

)
−→ Ep+q =

(
F ◦ F̂

)p+q
(G2) = G2[−2]p+q

then provides an inclusion i : F 1
(
F̂ 1(G2)

)
→ G2 and the equality F 0

(
F̂ 1(G2)

)
= 0.
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In order to show that if F̂ 1(G2) ̸= 0, its first Chern class is strictly negative, we first prove
that F̂ 1(G2) is torsion-free.

The sheaf F̂ 1(G2) cannot contain a 0-dimensional subsheaf T since F 0(T ) would be a nonzero
semistable sheaf whose associated polystable sheaf is a direct sum of degree 0 line bundles and
F 0(T ) ⊆ F 0

(
F̂ 1(G2)

)
= 0.

It follows that if F̂ 1(G2) is not torsion-free, there are a pure 1-dimensional sheaf K such that
c1(K) = ph for a p > 0, a torsion-free sheaf Q and an exact sequence

0 −→ K −→ F̂ 1(G2) −→ Q −→ 0 . (2.8)

The sheaf K verifies WIT(1) with respect to F . Indeed, applying F to the sequence (2.8), we
obtain F 0(K) ⊆ F 0

(
F̂ 1(G2)

)
= 0 and, since K is 1-dimensional, F 2(K) = 0. As a consequence,

we get c1
(
F 1(K)

)
= pĥ.

Moreover, since Q is torsion-free, the argument used for E in Step 3 of Lemma 2.30 shows
that F 0(Q) is a subsheaf of a direct sum of line bundles belonging to Pic0

(
Ŝ
)
; hence we have

c1
(
F 0(Q)

)
⩽ 0.

Applying the functor F to the exact sequence (2.8), we then get the exact sequence

0 −→ F 0(Q) −→ F 1(K) −→ F 1
(
F̂ 1(G2)

)
,

which yields an inclusion

F 1(K)/F 0(Q) −→ F 1
(
F̂ 1(G2)

) i−→ G2 .

Since c1
(
F 0(Q)

)
⩽ 0, we get

c1
(
F 1(K)/F 0(Q)

)
⩾ c1

(
F 1(K)

)
⩾ 0 ,

where the last inequality comes from the fact that c1
(
F 1(K)

)
= pĥ. It follows that G2 has a non-

zero subsheaf with nonnegative first Chern class, but this is not possible (see Step 4 of the proof
of Lemma 2.30) and implies that F̂ 1(G2) is torsion-free.

It remains to prove that the first Chern class of the torsion-free sheaf F̂ 1(G2) is strictly
negative. We will show it by distinguishing the case where this sheaf is not µ-semistable from
the case where it is µ-semistable.

If F̂ 1(G2) is not µ-semistable and c1
(
F̂ 1(G2)

)
⩾ 0, there exist a µ-stable sheaf K with

c1(K) = ph for p > 0, a torsion-free sheaf Q and an exact sequence as in (2.8). We can copy
the argument used above to show that the torsion of F̂ 1(G2) cannot be pure of dimension 1; the
only difference is that F 2(K) = 0 follows from µ(K) > 0 and the µ-stability of K. As above, we
deduce that G2 has a nonzero subsheaf with nonnegative first Chern class. Since this is absurd,
if F̂ 1(G2) is not µ-semistable, its first Chern class is strictly negative.

Finally, assume that F̂ 1(G2) is µ-semistable and c1
(
F̂ 1(G2)

)
= mh for m ⩾ 0. By the µ-

stability of F̂ 1(G2), if m > 0, there are no nonzero morphisms from F̂ 1(G2) to any L ∈ Pic0(S),
and if m = 0, the locus of Pic0(S) consisting of line bundles admitting nontrivial morphisms
from F̂ 1(G2) is, at most, finite. This implies that the support of F 2

(
F̂ 1(G2)

)
is empty or fi-

nite and, since F 0
(
F̂ 1(G2)

)
= 0, we obtain c1

(
F 1

(
F̂ 1(G2)

))
= mĥ. Again this is absurd since

i : F 1
(
F̂ 1(G2)

)
→ G2 is an injection and G2 cannot contain subsheaves with nonnegative first

Chern class. Hence, also in the case where F̂ 1(G2) is µ-semistable, its first Chern class is strictly
negative.
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We are now ready to conclude the proof of Proposition 2.29. We first notice that as G =
F̂ 2(G1)/F̂

1(G2), we have

c1(G) = c1
(
F̂ 2(G1)

)
− c1

(
F̂ 1(G2)

)
;

hence, by Lemma 2.31, it follows that p(G) ⩾ p
(
F̂ 2(G1)

)
.

Let us now prove that p
(
F̂ 2(G1)

)
> p(E). It will then follow that p(G) > p(E), concluding the

contradiction argument.

To show that p
(
F̂ 2(G1)

)
> p(E), first recall that v

(
F̂ 2(G1)

)
= (r1, n1, a1) and v(E) = (r, n, a).

Moreover, setting l = h2/2 (hence also l = ĥ2/2 if S is Abelian), by hypothesis and Lemma 2.30,

(1) we have r, n, a > 0 and ln2 − ra = v2/2 = k > 0;

(2) we have r1, n1, a1 > 0;

(3) we have a1 < a, and either n1/a1 < n/a, or n1/a1 = n/a and r1/a1 > r/a;

(4) we have ln2
1 − r1a1 = v(G1)

2/2 ⩾ −1 since G1 is H-stable (if S is Abelian, we even have
ln2

1 − r1a1 ⩾ 0).

By Lemma 2.32 below, it follows that there is an n0 ∈ N such that for every n > n0, we have
n1/r1 ⩾ n/r, and if n1/r1 = n/r, then a1/r1 > a/r. This exactly means that p

(
F̂ 2(G1)

)
> p(E),

completing the proof.

We now prove the following, which is used to conclude the proof of Lemma 2.31.

Lemma 2.32. Fix k, l, r ∈ N with k, l, r > 0, and let n, a, r1, a1, n1 ∈ N with n, a, r1, a1, n1 > 0
be such that the following conditions are fulfilled:

(1) ln2 − ra = k;

(2) ln2
1 − r1a1 ⩾ −1;

(3) a1 < a;

(4) n1/a1 < n/a, or n1/a1 = n/a and r1/a1 > r/a.

If n > 32r3k, then either n1/r1 > n/r, or n1/r1 = n/r and a1/r1 > a/r.

Proof. We let k1 := ln2
1 − r1a1 so that k1 ⩾ −1. As n1/a1 ⩽ n/a, it follows that n1/n ⩽ a1/a.

Moreover, as a1 = (ln2
1 − k1)/r1 and a = (ln2 − k)/r, we get the inequality

n1

n
⩽

r

r1
· n1

n
· n1 − k1/ln1

n− k/ln
.

This implies that

1 ⩽
r

r1
· n1 − k1/ln1

n− k/ln
. (2.9)

We claim that as n > 32r3k, we have r > r1. Indeed, as n > 32r3k ⩾ 3k and k1 ⩾ −1, we get

n1 − k1/ln1

n− k/ln
⩽

n1 + 1/ln1

n− 1/3l
⩽

n1 + 1/n1

n1 + 2/3
, (2.10)

where the last inequality follows from the fact that n > n1 (so that n− n1 ⩾ 1).

As n > n1 and n > 3k, the first term of the inequality (2.10) is strictly smaller than 1. This
can be checked by analyzing the third term if n1 ⩾ 2 and the second term if n1 = 1 (recall that
under our assumption, n ⩾ 3). In any case, we get

n1 − k1/ln1

n− k/ln
< 1 ;
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hence the inequality (2.9) gives r > r1.

We now write the inequality (2.9) in a different form. More precisely, we have

1 ⩽
n1/r1
n/r

· 1− k1/ln
2
1

1− k/ln2
⩽

n1/r1
n/r

· 1 + 1/ln2
1

1− k/ln2
,

where the last equality follows from k1 ⩾ −1. As n > 32r3k, we see that 1 − k/ln2 > 0; hence
the previous inequality becomes

n1/r1
n/r

⩾
1− k/ln2

1 + 1/ln2
1

= 1− k/ln2 + 1/ln2
1

1 + 1/ln2
1

. (2.11)

We first want to show that n1/r1 ⩾ n/r. As the first term of the inequality (2.11) is an
integral multiple of 1/r1n, by the inequality (2.11), it is enough to show that

k/ln2 + 1/ln2
1

1 + 1/ln2
1

⩽
1

r1n
.

To do so, first notice that 1 + 1/ln2
1 > 1 and that as 1/ln2

1 ⩽ 1, we have

1/ln2
1

1 + 1/ln2
1

⩽
1

2
.

Moreover, as n > 32r3k, we get k/ln2 < 1/4. We then find that

1− k/ln2 + 1/ln2
1

1 + 1/ln2
1

>
1

4
,

so that, by inequality (2.11), we finally get

n1

r1
>

n

4r
.

This implies that n1 > n/4r; hence we get

1

ln2
1

<
1

l · n2/16r2
<

1

ln · 32r3k/16r2
=

1

2lrnk
⩽

1

2rn
.

Now, using again n > 32r3k, we even get that k/ln2 < 1/32r3n, hence

k/ln2 + 1/ln2
1

1 + 1/ln2
1

<
k

ln2
+

1

ln2
1

<
1

32r3n
+

1

2rn
<

1

rn
<

1

r1n
,

where the last inequality comes from r > r1.

We then have n1/r1 ⩾ n/r if n > 32r3k. To complete the proof, notice that if n1/r1 = n/r,
then r1/r = n1/n < a1/a. But this means that a1/r1 > a/r, and we are done.

We conclude this section with a proposition and a corollary, which allows us to pass from
a Mukai vector of rank 0 to a Mukai vector of strictly positive rank (see [Yos02, Proposition 3.14]
for a proof for stable sheaves).

We will also have to deal with surfaces whose Néron–Severi group has rank bigger than 1
and, in this case, we need an explicit lower bound on the Euler characteristic of the rank 0 Mukai
vector which makes possible checking the genericity of the polarizations for both Mukai vectors.

In order to give this bound, we recall that if S is a smooth projective surface, H is an ample
divisor on S and ξ ∈ NS(S) is the class of an effective curve, the set of numerical equivalence
classes of effective curves C on S such that C ·H ⩽ ξ ·H is finite.
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It follows that the set{(
C2 + 2

)
(ξ ·H)

2C ·H

∣∣∣∣C ⊆ S is an effective curve C ·H ⩽ ξ ·H
}

is bounded; we denote its maximum by NS,H,ξ.

Proposition 2.33. Let S be a projective K3 or Abelian surface, and set F := FK3 if S is a K3
and F := FAb if S is Abelian. Let H a primitive ample line bundle on S, and set h := c1(H).
Let k ∈ N∗, and let ξ ∈ NS(S) be the first Chern class of an effective divisor on S such that
ξ2 = 2k. Finally, let v = (0, ξ, a) be a Mukai vector on S, and assume that WIT(0) holds with
respect to F for every H-semistable sheaf E with Mukai vector v and that F 0(E) is locally free
(for example, assume a > p0 for p0 as in Lemma 2.28(2)).

(1) If S is K3, a > NS,H,ξ and H is both v-generic and ṽ-generic, the functor F induces
isomorphisms Mv(S,H) ≃ Mṽ(S,H) and M s

v (S,H) ≃ M s
ṽ (S,H).

(2) If S is Abelian, a > NS,H,ξ, H is v-generic and Ĥ is ṽ-generic, the functor F induces

isomorphisms Mv(S,H) ≃ Mṽ

(
Ŝ, Ĥ

)
, M s

v (S,H) ≃ M s
ṽ

(
Ŝ, Ĥ

)
, Kv(S,H) ≃ Kṽ

(
Ŝ, Ĥ

)
and

Ks
v(S,H) ≃ Ks

ṽ

(
Ŝ, Ĥ

)
.

Proof. As in the proof of Proposition 2.29, in order to get the statement, we just need to prove
that for a > NS,H,ξ, the sheaf F 0(E) is H-semistable in the K3 case and Ĥ-semistable in the
Abelian case.

The proof is by contradiction: we suppose that F 0(E) is not semistable and contradict in
several steps the H-semistability of E .

So, suppose that E is H-semistable with Mukai vector v = (0, ξ, a), where a > NS,H,ξ, and

suppose that F 0(E) is not H-semistable if S is K3, and that it is not Ĥ-semistable if S is Abelian.

Then F 0(E) has a desemistabilizing stable locally free subsheaf G1 with maximal reduced
Hilbert polynomial, and we set G2 := F 0(E)/G1. If S is K3, we write v(G1) = (a1,−ξ1, r1); if S is
Abelian, we write v(G1) =

(
a1,−ξ̂1, r1

)
.

Step 1: if S is K3, the class ξ1 is effective and ξ1 ̸= 0. This follows by repeating the argument
of Step 2 of Lemma 2.30.

Step 2: if S is Abelian, the class ξ̂1 is effective and ξ̂1 ̸= 0. This follows as in Step 3 of
Lemma 2.30.

Step 3: r1 ⩽ 0 for a > NS,H,ξ. First suppose that S is a K3 surface. Since G1 is H-stable, we
have v(G1)

2 ⩾ −2. Hence if r1 ⩾ 1, we get

−2 ⩽ v(G1)
2 = (ξ1)

2 − 2a1r1 ⩽ (ξ1)
2 − 2a1 .

For d := ξ ·H and d1 = ξ1 ·H, the inequality pH(G1) > pH
(
F 0(E)

)
implies −d1/a1 ⩾ −d/a and

hence a1 ⩾ ad1/d, so that

−2 ⩽ (ξ1)
2 − 2a

d1
d

.

Moreover, as a1 < a, the inequality a1 ⩾ ad1/d implies d1 < d

As ξ1 is an effective divisor such that ξ1 ·H = d1 < d, we have NS,H,ξ ⩾ ((ξ21 + 2)/2d1) · d,
and since a > NS,H,ξ, we obtain

−2 ⩽ (ξ1)
2 − 2a

d1
d

< (ξ1)
2 − 2

(
(ξ1)

2 + 2
)
d

2d1
· d1
d

= −2 ,

getting a contradiction.
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The same argument also works if S is Abelian, simply by replacing any occurrence of ξ, ξ1, H
and S by ξ̂, ξ̂1, Ĥ and Ŝ.

Step 4: the sheaf G1 verifies WIT(2) with respect to F̂ , and in particular r1 = 0. The first
part follows as in Step 4 of Lemma 2.30. Since r1 = rk

(
F̂ (G1)

)
, it has to be 0 by Step 3.

Step 5: the sheaf F̂ 2(G1) is a subsheaf of E. By the maximality of the reduced Hilbert poly-
nomial of G1, the sheaf G2 := F 0(E)/G1 is torsion-free. By applying the functor F̂ to the exact
sequence

0 −→ G1 −→ F 0(E) −→ G2 −→ 0 ,

we get the exact sequence

0 −→ F̂ 1(G2) −→ F̂ 2(G1) −→ E −→ F̂ 2(G2) −→ 0 , (2.12)

so it suffices to show that F̂ 1(G2) = 0.

First of all, notice that by Step 4, the rank of F̂ 2(G1) is r1 = 0. As F̂ 1(G2) ⊆ F̂ 2(G1), we
know that F̂ 1(G2) is a torsion sheaf.

If S is a K3 surface, the exact sequence (2.3) applied to G2 shows that F̂
1(G2) is an extension of

a subsheaf of G2 by a locally free sheaf. As G2 is torsion-free, it follows that F̂
1(G2) is torsion-free,

and since it is also a torsion sheaf, we obtain F̂ 1(G2) = 0.

If S is Abelian, the maximality of the reduced Hilbert polynomial of G1 among the Hilbert
polynomials of the subsheaves of F (E) implies that the slope of any subsheaf of G2 cannot be
bigger than the slope of G1, which is strictly negative by Step 2. Hence any subsheaf of G2 has
strictly negative slope and H0(G2 ⊗ L) = 0 for every L ∈ Pic0

(
Ŝ
)
; it follows that F̂ 0(G2) = 0.

As in the proof of Lemma 2.31, the spectral sequence

Ep,q
2 := F p

(
F̂ q(G2)

)
−→ Ep+q =

(
F ◦ F̂

)p+q
(G2) = G2[−2]p+q

then provides an inclusion i : F 1
(
F̂ 1(G2)

)
→ G2 and the equality F 0

(
F̂ 1(G2)

)
= 0. Since the

support of the torsion sheaf F̂ 1(G2) has dimension at most 1, we also have F 2
(
F̂ 1(G2)

)
= 0, and

F̂ 1(G2) satisfies WIT(1) with respect to F . The equality F 0
(
F̂ 1(G2)

)
= 0 implies that F̂ 1(G2)

has no 0-dimensional torsion; it follows that if F̂ 1(G2) ̸= 0, then c1
(
F̂ 1(G2)

)
would be the class

of an effective curve, and the same would hold for c1
(
F 1

(
F̂ 1(G2)

))
. But this is impossible since

F 1
(
F̂ 1(G2)

)
⊆ G2 and the slope of every subsheaf of G2 is negative. It follows that F̂ 1(G2)=0.

Step 6: conclusion of the proof. Suppose that S is K3. Recall that v(F (E)) = ṽ = (a,−ξ, 0)
and, by Step 4, v(G1) = (a1,−ξ1, 0) (with ξ1 effective and nonzero by Step 1). Since G1 is
a desemistabilizing subsheaf of F (E), we have −d1/a1 > −d/a or equivalently

a1
d1

>
a

d
. (2.13)

By Step 4, the sheaf G1 verifies WIT(2) with respect to F̂ ; hence v
(
F̂ 2(G1)

)
= (0, ξ1, a1), and

by Step 5, the sheaf F̂ 2(G1) is a subsheaf of E . The inequality (2.13) then implies that F̂ (G1) is
a desemistabilizing subsheaf for E , which is not possible since E is semistable.

The proof in the Abelian case is similar; simply replace ξ and ξ1 by ξ̂ and ξ̂1, respectively,
where necessary.

Remark 2.34. In the important case where ρ(S) = 1, Proposition 2.33 simply says that if v =
(0, ξ, a) and a ≫ 0, the functor F induces an isomorphism Mv(S,H) ≃ Mṽ(S,H) if S is K3 and
Kv(S,H) ≃ Kṽ

(
Ŝ, Ĥ

)
if S is Abelian. This easier statement allows us to prove Theorem 1.7 with
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the exception of the case where the rank of v is 0 and ρ(S) > 1. To handle this remaining case,
we need the following corollary of Proposition 2.33.

Corollary 2.35. Let S be a projective K3 or Abelian surface, k ∈ N∗ and ξ ∈ NS(S) the
first Chern class of an effective divisor on S such that ξ2 = 2k. For a nonzero a ∈ Z, let
v = (0, ξ, a) be a Mukai vector on S, and let H be a v-generic polarization. For d ∈ Z, set
vdH := v · ch(O(dH)) = (0, ξ, a+ dξ ·H).

(1) If S is K3, there exist a d0 ∈ N such that a + d0ξ · H > 0 and a ṽd0H -generic polariza-
tion H ′ such that the functor FK3 induces isomorphisms Mvd0H

(S,H) ≃ Mṽd0H
(S,H ′) and

M s
vd0H

(S,H) ≃ M s
ṽd0H

(S,H ′).

(2) If S is Abelian, there exist a d0 ∈ N such that a + d0ξ · H > 0 and a ṽd0H -generic polar-
ization Ĥ ′ such that the functor FAb induces isomorphisms Mvd0H

(S,H) ≃ Mṽd0H
(Ŝ, Ĥ ′),

M s
vd0H

(S,H)≃M s
ṽd0H

(Ŝ, Ĥ ′), Kvd0H
(S,H)≃Kṽd0H

(Ŝ, Ĥ ′) and Ks
vd0H

(S,H)≃Ks
ṽd0H

(Ŝ, Ĥ ′).

Proof. We only deal with the case where S is K3, the Abelian case being very similar.

We first claim that if U is a small compact neighbourhood of H in the ample cone of S,
then there is an NU ∈ N such that NU > NS,L,ξ for every L ∈ U . To prove this, let NE(S) be
the closure in NS(S) ⊗ R of the cone of effective curves of S. For every L ∈ Amp(S), we define
FL : NE(S) → R as FL(α) := α · L for every α ∈ NE(S) and let

DL :=
{
α ∈ NE(S) |FL(α) ⩽ ξ · L

}
.

As a consequence of Kleiman’s ampleness criterion (see [KM98, Corollary 1.19(2)]), the locus DL

is compact for every L ∈ U . As U is compact, it follows that
⋃

L∈U DL is compact as well, so its
subset Y of integral nonzero classes is finite.

Fix now a nonzero class C ∈ NE(S). The function

fC : U −→ R , fC(L) :=
(C2 + 2)(ξ · L)

2C · L
is continuous. As U is compact, the function fC has a maximum, and since Y is finite, there
exists an NU > NS,L,ξ for every L ∈ U .

Now choose d0 ∈ N such that a + d0ξ · H > NU and such that every H-semistable sheaf E
with Mukai vector vd0H satisfies WIT(0) with respect to FK3 and FK3(E) is locally free (this is
possible by Lemma 2.28(2)).

By Lemma 2.6(2), the polarization H is also vd0H -generic, so it lies in a vd0H -chamber C; as
the ṽd0H -walls are locally finite, there is a ṽd0H -generic polarization H ′ ∈ U ∩ C. But then
Mvd0H

(S,H) = Mvd0H
(S,H ′) (as H,H ′ ∈ C), and as a + d0ξ · H > NS,H′,ξ (since H ′ ∈

U), by Proposition 2.33, the functor FK3 induces an isomorphism between Mvd0H
(S,H ′) and

Mṽd0H
(S,H ′), concluding the proof.

2.5 The proof of Theorem 1.7

This section is devoted to the proof of Theorem 1.7. The goal is to show that if S is a projective K3
(respectively, Abelian) surface, v is a Mukai vector on S of type (m, k) and H is a polarization
on S which is general with respect to v, the locally trivial deformation equivalence class of
Mv(S,H) only depends on (m, k). Before giving the proof, we provide several results we will
need.
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2.5.1 Changing polarization and first Chern class. We first show the following lemma, which
allows us, if the rank of the Mukai vector is strictly positive, to suppose that the first Chern
class of the Mukai vector is a multiple of the polarization. As a consequence, this will allow us
to suppose the Néron–Severi group of S to have rank 1.

Lemma 2.36. Let m, k ∈ N with m, k > 0, and let S be a projective K3 or Abelian surface and v
a Mukai vector on S of type (m, k) and of the form v = m(r, ξ, a) with r > 0. Let g := gcd(r, ξ),
and suppose that H is a v-generic polarization on S. Moreover, suppose ρ(S) ⩾ 2, and let C be
the v-chamber such that H ∈ C. Then there exist a Mukai vector v′ = m(r, ξ′, a′) and a primitive
polarization H ′ in C such that:

(1) v′ is equivalent to v;

(2) ξ′ = gc1(H
′);

(3) (H ′)2 ≫ 0.

In particular, Mv(S,H) ≃ Mv′(S,H
′) and M s

v (S,H) ≃ M s
v′(S

′, H ′). If S is Abelian, we have
Kv(S,H) ≃ Kv′(S,H

′) and Ks
v(S,H) ≃ Ks

v′(S,H
′).

Proof. This is a generalization of [O’G97, Lemma II.6]. First, notice that as g := gcd(r, ξ), there
are two coprime integers s, p ∈ N and a primitive class ζ ∈ NS(S) such that r = gs and ξ = gpζ.

Replacing H with another polarization inside C if necessary, we may suppose ξ /∈ R · c1(H).
Moreover, since C is an open cone in NS(S), we may also assume that the sublattice Λ ⊆ NS(S)
spanned by c1(H) and ζ is saturated.

Now, let d ∈ N, and set v′ := v · ch(OS(dH)). Then v′ is equivalent to v, and

v′ = m
(
r, ξ + rdc1(H), a+ dξ ·H + rd2H2/2

)
= m

(
gs, gpζ + gsdc1(H), a+ dgpζ ·H + gsd2H2/2

)
.

Now observe that if d ≫ 0, then pζ + sdc1(H) ∈ C. If we let H ′ be an ample divisor such that
c1(H

′) = pζ + sdc1(H), we have

ξ′ := gpζ + gsdc1(H) = g(pζ + sdc1(H)) = gc1(H
′) .

As gcd(s, p) = 1, if we choose d such that gcd(d, p) = 1, the class c1(H
′) is primitive in Λ, and

since Λ is saturated, it is primitive in NS(S). The isomorphism Mv(S,H) ≃ Mv′(S,H
′) follows

from Lemma 2.24(2).

Finally, as d ≫ 0, we have

(H ′)2 = p2ζ2 + 2psdζ ·H + s2d2H2 ≫ 0 .

To conclude the proof, we notice that if S is Abelian, then by Lemma 2.24(1), the tensoriza-
tion with OS(dH) induces an isomorphism between the fibers of the corresponding Yoshioka
fibrations.

2.5.2 Deformation to elliptic surfaces. Elliptic surfaces having a section and whose Picard
number is 2 prove to be particularly useful, as in this case we have a privileged class of polariza-
tions, called v-suitable. Let Y be an elliptic K3 or Abelian surface such that NS(Y ) = Z ·f⊕Z ·σ,
where f is the class of a fiber and σ is the class of a section. Let v be a Mukai vector on Y of
the form v = (r, ξ, a) with r > 0, and recall the following definition (see [O’G97]).

Definition 2.37. A polarization H on Y is called v-suitable if H is in the unique v-chamber
whose closure contains f .
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We have an easy numerical criterion to guarantee that a polarization on Y is v-suitable (see
[O’G97, Lemma I.0.3] for K3 surfaces, and point (2) of [PR13, Lemma 2.24] for Abelian surfaces).

Lemma 2.38. Let Y be a projective elliptic K3 or Abelian surface with NS(Y ) = Z · σ ⊕ Z · f ,
where σ is the class of a section and f is the class of a fiber, and let v = (r, ξ, a) be a Mukai
vector on Y such that r > 0. Let H be a polarization, and suppose c1(H) = σ + tf for some
t ∈ Z.

(1) If Y is K3, then H is v-suitable if t ⩾ |v|+ 1.

(2) If Y is Abelian, then H is v-suitable if t ⩾ |v|.

In the next lemma, by deforming a triple (S, v,H) to a triple (Y, v′, H ′), where Y is an elliptic
surface and H ′ is v′-suitable, we show that the locally trivial deformation class of Mv(S,H)
(respectively, Kv) only depends on numerical data associated with v. In the particular and
important case where the rank r is strictly positive and prime to the first Chern class of v, it
only depends on r and v2.

Lemma 2.39. Let m, k ∈ N with m, k > 0, and for i = 1, 2, let Si be a projective K3 (respectively,
Abelian) surface, vi a Mukai vector on Si of type (m, k) and Hi a vi-generic polarization on Si.
Write vi = m(ri, ξi, ai) for i = 1, 2, and suppose that the following conditions are verified:

(1) r1 = r2 =: r > 0;

(2) gcd(r, ξ1) = gcd(r, ξ2) =: g;

(3) a1 ≡ a2 mod g.

Then Mv1(S1, H1) and Mv2(S2, H2) (respectively, Kv1(S1, H1) and Kv2(S2, H2)) are locally triv-
ially deformation equivalent.

Proof. The argument we present here was first used by O’Grady in [O’G97] and by Yoshioka
in [Yos99a] for primitive Mukai vectors, and by the authors in [PR13] in the case m = 2 and
k = 1.

First, we may assume ρ(Si) > 1. Indeed, consider a deformation (Xi,Li,Hi) of the triple
(Si, vi, Hi) over a smooth connected curve Ci inducing a nontrivial deformation of Si. By [Ogui00,
Main Theorem], the locus parametrizing points t ∈ Ci such that ρ(Xi,t) > 1 is dense in the
classical topology of Ci. Since the locus of points t ∈ Ci such that Hi,t is not general with
respect to vi,t is finite (see Remark 2.18) and since by Lemma 2.21(1) and Lemma 2.10, we
may replace a polarization which is general with respect to Mukai vector v with a v-generic
polarization, we may suppose ρ(Si) > 1.

Since the class of ai modulo g does not change when replacing vi by an equivalent Mukai
vector, by Lemma 2.36, we may even suppose vi = m(r, gc1(Hi), ai), where Hi is ample and
H2

i = 2di with di ≫ 0.

Let Y be a K3 or an Abelian surface with an elliptic fibration and such that NS(Y ) =
Z · σ⊕Z · f , where f is the class of a fiber and σ is the class of a section. For i = 1, 2, because of
the connectedness of the moduli spaces of polarized K3 or Abelian surfaces, there are a smooth,
connected curve Ti and a deformation (Xi,Li,Hi) over Ti of (Si, vi, Hi) such that there is a
ti ∈ Ti with the property (Xi,ti , vi,ti , Hi,ti) = (Y, v′i, H

′
i), where:

(1) c1(H
′
i) = σ + pif ;

(2) v′i = m(r, gc1(H
′
i), ai).
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By Lemma 2.21(1), the varieties Mvi(Si, Hi) and Mv′i
(Y,H ′

i) are locally trivially deformation

equivalent. Let ξ′i := c1(H
′
i). Notice that (v′1)

2 = (v′2)
2 and that they have the same rank. Hence

|v′1| = |v′2|, so by Lemma 2.38 a polarization is v′1-suitable if and only if it is v′2-suitable.

Notice that pi = d − σ2/2; that is, pi = di + 1 if Y is a K3, and pi = di if Y is Abelian.
Hence pi ⩾ d ≫ 0 in both cases, and by Lemma 2.38, we have that H ′

i is v
′
i-suitable for i = 1, 2.

Hence H ′
1 and H ′

2 are in the same v′1-chamber C. Using Proposition 2.5, we then change to a
common generic polarization H ∈ C, which is v′i-generic for i = 1, 2.

The statement for Mv1(S1, H1) and Mv2(S2, H2) follows if we show that the Mukai vectors
v′1 = m(r, g(σ+ p1f), a1) and v′2 = m(r, g(σ+ p2f), a2) are equivalent since, by Lemma 2.24(2) ,
this implies that Mv′1

(Y,H) ≃ Mv′2
(Y,H).

As (v′1)
2 = (v′2)

2, we have

g2σ2 + 2g2p1 − 2ra1 = g2σ2 + 2g2p2 − 2ra2 ,

hence

2r(a2 − a1) = 2g2(p2 − p1)

and since g divides a2 − a1, we see that r divides g(p2 − p1). So there exists an l ∈ Z such that
g(p2 − p1) = rl. If we let L ∈ Pic(Y ) be a line bundle whose first Chern class is lf , the last
equality implies that v′2 and v′1 · ch(L) have the same component in NS(Y ). Since they also have
the same rank and the same square, we get v′2 = v′1 · ch(L), and v′2 and v′1 are equivalent.

If we replace Lemma 2.21(1) with Lemma 2.21(2), then as the tensorization with a line bundle
preserves the Yoshioka fibration, the same argument shows that if S1 and S2 are both Abelian
surfaces, then Kv1(S1, H1) and Kv2(S2, H2) are locally trivially deformation equivalent.

2.5.3 A numerical result on equivalent Mukai vectors. The following numerical lemma, to-
gether with Propositions 2.29 and 2.33, will allow us to show that certain moduli spaces param-
etrizing semistable sheaves with different ranks, on a K3 or Abelian surface whose Néron–Severi
group has rank 1, are isomorphic.

Lemma 2.40. Let m, k ∈ N with m, k > 0, and let S be a projective K3 or Abelian surface with
NS(S) = Z · h, where h = c1(H) and H is an ample line bundle. Let v = m(r, nh, a) be a Mukai
vector of type (m, k), where r > 0. For every s ∈ Z, let

vsH := v · ch(OS(sH)) = m(r, nsh, as) .

(1) For every N ∈ N, there is an s > N such that ns ≫ 0 and gcd(ns, as) = 1.

(2) If n = 1 and a = 0, then for every N ∈ N, there is an s > N such that ns ≫ 0,
gcd(ns, as) = 1 and as ∈ 2kZ.

Proof. Write H2 = 2l. A direct computation shows that

ns = n+ rs = ns−1 + r , as = a+ 2lns+ rls2 . (2.14)

Since 2ln2 − 2ra = 2ln2
s − 2ras = 2k, if there exists an s such that ns and as are not coprime,

a common prime divisor p has to divide k.

Let p be a prime factor of k dividing both ns0 and as0 for some s0 ∈ Z. Since the cup product
with the Chern character of a line bundle gives an isometry of the Mukai lattice, and since the
Mukai vector (r, nh, a) is primitive, the Mukai vector (r, ns0h, as0) is primitive as well, so p if
divides both ns0 and as0 , then it cannot divide r.
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Now, if p also divides ns and as, then p has to divide the difference ns − ns0 = r(s − s0);
hence p is a factor of s− s0, and we have s = s0 + pm for m ∈ Z.

Since the prime divisors of k are finite, by choosing s outside the union of a finite number of
arithmetic sequences, we obtain that gcd(ns, as) = 1; moreover, we may choose s ≫ 0 in order
to obtain ns ≫ 0.

If we now suppose n = 1 and a = 0 (so that l = k), then equations (2.14) give ns = 1 + rs
and as = 2ls+ rls2 = 2ks+ rks2.

If p is a prime number dividing both as and ns, then p divides k. Choosing s = 2ks′ for some
s′ ∈ Z, then any prime dividing k cannot divide ns = 1 + 2ks′r; hence as and ns are coprime.
Moreover, since s is even, 2k divides as, and, finally, ns ≫ 0 if s′ is chosen big enough.

Conclusion of the proof of Theorem 1.7. We start with the proof of point (1). The proof for K3
and for Abelian surfaces is formally the same; to make the notation easier, we only discuss the
case of K3 surfaces and leave to the reader the obvious modifications for the Abelian case.

For every ℓ ∈ N with ℓ > 0, let Xℓ be a projective K3 with NS(Xℓ) = Z ·hℓ, where hℓ = c1(Hℓ)
and Hℓ is an ample divisor with H2

ℓ = 2ℓ. Let uℓ := m(0, hℓ, 0), so uℓ is a Mukai vector of type
(m, ℓ) and Hℓ is uℓ-generic.

We will show that if S is a K3 surface, v = m(r, ξ, a) is a Mukai vector of type (m, k) on S
and H is a polarization on S which is general with respect to v, then Mv(S,H) is locally trivially
deformation equivalent to Muk

(Xk, Hk).

We first notice that we can assume H to be a v-generic polarization and a ̸= 0 if r = 0.
This follows from Lemma 2.10 if r > 0 and from Lemmas 2.10 and 2.12 if r = 0. Under these
assumptions, we may now start the proof, that will be in several steps: in the first, we reduce to
r > 0; in the second, we reduce to r and ξ relatively prime; in the third, we reduce to r ∈ 2kN;
the fourth step concludes the proof.

Step 1: reduction to r > 0. If v = m(0, ξ, a), where ξ is effective and a ̸= 0, then by
Lemma 2.24(1), for d ∈ Z, the tensorization byO(dH) induces an isomorphism betweenMv(S,H)
and MvdH (S,H). By Corollary 2.35, there exist a d0 ∈ N and a ṽd0H -generic polarization H ′ such
that FK3 induces an isomorphism between Mvd0H

(S,H) and Mṽd0H
(S,H ′) and the rank of ṽd0H

is strictly positive.

Step 2: reduction to r ≫ 0 and prime with ξ. By Step 1, we may suppose r > 0. By
Lemma 2.36, we may even suppose v = m(r, ξ, a) with ξ = nc1(H). We set ℓ := H2/2 and
consider the Mukai vector v′ = m(r, nhℓ, a) on Xℓ. Notice that v′ is of type (m, k) and that Hℓ

is v′-generic.

As the moduli spaces of polarized K3 are connected, the moduli spaces Mv(S,H) and
Mv′(Xℓ, Hℓ) are locally trivially deformation equivalent by Lemma 2.21. For s ∈ Z, write
v′s := v′sHl

= m(r, nshl, as). By Lemma 2.24(1), we have Mv′(Xℓ, Hℓ) ≃ Mv′s(Xℓ, Hℓ) and, by
Lemma 2.40(1), there is an s ∈ Z such that ns ≫ 0 and gcd(ns, as) = 1.

As ns ≫ 0, by Proposition 2.29, we get Mv′s(Xℓ, Hℓ) ≃ M
ṽ′s
(Xℓ, Hℓ), and, moreover, since

m, k, r are fixed, we may also assume as ≫ 0. Finally, as ṽ′s = m(as, nshl, r), gcd(as, ns) = 1
and as ≫ 0, we conclude that it is sufficient to prove the theorem for Mukai vectors of the form
m(r, ξ, a) with r ≫ 0 and prime to ξ.

Step 3: reduction to r ∈ 2kZ with r ≫ 0 and prime to ξ. Since for a nontrivial deformation
of a K3, the locus of the base where the rank of the Néron–Severi group jumps is dense in the

380



ISV from moduli spaces of sheaves

classical topology (see [Ogui00]) and, by Proposition 2.14, the locus where the polarization is
not general is closed, deforming S if necessary, by Lemma 2.21, we may assume ρ(S) ⩾ 2.

By Step 2 and Lemma 2.36, we can suppose v = m(r, c1(H), a), where r ≫ 0. On the
surface Xk, we consider the Mukai vector v′′ = m(r, hk, 0), which is of type (m, k); moreover,
Hk is v′′-generic. By Lemma 2.39, we know that Mv(S,H) and Mv′′(Xk, Hk) are locally trivially
deformation equivalent.

Now let s ∈ Z and v′′s := v′′sHk
= m(r, nshk, as), where ns = 1 + rs and as = 2ks + rks2. By

Lemma 2.24(1), we have Mv′′(Xk, Hk) ≃ Mv′′s (Xk, Hk), and by Lemma 2.40(2), we can choose s
such that ns ≫ 0, as ∈ 2kZ and gcd(ns, as) = 1.

Moreover, as ns ≫ 0, by Proposition 2.29, we have Mv′′s (Xk, Hk) ≃ M
ṽ′′s
(Xk, Hk). But ṽ′′s =

m(as, nshk, r) and as ∈ 2kZ and, moreover, as > ns ≫ 0. In conclusion, we just need to prove
the theorem for Mukai vectors of the form m(r, ξ, a) such that r ≫ 0, r is an even multiple of k,
and r and ξ are coprime.

Step 4: conclusion. By Step 3, we may suppose v = m(r, ξ, a), with r = 2kp prime to ξ and
p ≫ 0. We show that Mv(S,H) is locally trivially deformation equivalent to Muk

(Xk, Hk).

By Lemma 2.39, we know that Mv(S,H) is locally trivially deformation equivalent to
Mv′′′(Xk, Hk), where v

′′′ = m(2kp, hk, 0). As p ≫ 0, by Proposition 2.33, we haveMv′′′(Xk, Hk) ≃
M

ṽ′′′
(Xk, Hk), where ṽ′′′ = m(0, hk, 2kp). But now notice that ṽ′′′ · ch(OXk

(−pHk)) = uk, so by
Lemma 2.24(1), we have M

ṽ′′′
(Xk, Hk) ≃ Muk

(Xk, Hk), concluding the proof of point (1).

We are now in the position to prove point (2) of the statement. To do so, notice that the
equivalence in point (1) in the Abelian case is obtained using deformations of the moduli spaces
induced by deformations of the corresponding triple along smooth, connected varieties, and iso-
morphisms between moduli spaces induced either by tensor products with line bundles or by the
Fourier–Mukai transform whose kernel is the Poincaré line bundle. Since the Yoshioka fibration
is preserved by these isomorphisms and, by Lemmas 2.20 and 2.21, a deformation of (S, v,H)
along a smooth connected variety also induces a locally trivial deformation of the fibers of the
Yoshioka fibrations, point (2) of the statement is implied by point (1).

3. The moduli spaces are irreducible symplectic varieties

This section is devoted to the proof of Theorem 1.10: if m, k ∈ N with m, k > 0, S is a projec-
tive K3 or Abelian surface, v is a Mukai vector on S of type (m, k) and H is a polarization on
S that is general with respect to v, then Mv(S,H), if S is a K3, and Kv(S,H), if S is Abelian,
are irreducible symplectic varieties.

To do so, we first show in Section 3.1 that if S is a projective K3 surface and H is general with
respect to the Mukai vector v, then Mv(S,H) and M s

v (S,H) are simply connected. Similarly, if
S is an Abelian surface, then Kv(S,H) and Ks

v(S,H) are simply connected (with the exception
of the case (m, k) = (2, 1), where Kv(S,H) is still simply connected but the fundamental group
of Ks

v(S,H) is Z/2Z).
This will allow us to show that the exterior algebra of reflexive forms on any finite quasi-

étale cover of Mv(S,H) (respectively, of Kv(S,H)) is generated by the reflexive pull-back of a
symplectic form on Mv(S,H) (respectively, on Kv(S,H)): this will be done in Section 3.2, by
showing that for a particular choice of S, v and H, there is a rational dominant map from a
moduli space Mu(S,H) (respectively, Ku(S,H)) with primitive Mukai vector to the moduli space
Mv(S,H) (respectively, Kv(S,H)).
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3.1 Simple connectedness

We first show in this section that for H general with respect to v, the moduli spaces Mv(S,H)
and M s

v (S,H) (respectively, Kv(S,H) and Ks
v(S,H)) are simply connected. We will divide the

proof of this into two main parts: the first one is devoted to the case of K3 surfaces; in the
second, we will consider Abelian surfaces. In both cases, the proof has the same structure: we
first show the simple connectedness of the moduli space associated with a particular choice of the
surface S, of the Mukai vector v and of the polarization, and then use Theorem 1.7 to conclude.

Before doing this, we state and prove the following result about the codimension of the subset
of reducible curves in the linear system of a multiple of the polarization on a K3 surface with
Picard number 1.

Lemma 3.1. Let S be a projective K3 surface or an Abelian surface such that NS(S) = Z · h,
where h = c1(H) and H is an ample line bundle such that H2 = 2k. Let m ∈ N with m > 0,
and consider the subset R ⊆ |mH| parametrizing reducible curves. If (m, k) ̸= (2, 1), then
codim|mH|(R) ⩾ 2.

Proof. If C ∈ |mH| is a reducible curve, then if S is K3 (respectively, if S is Abelian), there
must be 1 ⩽ m1,m2 ⩽ m such that m = m1 +m2 and two curves C1 ∈ |m1H| and C2 ∈ |m2H|
(respectively, C1 ∈ |m1H + L| and C2 ∈ |m2H − L| for some L ∈ Ŝ) such that C = C1 + C2.

For every 1 ⩽ m1,m2 ⩽ m such that m1 +m2 = m, we let

Pm1,m2 :=


|m1H| × |m2H| , S is K3,∏
L∈Ŝ

|m1H + L| × |m2H − L| , S is Abelian.

We then get that

R =
⋃

1⩽m1,m2⩽m,
m1+m2=m

Pm1,m2 .

Notice that

dim(|pH|) =

{
1 + kp2 , S is K3,

kp2 − 1 , S is Abelian,

and that if S is Abelian and L ∈ Ŝ, then dim(|pH|) = dim(|pH| ± L). It follows that

dim(Pm1,m2) =

{
2 + k

(
m2

1 +m2
2

)
, S is K3,

k
(
m2

1 +m2
2

)
, S is Abelian,

and the codimension of Pm1,m2 in |mH| is 2km1m2 − 1.

Hence, in order for R to have codimension 1 in |mH|, there must be 1 ⩽ m1,m2 ⩽ m such
that m1 + m2 = m and such that 2m1m2k − 1 = 1. Hence m1,m2, k = 1, so that m = 2 and
k = 1. Thus, if (m, k) ̸= (2, 1), we get codim|mH|(R) ⩾ 2.

Under the hypothesis of Lemma 3.1, we see that the only case where R is a divisor in |mH|
is when (m, k) = (2, 1).

3.1.1 The case of K3 surfaces. Let X be a projective K3 surface with Pic(X) = Z · OX(H),
where H is an ample divisor such that H2 = 2k. We let h := c1(H), and we choose m ∈ N with
m > 0.
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We let V be the open subset of |mH| of smooth curves and U the open subset of |mH|
of integral curves. For u = m(0, h, 0), we will consider the morphism pu : Mu(X,H) → |mH|
mapping a sheaf to its Fitting subscheme (see [Eis95, Corollary 20.5] and [LeP93]).

Let JV := p−1
u (V ) and JU := p−1

u (U), which are two open subsets of Mu(X,H). Notice that if
C ∈ V , then F ∈ p−1

u (C) if and only if there is an L ∈ Pic(C) of degree m2k such that F = j∗L,
where j : C → X is the inclusion. In particular, we have an isomorphism3

p−1
u (C) → Picm

2k(C)

obtained by mapping F = j∗L to L.

Moreover, if C ∈ U , then F ∈ p−1
u (C) if and only if F = j∗L, where j : C → X is the

inclusion, and L is a rank 1 torsion-free sheaf on C of degree m2k, that is, such that χ(L) = 0.
We notice that all these sheaves are H-stable with Mukai vector u; hence we have

JV ⊆ JU ⊆ M s
u(X,H) ⊆ Mu(X,H) .

We start by showing the following (the proof is a generalization of the argument proposed in
[O’G99, Section 4]).

Proposition 3.2. The moduli spaces Mu(X,H) and M s
u(X,H) are simply connected.

Proof. Notice that u is a Mukai vector of type (m, k) and that H is u-generic. If m = 1,
then Mu(X,H) = M s

u(X,H); this is an irreducible symplectic manifold, and we are done. For
(m, k) = (2, 1), see [O’G99, Section 4].

For m ⩾ 2, we have that Mu(X,H) is a normal, irreducible projective variety (by [KLS06,
Theorem 4.4]). Since for normal quasi-projective varieties, the inclusion of an open subvariety
induces a surjection on the fundamental groups (see [Kol95, Proposition 2.10]), the chain of
inclusions

JV

j
↪−−→ JU ↪−−→ M s

u(X,H) ↪−−→ Mu(X,H)

of smooth open subvarieties of Mu(X,H) given before induces a chain of surjections

π1(JV )
π1(j)−→ π1(JU ) −→ π1(M

s
u(X,H)) −→ π1(Mu(X,H)) .

We then just need to show that π1(j) is the trivial map.

To show this, notice that the homotopy exact sequence of the fibration pu|JV
: JV → V gives

the exact sequence

π1
(
p−1
u (C)

)
−→ π1(JV ) −→ π1(V ) −→ {1} ,

where C ∈ V . As remarked above, we have p−1(C) ≃ Picm
2k(C); hence the exact sequence is

π1
(
Picm

2k(C)
) jC−→ π1(JV ) −→ π1(V ) −→ {1} . (3.1)

We start by proving the following.

Lemma 3.3. The morphism π1(j) ◦ jC : π1
(
Picm

2k(C)
)
→ π1(JU ) is trivial.

Proof. Let ℓ ⊆ |mH| be a generic line, and suppose that it is generated by two smooth curves
intersecting transversally. By Lemma 3.1, we can suppose that all the curves in ℓ are reduced
and irreducible.

3Here and in what follows, if C is a smooth projective curve and d ∈ Z, we let Picd(C) be the set of line bundles
of degree d on C.
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If b : X̃ → X is the blow-up of X along the base locus Bs(ℓ) of ℓ, then X̃ is the total space
of ℓ. This means that for every s ∈ X̃, there is a unique curve Cs of ℓ such that s ∈ C̃s, where
C̃s is the proper transform of Cs. We have a natural fibration pℓ : X̃ → ℓ mapping s ∈ X̃ to Cs.

We now define an embedding g : X̃ → JU of fibrations over ℓ. First, fix a p ∈ Bs(ℓ), and
let d := 1 + m2k. Let s ∈ X̃; then b(s) ∈ Cs. Consider the rank 1 torsion-free sheaf Ls :=
Ib(s) ⊗OCs(dp), whose degree on Cs is m2k. If js : Cs → X is the inclusion, then js∗(Ls) ∈ JU ,
and we let g(s) := j∗Ls. The inclusion g then fits in a commutative diagram (where i is the
inclusion)

X̃ JU

ℓ U .

g

pℓ pu

i

Notice that if t ∈ ℓ is a generic point and C is the corresponding curve in ℓ, then p−1
ℓ (t) = C̃, the

proper transform of C under b, while p−1
u (t) ≃ Picm

2k(C). The restriction gt : C̃ → Picm
2k(C) of

g to p−1
ℓ (t) can be identified with the Abel–Jacobi map from C to its Jacobian. It then induces

a surjective morphism π1(gt) : π1
(
C̃
)
→ π1

(
Picm

2k(C)
)
.

Now, let C ∈ ℓ be a smooth curve. We have a commutative diagram

C̃ Picm
2k(C)

X̃ JU ,

gt

i
ĩ

g

inducing a commutative diagram

π1
(
C̃
)

π1
(
Picm

2k(C)
)

π1
(
X̃
)

π1(JU ) .

π1(gt)

π1(i) π1(j) ◦ jC

π1(g)

As π1
(
X̃
)
= {1} and the morphism π1(gt) is surjective, it follows that π1(j) ◦ jC is trivial, thus

concluding the proof.

An immediate consequence of Lemma 3.3 is that the surjective morphism π1(j) factors
through a surjective morphism

π1(j) : π1(JV )/im(jC) −→ π1(JU ) .

The exact sequence (3.1) gives an isomorphism between π1(V ) and π1(JV )/im(jC); hence we get
a surjective map ι : π1(V ) → π1(JU ), which is then trivial if and only if π1(j) is trivial. We then
just need to show that ι is trivial.

To do so, consider the generic line ℓ ⊆ |mH| of the proof of Lemma 3.3. All the curves
parametrized by ℓ are reduced and irreducible, and we can suppose that ℓ is transversal to
W := U \ V , where ℓ ∩W := {x1, . . . , xp} is given by smooth points of W .

As ℓ is generic, by Zariski’s main theorem (see [Voi03, Theorem 3.22]), the inclusion of
ℓ \ W in V gives a surjection π1(ℓ \ W ) → π1(V ); hence we finally get a surjective morphism
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ιℓ : π1(ℓ \W ) → π1(JU ), and we just need to show that ιℓ is trivial. More precisely, if γ1, . . . , γp
are the generators of π1(ℓ \W ), we need to show that ιℓ(γi) is trivial.

Now, notice that the fibration pℓ : X̃ → ℓ has a section σℓ (fixing p ∈ Bs(ℓ), we let σℓ(t) :=
π−1(p) ∩ p−1

ℓ (t)). Hence every γi has a lifting γ̃i in π1
(
X̃
)
, and, by construction, its image

in π1(JU ) under π1(g) is ιℓ(γi). But as π1
(
X̃
)
= π1(X) (since π : X̃ → X is a blow-up) and

as π1(X) is trivial (since X is K3), it follows that ιℓ(γi) = 0.

The main consequence of Proposition 3.2 is that the moduli spaces of (semi)stable sheaves
associated with (m, k)-triples are simply connected.

Theorem 3.4. Let m, k ∈ N with m, k > 0, and let S be a projective K3 surface, v a Mukai
vector on S of type (m, k) and H a polarization that is general with respect to v. Then Mv(S,H)
and M s

v (S,H) are simply connected.

Proof. First suppose m = 1, that v is a Mukai vector such that if v = (0, v1, v2), then v2 ̸= 0, and
that H is v-generic. In this case, we then have Mv(S,H) = M s

v (S,H). By [O’G97] and [Yos99a],
we know that Mv(S,H) is an irreducible symplectic manifold, and we are done.

If v is any Mukai vector of type (1, k) and H is general with respect to v, the result follows
from the case we considered above and by Lemmas 2.10, 2.12 and 2.16.

Now fix m ⩾ 2 and k ⩾ 1. By Theorem 1.7(1), the moduli spaces arising from K3 surfaces,
Mukai vectors of type (m, k) and polarization which are general with respect to them are all
deformation equivalent. As this deformation equivalence is obtained using only isomorphisms of
moduli spaces (coming from Fourier–Mukai transforms) and deformations of the moduli spaces
induced by deformations of triples, by Lemma 2.22(1), these deformation equivalent moduli
spaces are also homeomorphic, and the same holds for their stable (that is, smooth) loci.

It is then enough to prove that Mv(S,H) and M s
v (S,H) are simply connected for one partic-

ular choice of S, v and H, where v is of type (m, k) and H is a general with respect to v. Hence
the result follows from Proposition 3.2.

3.1.2 The case of Abelian surfaces. Let A be an Abelian surface with NS(A) = Z · h, where
h = c1(H) and H is an ample divisor such that H2 = 2k. We let h := c1(H), m ∈ N and
u := m(0, h, 0).

Let YmH be the Hilbert scheme of curves on A which are deformations of curves in |mH|,
and let pu : Mu(A,H) → YmH be the morphism mapping a sheaf to its Fitting subscheme. We
moreover let pKu : Ku(A,H) → |mH| be the restriction of pu to Ku(A,H).

We first prove simple connectedness in the particular case of Kv(A,H) and Ks
v(A,H).

Proposition 3.5. If (m, k) ̸= (2, 1), then Ku(A,H) and Ks
u(A,H) are simply connected.

Proof. Notice that u is a Mukai vector of type (m, k) and that H is u-generic. If m = 1, then
Ku(A,H) = Ks

u(A,H), and this is a point (if k = 1) or an irreducible symplectic manifold (if
k > 1), and we are done.

For m ⩾ 2, we have that Ku(A,H) is a normal, irreducible projective variety (see [PR14,
Remark A.1]). As a consequence, we have a surjective map π1(K

s
u(A,H)) → π1(Ku(A,H)) (see

[Kol95, Proposition 2.10]), and it will be sufficient to prove that Ks
u(A,H) is simply connected.

To show this, let pKu|Ks
u(A,H) : K

s
u(A,H) → |mH| be the restriction of pKu to Ks

u(A,H). By the

theorem in [GM88, Section 1.1, Part II], the fundamental group of a smooth connected variety
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admitting a dominant mapping to PN (for some N) is generated by the fundamental group of
the inverse image of a generic line in PN . As a consequence, if ℓ ⊆ |mH| is a generic line and

K0 :=
(
pKu|Ks

u(A,H)

)−1
(ℓ) ⊆ Ks

u(A,H), we have a surjective morphism π1
(
K0

)
→ π1(K

s
u(A,H)).

It is then enough to show that K0 is simply connected.

As ℓ is generic in |mH|, by Bertini’s theorem, we know that K0 is smooth. Moreover, by
Lemma 3.1, all the curves parametrized by ℓ are reduced and irreducible. It then follows that
K0 =

(
pKu

)−1
(ℓ).

To show that K0 is simply connected, we show that K0 is a fiber of an isotrivial fibration and
then use the homotopy exact sequence of this fibration to conclude. The domain of this isotrivial
fibration will be M0 := p−1

u (ℓ) (which is a subset of Mu(A,H)), that will be identified with the
relative compactified Jacobian of ℓ. By construction, there is an inclusion f : K0 → M0 fitting
in a commutative diagram

K0 M0

ℓ ℓ ,

f

p0K p0

idℓ

where p0K is the restriction of pKu to K0 and p0 is the restriction of pu to M0.

We now let σ : M0 → A be the restriction to M0 of the map β : Mu(A,H) → A defined in
Section 2.2, mapping a sheaf F to the Albanese image of c2(F). As the determinant of F ∈ M0

is represented by the Fitting subscheme of F , which is a divisor in |mH|, by Lemma 2.15, we
have

K0 = M0 ∩Ku(A,H) = M0 ∩ b−1
u (0A,OA) = σ−1(0A) ,

where bu : Mu(A,H) → A× Â is the O’Grady fibration of Mu(A,H) defined in Section 2.2.

Next, we claim that σ : M0 → A is an isotrivial fibration. Indeed, if L ∈ Pic0(A) is represented
by a divisor D and δ is a 0-cycle of degree 0 on A representing mH ·D in the Chow ring of A,
then the tensorization with L induces an automorphism of Mu(A,H) mapping K0 to σ−1(δ). It
follows that the connected algebraic group Pic0(A) acts transitively on the fibers of the projective
morphism σ; this implies that σ is an isotrivial fibration.

Finally, notice that K0 is connected. Indeed, it is the inverse image, under the dominant map
pKu : Ku(A,H) → |mH|, of a linear space of the projective space |mH|. By [FL81, Theorem 1.1],
it follows that K0 is connected.

To resume, we have an isotrivial fibration σ : M0 → A, and K0 is one of the fibers. The
homotopy exact sequence associated with this fibration then gives

π2(A) π1
(
K0

)
π1

(
M0

)
π1(A) {1} ,π1(f) π1(σ)

where the last term comes from the fact that K0 is connected. As A is an Abelian surface, we
have π2(A) = {1}; hence in order to show that K0 is simply connected, we just need to prove
that the morphism π1(σ) : π1

(
M0

)
→ π1(A) is injective.

To do so, suppose that ℓ is generated by two smooth curves intersecting transversally at
a finite number of points. Let Bs(ℓ) be the base locus of ℓ and π : Ã → A the blow-up of A
along Bs(ℓ).

The surface Ã is the total space of ℓ: for every a ∈ Ã, there is a unique curve Ca ∈ ℓ such that
a ∈ C̃a, where C̃a is the proper transform of Ca under π. We then have a fibration pℓ : Ã → ℓ
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mapping a ∈ Ã to the point of ℓ corresponding to Ca.

There is a natural morphism g : Ã → M0 of fibrations over ℓ obtained as follows: first, choose
p ∈ Bs(ℓ), and let d := m2k + 1. For every a ∈ Ã, the rank 1 torsion-free sheaf Ig(a) ⊗OCa(dp)
has degree m2k. We then let g(a) := Ig(a) ⊗OCa(dp), so we have a commutative diagram

Ã
g−−−−→ M0

pℓ

y yp0

ℓ −−−−→
idℓ

ℓ .

If t ∈ ℓ is a generic point, the curve C corresponding to t is smooth, p−1
ℓ (t) = C̃, and(

p0
)−1

(t) ≃ Picm
2k(C). Let p1, . . . , pn ∈ ℓ be the points corresponding to singular curves. The

fundamental group of M0 is generated by π1
(
Picm

2k(C)
)
and by liftings γ̃1, . . . , γ̃n of the gener-

ators γ1, . . . , γn of π1(ℓ \ {p1, . . . , pn}).
Moreover, the morphism gt : C̃ → Picm

2k(C) given by the restriction of g to p−1
ℓ (t) can be

identified with the Abel–Jacobi map from C to its Jacobian. It then induces a surjective map
π1

(
C̃
)
→ π1

(
Picm

2k(C)
)
.

As C̃ ⊆ Ã, it follows that π1
(
M0

)
is generated by π1

(
Ã
)
and by γ̃1, . . . , γ̃n. Now, notice that

the fibration pℓ : Ã → ℓ has a section. Fixing p ∈ Bs(ℓ), this section is obtained by mapping t ∈ ℓ
to the unique intersection point of π−1(p) and p−1

ℓ (t).

We can then choose the liftings γ̃1, . . . , γ̃n to be in the image of π1
(
Ã
)
in π1

(
M0

)
; hence g

induces a surjection π1(g) : π1
(
Ã
)
→ π1

(
M0

)
. As σ ◦ g : Ã → A induces an isomorphism between

π1
(
Ã
)
and π1(A), the morphism π1(σ) is injective; this concludes the proof.

Theorem 1.7 allows us to extend Proposition 3.5 to all Abelian surfaces (provided that we
have (m, k) ̸= (2, 1)).

Theorem 3.6. Let m, k ∈ N with m, k > 0, and let S be an Abelian surface, v a Mukai vector
on S of type (m, k) and H a polarization which is general with respect to v.

(1) If (m, k) ̸= (2, 1), then Kv(S,H) and Ks
v(S,H) are simply connected.

(2) If (m, k) = (2, 1), then Kv(S,H) is simply connected and π1(K
s
v(S,H)) = Z/2Z.

Proof. First suppose m = 1, that v is a Mukai vector such that if v = (0, v1, v2), then v2 ̸= 0, and
that H is v-generic. Then Kv(S,H) = Ks

v(S,H), and this is a point (if k = 1) or an irreducible
symplectic manifold (if k ⩾ 2). The statement is then clear in this case.

If v is any Mukai vector of type (1, k) and H is general with respect to v, the result follows
from the case we considered above and by Lemmas 2.10, 2.12 and 2.16.

Now fix m ⩾ 2 and k ⩾ 1, and suppose (m, k) ̸= (2, 1). By Theorem 1.7(2) , the fibers of the
Yoshioka fibration of a moduli spaces arising from Abelian surfaces, Mukai vectors of type (m, k)
and polarizations which are general with respect to them are all deformation equivalent. As this
deformation equivalence is obtained using only isomorphisms of moduli spaces (coming from
Fourier–Mukai transforms) and deformations of the moduli spaces induced by deformations of
triples, by Lemma 2.22(2), the homeomorphism type of Kmw(S,H) and Ks

mw(S,H) only depends
on m and k = w2/2.
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It is then enough to show that Kv(S,H) and Ks
v(S,H) are simply connected for a particular

choice of S, v of type (m, k) and H which is general with respect to v. The result follows then
from Proposition 3.5.

If (m, k) = (2, 1), then by Lemmas 2.10, 2.12 and 2.16, we may suppose that v is a Mukai
vector such that if v = (0, v1, v2), then v2 ̸= 0, and that H is v-generic.

In this case, we know that Kv(S,H) admits a symplectic resolution K̃v(S,H), which is an
irreducible symplectic manifold by [PR13, Theorem 1.6(2)]. As Kv(S,H) has canonical singu-
larities, by [Tak03], we have π1(Kv(S,H)) = π1

(
K̃v(S,H)

)
; it follows that Kv(S,H) is simply

connected.

By [MRS18, Theorem 4.2 and Proposition 5.3], we know that Ks
v(S,H) has an étale cover of

degree 2 from an open subset U of an irreducible symplectic manifold Y which is deformation
equivalent to a Hilbert scheme of three points on a K3 surface. This open subset U is obtained
by removing from Y 256 copies of P3 and 1 copy of a desingularization of the singular locus
of Kv(S,H). It follows that the complement of U has codimension at least 2 in Y , so that
π1(U) = π1(Y ) = {1}. It then follows that the fundamental group of Ks

v(S,H) is Z/2Z.

Recall that if X is a normal projective variety having at most rational singularities, it is
possible to define the Albanese variety Alb(X) as the Albanese variety of any desingularization X̃
of X and construct the Albanese morphism alb: X → Alb(X) by descending the usual Albanese
morphism of X̃ (see [Rei83, Proposition 2.3] and [Kaw85, Lemma 8.1]).

As a consequence of Theorem 3.6, we show in the next result that the Yoshioka fibration is
the Albanese morphism of the moduli space Mv(S,H).

Corollary 3.7. Let m, k ∈ N with m, k > 0, and let S be an Abelian surface, v a Mukai
vector on S of type (m, k) and H a polarization that is general with respect to v. The morphism
av : Mv(S,H) → S × Ŝ is the Albanese morphism of Mv(S,H).

Proof. By Lemmas 2.9, 2.10, 2.12 and 2.24, we may assume that v is not of the form (0, v1, 0)
and that H is a v-generic polarization. Under this assumption, for m = 1, the map av is the
Albanese map by [Yos01, Theorem 0.1(1)]. We then suppose m ⩾ 2.

For (m, k) = (2, 1), we know by [LS06, Théorème 1.1] that Mv(S,H) admits a symplectic

resolution of the singularities π : M̃v(S,H) → Mv(S,H), which is obtained by blowing up the
singular locus Σ with reduced structure.

Now, for every (p, L) ∈ S × Ŝ, the fiber Kp,L := a−1
v (p, L) is a singular symplectic variety

whose singular locus is Σp,L := Σ ∩ Kp,L, and K̃p,L := π−1(Kp,L) is the symplectic resolution
of Kp,L, which is an irreducible symplectic manifold by [PR13, Theorem 1.6(2)]. It follows that

av ◦ π : M̃v(S,H) −→ S × Ŝ

is the Albanese morphism of M̃ , so that av : Mv(S,H) → S × Ŝ is the Albanese morphism
of Mv(S,H).

Let us now finally consider the case (m, k) ̸= (2, 1) and m ⩾ 2. Let π : M̃ → Mv(S,H)

be a desingularization of Mv(S,H), where M̃ is a smooth projective variety. The inclusion

j : M s
v (S,H) → M̃ induces a surjective morphism π1(j) : π1(M

s
v (S,H)) → π1

(
M̃

)
. If we now

let asv : M
s
v (S,H) → S × Ŝ be the restriction of av to M s

v (S,H), then asv is an isotrivial fibration
whose fibers are all isomorphic to Ks

v(S,H).

As the fiber Ks
v(S,H) is simply connected (since (m, k) ̸= (2, 1)), the isotrivial fibration asv

induces an isomorphism π1(a
s
v) : π1(M

s
v (S,H)) → π1

(
S × Ŝ

)
.
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Now, notice that av ◦π ◦ j = asv; hence π1(j) is injective, and hence an isomorphism. But this

implies that π1(av ◦ π) is an isomorphism, so that av ◦ π : M̃ → S × Ŝ is the Albanese morphism

for M̃ . It then follows that av : Mv(S,H) → S × Ŝ is the Albanese morphism of Mv(S,H),
concluding the proof.

3.2 The proof of Theorem 1.10

We are finally in the position to prove Theorem 1.10, that is, that Mv(S,H) and Kv(S,H)
are irreducible symplectic varieties. Before doing this, we calculate the dimension of the space of
reflexive p-forms for a particular choice of the surface, of the Mukai vector and of the polarization.

Lemma 3.8. Let m, k ∈ N with m, k > 0, and let X be a projective K3 or Abelian surface such
that NS(X) = Z · hk, where h2k = 2k. Let Hk be a polarization on S such that c1(Hk) = hk, and
let uk = m(0, hk, 0).

(1) If X is K3 and p ∈ N is such that 0 ⩽ p ⩽ dim(Muk
(X,Hk)), then

h0
(
Muk

(X,Hk),Ω
[p]
Muk

(X,Hk)

)
=

{
1 , p is even,

0 , p is odd.

(2) If X is Abelian and p ∈ N is such that 0 ⩽ p ⩽ dim(Kuk
(X,Hk)), then

h0
(
Kuk

(X,Hk),Ω
[p]
Kuk

(X,Hk)

)
=

{
1 , p is even,

0 , p is odd.

Proof. First suppose that X is K3. We let u :=
(
0,mhk, 1 −m2k

)
, which is a primitive Mukai

vector on X.

If C ∈ |mHk| is an integral curve and j : C → X is the inclusion, then for every L ∈ Pic1(C),
the sheaf j∗L is Hk-stable with Mukai vector u. The sheaves of this type form an open subset U
of Mu(X,Hk).

Moreover, if L ∈ Pic1(C), then L⊗m2k ∈ Picm
2k(C); hence j∗

(
L⊗m2k

)
is an Hk-stable sheaf

with Mukai vector v. We then have a rational map

g : Mu(X,Hk) 99K Muk
(X,Hk) , g(j∗L) := j∗L

⊗m2k .

We first show that g is dominant. To do so, consider the two fibrations pu : Mu(X,Hk) →
|mHk| and puk

: Muk
(X,Hk) → |mHk| mapping a sheaf to its Fitting subscheme. If C ∈ |mHk|

is smooth, we have p−1
u (C) ≃ Pic1(C) and p−1

uk
(C) ≃ Picm

2k(C), hence p−1
u (C) ≃ p−1

uk
(C) ≃

Pic0(C), and the restriction of g to p−1
u (C) can be identified with the multiplication by m2k on

Pic0(C) and is therefore surjective. This shows that if V ⊆ |mHk| is the open subset of smooth
curves, then g maps p−1

u (V ) surjectively to p−1
uk

(V ). As Mu(X,Hk) and Muk
(X,Hk) are two

projective varieties which are both irreducible and of the same dimension, it follows that g is
dominant.

Since Muk
(X,Hk) has canonical singularities, letting M̃uk

be a resolution of the singularities,

by [GKKP11, Theorem 1.4], we have the equality h0
(
Muk

(X,Hk),Ω
[p]
Muk

(X,Hk)

)
= h0

(
M̃uk

,Ωp

M̃uk

)
for every p ∈ N. As g is dominant, we also have h0

(
M̃uk

,Ωp

M̃uk

)
⩽ h0

(
Mu,Ω

p
Mu(X,Hk)

)
for every

p ∈ N. Since u is primitive, Mu(X,Hk) is an irreducible symplectic manifold, and we conclude
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that

h0
(
Muk

(X,Hk),Ω
[p]
Muk

(X,Hk)

)
⩽

{
1 , p is even,

0 , p is odd.

Since Muk
(X,Hk) is a symplectic variety, h0

(
Muk

(X,Hk),Ω
[p]
Muk

(X,Hk)

)
⩾ 1 if p is even, and we

are done.

If S is Abelian, the same proof works, replacing Muk
(X,Hk) by Kuk

(X,Hk) and Mu(X,Hk)
by Ku(X,Hk).

Proof of Theorem 1.10. We first consider S to be a K3 surface. If m = 1, then Mv(S,H) is an
irreducible symplectic manifold by [Yos99a, Theorem 0.1] and by Lemmas 2.10, 2.12 and 2.16
if H is not v-generic or v = (0, v1, 0).

If m ⩾ 2, then Mv(S,H) is a symplectic variety; let σ be a symplectic form on it. We have
to show that if f : Y → Mv(S,H) is a finite quasi-étale morphism, then the exterior algebra of
reflexive forms on the normal variety Y is spanned by f [∗]σ.

Then let f : Y → Mv(S,H) be a finite quasi-étale cover; it induces a finite quasi-étale cover
of M s

v (S,H). But a finite quasi-étale morphism of a smooth variety is étale, and M s
v (S,H) is

simply connected by Theorem 3.4; hence f is an isomorphism.

We then just need to show that the exterior algebra of reflexive forms on Mv(S,H) is

spanned by σ. This follows if we show that h0
(
Mv(S,H),Ω

[p]
Mv(S,H)

)
= 1 if p is even and

h0
(
Mv(S,H),Ω

[p]
Mv(S,H)

)
= 0 if p is odd.

For this, let X be a projective K3 surface with Pic(X) = Z ·Hk, where Hk is an ample line
bundle with (Hk)

2 = 2k, and let uk := m(0, hk, 0), where hk = c1(Hk). By Lemma 3.8, we have

h0
(
Muk

(X,Hk),Ω
[p]
Muk

(X,Hk)

)
=

{
1 , p is even,

0 , p is odd.

By Theorem 1.7, the moduli spaces Mv(S,H) and Muk
(X,Hk) are deformation equivalent,

and the deformation is locally trivial. Hence they have resolutions M̃v and M̃uk
of the singularities

which are deformation equivalent as smooth varieties, so their Hodge numbers are equal. By
[GKKP11, Theorem 1.4], we then have

h0
(
Mv(S,H),Ω

[2]
Mv(S,H)

)
= h0

(
M̃v,Ω

2
M̃v

)
= h0

(
M̃uk

,Ω2
M̃uk

)
= h0

(
Muk

(X,Hk),Ω
[2]
Muk

(X,Hk)

)
,

and we are done.

If S is an Abelian surface, the proof is identical if (m, k) ̸= (2, 1), replacing moduli spaces of
sheaves by the corresponding Albanese fibers and using Theorem 3.6(1) instead of Theorem 3.4.

The case (m, k)=(2, 1) has to be treated differently. By Theorem 3.6(2), we have π1(K
s
v(S,H))

= Z/2Z; hence Kv(S,H) has a unique (up to isomorphism) nontrivial connected finite quasi-étale
cover Yv. We need to show that the exterior algebras of reflexive forms on Kv(S,H) and Yv are
spanned by the reflexive pull-back of a symplectic form on Kv(S,H). To do so, it will be enough
to show that both Kv(S,H) and Yv are birational to irreducible symplectic manifolds.

For Kv(S,H), by [PR13, Theorem 1.6(2)], we know that Kv(S,H) has a symplectic resolution
which is an irreducible symplectic manifold (in the deformation class OG6). For Yv, by [MRS18,
Proposition 5.3], we know that it is birational to an irreducible symplectic manifold deformation
equivalent to Hilb3(K3). This concludes the proof.
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GKKP11 D. Greb, S. Kebekus, S. J. Kovács and T. Peternell, Differential forms on log canonical spaces,
Publ. Math. Inst. Hautes Études Sci. 114 (2011), 87–169; doi:10.1007/s10240-011-0036-0.

GKP16 D. Greb, S. Kebekus and T. Peternell, Singular spaces with trivial canonical class, Minimal
Models and Extremal Rays (Kyoto, 2011), Adv. Stud. Pure Math., vol. 70 (Math. Soc. Japan,
Tokyo, 2016), 67–113; doi:10.2969/aspm/07010067.
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