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Wall crossing for derived categories of moduli

spaces of sheaves on rational surfaces

Matthew Robert Ballard

Abstract

We remove the global quotient presentation input in the theory of windows in derived
categories of smooth Artin stacks of finite type. It is replaced by a condition asking for
the existence of a special atlas along the removed substack, which proves a bit easier
to deal with in practice. As an application, we use existing results on the flipping of
strata for the wall crossing of Gieseker semi-stable torsion-free sheaves of rank two
on rational surfaces to produce semi-orthogonal decompositions relating the different
moduli stacks. The complementary pieces of these semi-orthogonal decompositions are
derived categories of products of Hilbert schemes of points on the surface.

1. Introduction

A central question in the theory of derived categories is the following: given a smooth, projective
variety X, how does one find interesting semi-orthogonal decompositions of its derived category,
Db(cohX)? Historically, two different parts of algebraic geometry have fed this question: bira-
tional geometry and moduli theory. The references [Orl93, BO95, Orl97, Bri02, Kaw02a, Kaw06,
Kuz10] provide a non-exhaustive highlight reel for this approach.

This paper focuses on the intersection of birational geometry and moduli theory. Namely,
given some moduli problem equipped with a notion of stability, variation of the stability condition
often leads to birational moduli spaces. As such, it is natural to compare the derived categories
in this situation. Let us consider the well-understood situation of torsion-free rank two semi-
stable sheaves on rational surfaces [EG95, FQ95, MW97]. The flipping of unstable strata under
change of polarization was investigated to understand the change in the Donaldson invariants.
It provides the input for the following result, which can be viewed as a categorification of the
wall-crossing formula for Donaldson invariants.

Theorem 1 (Corollary 3.10). Let S be a smooth rational surface over C with KS < 0, and
let L− and L+ be ample lines bundles on S separated by a single wall defined by unique divisor ξ
satisfying

L− · ξ < 0 < L+ · ξ ,
0 6 ω−1

S · ξ .

Received 13 January 2016, accepted in final form 23 July 2016.
2010 Mathematics Subject Classification 14F05.
Keywords: moduli spaces, derived categories, variation of stability.
This journal is c© Foundation Compositio Mathematica 2017. This article is distributed with Open Access under
the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial reuse,
distribution, and reproduction in any medium, provided that the original work is properly cited. For commercial
re-use, please contact the Foundation Compositio Mathematica.

The author was supported by a Simons Collaboration Grant and NSF Standard Grant DMS-1501813.

http://algebraicgeometry.nl
http://www.ams.org/msc/
http://algebraicgeometry.nl
http://creativecommons.org/licenses/by-nc/3.0/
http://algebraicgeometry.nl


M.R. Ballard

LetML±(∆, c) be the Gm-rigidified moduli stack of Gieseker L±-semi-stable torsion-free sheaves
of rank two with first Chern class c1 and second Chern class c2.

There is a semi-orthogonal decomposition of Db(cohML+(∆, c)) as〈
Db(cohH lξ), . . . ,Db(cohH lξ)︸ ︷︷ ︸

µξ

, . . . ,Db(cohH0), . . . ,Db(cohH0)︸ ︷︷ ︸
µξ

,Db(cohML−(∆, c))

〉
,

where

lξ :=
(
4c2 − c2

1 + ξ2
)
/4 , H l := Hilbl(S)×Hilblξ−l(S) , µξ := ω−1

S · ξ ,

with the convention that Hilb0(S) := SpecC.

While Theorem 1 is interesting in its own right, the method might be more so. Indeed, Theo-
rem 1 represents one of multiple possible applications, including to moduli spaces of Bridgeland
semi-stable objects on rational surfaces; see [ABCH13].

Theorem 1 follows from the general technology that goes under the heading of windows
in derived categories. Windows provide a framework for addressing the central question put
forth above; they are a machine for manufacturing interesting semi-orthogonal decompositions
of Db(cohX). They have a rich history with contributions by many mathematicians and physi-
cists [Kaw02b, vdBer04, Orl09, HHP08, Seg11, HW12, Shi12, Hal15a, BFK16, DS14]. However,
windows have not yet achieved their final form. Previous work dealt with an Artin stack X plus a
choice of global quotient presentation X = [X/G]. Locating an appropriate quotient presentation
for a given X is not convenient in applications, in particular the above, so one would like a defi-
nition of a window more intrinsic to X . Section 2 provides such a definition using an appropriate
type of groupoid in Bia lynicki-Birula strata and extends the prior results on semi-orthogonal
decompositions [BFK16] to this setting; see Theorem 2.29. The method demonstrates that the
global structure of X is not of upmost importance. Indeed, it is only the structure of the closed
substack Z marked for removal and the structure of X along Z that one needs to use get these
results.

A similar extension appeared in [Hal15b].

2. Semi-orthogonal decompositions and BB strata

For the whole of this section, k will denote an algebraically closed field. The term variety means
a separated, reduced scheme of finite type over k. All points of a variety are closed points unless
explicitly stated otherwise.

In this section, we extend the results of [BFK16] by removing the global quotient presentation
from the input data. We try to keep this section as self-contained as possible.

2.1 Truncations of sheaves on BB strata

We begin with the following definition. Let X be a smooth quasi-projective variety equipped
with a (Gm)-action σ : X×Gm → X. Let XGm denote the fixed subscheme of the action, and let
Xf be a choice of a connected component of the fixed locus. We recall the following well-known
result of Bia lynicki-Birula.

Theorem 2.1 ([Bia73, Theorems 2.1 and 4.1]). The fixed locus XGm is smooth and is a closed
subvariety of X. Let Xf be a connected component of XGm . There exist a unique smooth and
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Wall crossing for derived categories

locally closed Gm-invariant subvariety X+ of X and a unique morphism π : X+ → Xf such that

a) Xf is a closed subvariety of X+;

b) the morphism π : X+ → Xf is an equivariantly locally-trivial fibration of affine spaces
over Xf ;

c) for a point x ∈ Xf , there is an equality

TxX
+ = (TxX)>0 ,

where the right-hand side is the subspace of non-negative weights of the geometric tangent
space.

Remark 2.2. Note that the weights on the affine fibers are all positive and the set of closed points
of a X+ from Theorem 2.1 is

{x ∈ X | lim
α→0

σ(α, x) ∈ Xf},

so one may think of X+ as the set of points that flow into Xf as α→ 0.

Definition 2.3. Let X be a smooth quasi-projective variety equipped with a Gm-action. Let Xf

be a choice of a connected component of XGm . The BB stratum associated with Xf is the variety
X+ appearing in Theorem 2.1.

Similarly, we have the following definition.

Definition 2.4. If X = X+, then we shall also say that X is a BB stratum. In particular, we
require that XGm = Xf is connected in this situation.

Remark 2.5. Note that X being a BB stratum is equivalent to the existence of an action map
A1 ×X → X with XGm connected. Here we view A1 as a monoidal scheme via multiplication.

Let X be a BB stratum. Let us consider the local situation first. So X = SpecR[x1, . . . , xn]
and we have a coaction map, also denoted by σ,

σ : R[x1, . . . , xn]→ R
[
x1, . . . , xn, u, u

−1
]
,

where the weights of the xi are positive. The fixed locus is then Xf = SpecR. Let M be a
Gm-equivariant module over R, that is, a quasi-coherent Gm-equivariant sheaf on Xf . Then we
have a map

∆: M →M
[
u, u−1

]
corresponding to the equivariant structure. One sets

Mi :=
{
m ∈M | ∆(m) = m⊗ ui

}
.

If we try to globalize this construction, then two different Mi are identified under an auto-
morphism of M , which has degree zero with respect to Gm. Thus, for any quasi-coherent Gm-
equivariant sheaf, this gives a quasi-coherent Gm-quasi-coherent sheaf Ei on Xf .

Lemma 2.6. Let X have an action of Gm, and let E be a coherent Gm-equivariant sheaf on the
fixed locus Xf . Then there is a functorial decomposition

E ∼=
⊕
i∈Z
Ei .

In particular, for each i ∈ Z, the functor E 7→ Ei is exact.
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Proof. This is standard.

Corollary 2.7. Let X have an action of Gm, and let E be a bounded complex of coherent
Gm-equivariant sheaves on the fixed locus Xf . Then there is a functorial decomposition of the
complex

E ∼=
⊕
i∈Z
Ei .

This descends to the derived category Db(coh[Xf/Gm]).

Proof. This follows immediately from Lemma 2.6.

Definition 2.8. For a subset I ⊆ Z, we say that a complex E from Db(coh[Xf/Gm]) has weights
concentrated in I if (Hp(E))i = 0 for all p ∈ Z and i 6∈ I.

Now, we turn our attention to Gm-equivariant sheaves on X itself. Let j : Xf → X be the
inclusion.

Definition 2.9. Let E be an object of Db(coh[X/Gm]), and let I ⊆ Z. We say that E has weights
concentrated in I if Lj∗E has weights concentrated in I.

Next, we want to give a procedure to truncate the weights. We first again go back to the local
case with X = SpecR[x1, . . . , xn], where the xi have positive weight. Let M be a Gm-equivariant
module over R[x1, . . . , xn]. We can still consider

Ma := {m ∈M | σ(m) = m⊗ ua} .

However, this is no longer a submodule of M as multiplication by xi will raise the weight. But,

M>a :=
⊕
j>a

Mj

is a submodule of M and inherits a natural Gm-equivariant structure. The assignment M 7→M>a
is functorial with respect to Gm-equivariant morphisms, so gives an exact functor

τ>a : coh[X/Gm]→ coh[X/Gm] ,

which, of course, descends to the derived category

τ>a : Db(coh[X/Gm])→ Db(coh[X/Gm]) .

Now, let us consider the global situation. Since we have a Gm-invariant cover of X of the
form SpecR[x1, . . . , xn], where the xi have positive weights and R has weight zero, we can glue
this construction to get

τ>a : Db(coh[X/Gm])→ Db(coh[X/Gm]) ,

E 7→ E>a .

Definition 2.10. Let a ∈ Z. For a bounded complex E of coherent Gm-equivariant sheaves
on X, one calls E>a a weight truncation of E .

Lemma 2.11. If E has weights concentrated in I, then τ>aE has weights concentrated in I∩[a,∞).
Moreover, if E has weights concentrated in [a,∞), then there is a natural quasi-isomorphism
E ∼= E>a.
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Proof. We can check this computation locally and assume that E is a bounded complex of locally
free sheaves. Then, one sees that there is a natural isomorphism

(E>a)|Xf ∼= (E|Xf )>a .

Looking at the left-hand side, we see that the complex has weights in [a,∞) ∩ I.

Now, we level up and consider an appropriate type of groupoid in BB strata. Let X1
s
⇒
t
X0

be a groupoid scheme with s, t smooth and X1, X0 smooth and quasi-projective. In general,
we shall suppress the additional data packaged in a groupoid scheme, as we do in the following
statement. Assume that we have a commutative diagram

Gm ×X0 X0

X1 X0

π

σ

l

s

t

=

of groupoid schemes with l a closed embedding and σ an action. Then, we can define a morphism

A : Gm ×X1 → X1 ,

(α, x1) 7→ l(α, t(x1)) · x1 · l
(
α−1, σ(α, s(x1))

)
,

where the central dot is the notation for the multiplication m : X1 ×s,X0,t X
1 → X1.

Lemma 2.12. The morphism A defines an action of Gm on X1 making both s and t equivariant.

Proof. This is straightforward to verify, so the details are left out.

Definition 2.13. If we have a commutative diagram of groupoids as above, the action A is the
called the adjoint of Gm on X1. We say that a groupoid scheme X• is a stacky BB stratum if
A extends to a morphism A1 ×X1 → X1 and (X0)Gm is connected. Similarly, we say that the
associated stack [X0/X1] is a stacky BB stratum if X• is one.

We can pass to the fixed loci of the Gm-actions on X• to get another groupoid scheme
(X1)Gm ⇒ (X0)Gm which we call the fixed substack and denote by [X0/X1]f . It is straightforward
to check that (X1)Gm ⇒ (X0)Gm is also a stacky BB stratum.

By taking the limit as α → 0 in Gm, we get an induced projection that we denote by
π : [X0/X1]→ [X0/X1]0.

Remark 2.14. Note that if A extends to a morphism A1 × X1 → X1, then X1 and X0 are
unions of BB strata. For simplicity of exposition, we require the connectedness of (X0)Gm . The
disconnected case can be handled using the same arguments with minor modifications.

Remark 2.15. The language of the definition is a bit misleading, as the careful reader will note
that it is not clear that the notion is intrinsic to X = [X0/X1] and does not depend on the
presentation. It seems that this gives a connected component of the Hom-stack Hom([A1/Gm],X )
as studied in [HP14]. However, in the application of interest and in many moduli problems, the
data of a stacky BB stratum is easy to extract from a description as projective bundles over
lower-dimensional moduli spaces.
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Lemma 2.16. Let X• be a stacky BB stratum, and let τ>u be the truncation functor on
Db(coh[X0/Gm]) as previously defined. Then, τ>u descends to an endofunctor

τ>u : Db(cohX•)→ Db(cohX•) .

Furthermore, the weight decomposition on Db(coh[X0
0/Gm]) descends to Db(coh[X0

0/X
1
0 ]).

Proof. Recall that a quasi-coherent sheaf on X• is a pair (E , θ) with E ∈ Qcoh(X0) and θ : s∗E ∼→
t∗E an isomorphism satisfying an appropriate cocycle condition and identity condition. Note that
any sheaf on X• carries a Gm-equivariant structure by pulling back along l, so truncation is well
defined on E . For any coherent sheaf E on X•, we will show that

θ(t∗(τ>uE)) ⊂ s∗(τ>uE) .

This suffices to show that τ>u descends as θ−1 = i∗θ, where i : X1 → X1 is the inverse over X0.

This question is local, so we may assume X1 = SpecS and X0 = SpecR. Let M be the
module corresponding to E , so that θ : M ⊗R,t S →M ⊗R,s S is an isomorphism. As we will need
to use it, we now recall the cocycle condition in this local situation. We have a diagram

M ⊗R,t S ⊗s,R,t S M ⊗R,t S ⊗s,R,t S

S ⊗s,R,t S ⊗s,RM S ⊗s,R,t S ⊗t,RM ,

θ ⊗R t

∼

s⊗R θ

∼

which gives us an isomorphism

M ⊗R,t S ⊗s,R,t S M ⊗R,t S ⊗s,R,t S .
(s⊗R θ) ◦ (θ ⊗R t)

We can also tensor θ over S with m : S → S ⊗s,R,t S to get another isomorphism. The cocycle
condition is

(s⊗R θ) ◦ (θ ⊗R t) = θ ⊗S m.

Now, we wish to check that θ(Mj ⊗R S) ⊂ M>j ⊗R S. We do this as follows. First, since
A : S → S[u, u−1] has image in S[u], the image of

(l ⊗ 1⊗ l) ◦ (m⊗ 1) ◦m := Ã : S → R
[
u1, u

−1
1

]
⊗π,R,t S ⊗s,R,σ R

[
u2, u

−1
2

]
must lie in the S-subalgebra generated by the ui1u

j
2 with i − j > 0. Since θ satisfies the cocyle

condition, we can factor θ ⊗S Ã as

θ ⊗S Ã = (1⊗R θ ⊗R 1) ◦ (θ ⊗R 1⊗R 1) ◦ (1⊗R θ ⊗R 1) ◦ (1⊗R 1⊗R θ) .

Applying this to mj ∈Mj , we have

(θ ⊗S Ã)(mj) =
∑
i

θ(θ(mj)i))u
i
1u
j
2 ,

where

θ(mj) =
∑
i

θ(mj)iu
i
1 .

As i− j > 0, we see that the θ(mj) are elements of M>j ⊗R,s S and θ preserves the truncation.

For the final statement, repeating the previous argument and assuming that Gm acts trivially
on R and S shows that θ preserves the whole splitting via weights.
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Example 2.17. Let G be a linear algebraic group acting on a variety X. Assume that we have
a one-parameter subgroup λ : Gm → G and a connected component Z0

λ of the fixed locus. Then
we have the BB stratum Zλ and its orbit Sλ := G · Zλ. Let

P (λ) :=
{
g ∈ G | lim

α→0
λ(α)gλ(α)−1 exists

}
.

There is an induced action of P (λ) on Zλ. In general, G
P (λ)
× Zλ is a resolution of singularities

of Sλ. If we assume that this map is an isomorphism, then we get what is called an elementary
stratum in the language of [BFK16]. Since[

G
P (λ)
× Zλ/G

] ∼= [Zλ/P (λ)]

and the groupoid

P (λ)× Zλ
π
⇒
σ
Zλ

is a stacky BB stratum, we see that [Sλ/G] is a stacky BB stratum. The simplest case is G = Gm.

2.2 Removing stacky BB strata and comparing derived categories

Let X be a smooth Artin stack of finite type over k.

Definition 2.18. Let i : Z → X be a smooth closed substack that is also a stacky BB stratum,
and let l : Z0 → X be the closed immersion of the fixed substack. Let E be a bounded complex
of coherent sheaves on X , and let I ⊆ Z. We say that E has weights concentrated in I if Ll∗E ∈
Db(cohZ0) has weights concentrated in I.

Remark 2.19. It is useful to note that the condition of Z being a stacky BB stratum implies that
its conormal complex is actually concentrated in a single degree.

Definition 2.20. Let Z be a stacky BB stratum in X , and let I ⊆ Z. The I-window associated
with Z is the full subcategory whose objects have weights concentrated in I. We denote this
subcategory by =W=(I,Z0).

Lemma 2.21. Assume that the weights of the conormal sheaf of Z in X are all strictly negative,
and let tZ be the weight of the relative canonical sheaf ωZ|X . Set U := X \Z, and let j : U → X
be the inclusion. Then the functor

j∗ : =W=(I,Z0)→ Db(cohU)

is fully faithful whenever I is contained in a closed interval of length less than −tZ .

Proof. The argument here is essentially due to Teleman [Tel00, Section 2]. The author first
learned of it in [Hal15a]. It amounts to descending through a few spectral sequences. For the
convenience of the reader and to keep the paper self-contained, we recall it in some detail.

For any two objects E ,F of Db(cohX ), there is an exact triangle of graded vector spaces

HomX ,Z(E ,F)→ HomX (E ,F)
j∗→ HomU (j∗E , j∗F)

coming from applying the exact triangle of derived functors

RΓZ(X ,−)→ RΓ(X ,−)
j∗→ RΓ(U ,−) (2.1)

to RHomX (E ,F). Therefore, a necessary and sufficient condition for the full faithfulness of j∗ is
the vanishing of HomX ,Z(E ,F).
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The exact triangle in equation (2.1) comes from applying RΓ(X ,−) to the following exact
triangle of functors:

HZ → Id→ Rj∗j
∗.

Here, HZ is the derived sheafy local cohomology functor. The complex HZ(G) is not scheme-
theoretically supported on Z, but there is a filtration bounded from above by powers of the ideal
sheaf IZ . The associated graded sheaves are scheme-theoretically supported on Z. Furthermore,
since Z is smooth, the sth associated graded piece is isomorphic to Li∗G ⊗ Syms(TZ|X )⊗ ω−1

Z|X .

We may now take global sections on Z which we may factor through two pushforwards: one
by π : Z → Z0 and one by the rigidification map r : Z0 → ZGm

0 [ACV03, Theorem 5.15]. The
pushforward r∗ : Db(cohZ0) → Db(cohZGm

0 ) projects onto the weight zero component of the
weight decomposition. Thus, to establish vanishing, it suffices to show that there is no weight
zero component in the splitting of

π∗
(
Li∗G ⊗ Syms(TZ|X )⊗ ω−1

Z|X
)
.

Since we can resolve anything using pullbacks from Z0, we can use the projection formula to get

π∗
(
Li∗G ⊗ Syms(TZ|X )⊗ ω−1

Z|X
) ∼= Ll∗G ⊗ Syms(TZ|X )|Z0 ⊗ ω−1

Z|X |Z0 ⊗ π∗OZ .

One notices that the terms

Syms(TZ|X )|Z0 ⊗ ω−1
Z|X |Z0 ⊗ π∗OZ

have weights at least −tZ . When the weights of G are concentrated in (tZ ,∞), we get a trivial
weight zero component and the desired vanishing. Now, setting G = RHomX (E ,F) for E ,F ∈
=W=(I,Z0), we see that our assumption on I exactly implies this.

Lemma 2.22. Assume that the weights of the conormal sheaf of Z in X are all strictly negative,
and let tZ be the weight of the relative canonical sheaf ωZ|X . Set U := X \Z, and let j : U → X
be the inclusion. Then, the functor,

j∗ : =W=(I,Z0)→ Db(cohU)

is essentially surjective whenever I contains a closed interval of length at least −tZ − 1.

Proof. We may assume X 6= Z, and we may reduce to I being an interval of length −tZ − 1. To
demonstrate essential surjectivity, it suffices to iteratively reduce the weights by forming exact
triangles

E ′ → E → T ,
where T is set-theoretically supported on Z and the weights of E ′ are concentrated in an interval
strictly smaller than E . There is an exact triangle

τ>b−1Li
∗E → Li∗E → W ,

where the weights of E along Z are concentrated in [a, b] with b− a > −tZ . By Lemma 2.11, the
weights of τ>b−1Li

∗E are concentrated in [a, b−1]. Then, the only weight ofW is b. Consider i∗W
as an object of Db(cohX ). Let us check that the weights of i∗W lie in [b+tZ , b]. We must compute

Li∗i∗W .

This has cohomology sheaves isomorphic to W⊗
∧∗(ΩZ|X ), which by assumption has weights in

[b+ tZ , b]. Note that the only contribution to weight b is W itself and that the map

Li∗E|Xf →W|Xf
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induces an isomorphism on the weight b portion of the decomposition. Now, we define E ′ to
be the cone over the map E → i∗W. Restricting the exact triangle to Xf and remembering
that computing weight spaces is an exact functor, we see that the weights of E ′ along Z are
concentrated in [a, b− 1]. We may also raise the weights by conjugating the previous procedure
by dualization. Combining the two procedures, we can move the weights of any complex into I
up to Z-torsion.

Corollary 2.23. Assume that the weights of the conormal sheaf of Z in X are all strictly
negative, and let tZ be the weight of the relative canonical sheaf ωZ|X . Set U := X \ Z, and let
j : U → X be the inclusion. Then, the functor

j∗ : =W=(I,Z0)→ Db(cohU)

is an equivalence whenever I is an interval of length −tZ − 1.

Proof. This is an immediate consequence of Lemmas 2.21 and 2.22.

Definition 2.24. Let s ∈ Z. Denote by Cs(Z) the full subcategory of Db(cohZ0) consisting of
objects with weight s.

Lemma 2.25. Assume that the weights of the conormal sheaf of Z in X are all strictly negative.
The functor

Υs : Cs(Z)→ Db(cohX ) ,

E 7→ i∗π
∗E

is fully faithful.

Proof. We use the standard adjunctions. We have

HomX (ΥsE ,ΥsF) ∼= HomZ(Li∗i∗π
∗E , π∗F) .

The cohomology sheaves of Li∗i∗π
∗E are isomorphic to π∗E⊗Sym∗(TZ|X ). Thus, there is a natural

map

HomZ(π∗E , π∗F)→ HomX (ΥsE ,ΥsF) . (2.2)

We first check that this is isomorphism. The cone of Li∗i∗π
∗E → π∗E has cohomology sheaves

π∗E ⊗ Sym>1(ΩZ|X ), which have weights less than s. Let us show that

HomZ(π∗E ⊗ Sym>1(ΩZ|X ), π∗F [s]) = 0

for any s. This vanishing combined with a spectral sequence argument gives us that the map in
equation (2.2) is an isomorphism. We have

HomZ(π∗E ⊗ Sym>1(ΩZ|X ), π∗F [s]) ∼= HomZ0(E ⊗ Sym>1(ΩZ|X ),F ⊗ Sym∗(ΩZ0|Z)[s])

∼= HomZ0(E ,F ⊗ Sym∗(ΩZ0|Z)⊗ Sym>1(TZ|X )[s]) .

We can again factor through a pushforward to the rigidification ZGm
0 . In this case, the above

Hom-space is zero as the weights of the right-hand side are concentrated in (s,∞).

Next, we have

HomZ(π∗E , π∗F) ∼= HomZ0(E ,F ⊗ Sym∗(ΩZ0|Z)) .

The only piece of F ⊗ Sym∗(ΩZ0|Z) in weight s is F . Thus,

HomZ0(E ,F ⊗ Sym∗(ΩZ0|Z)) ∼= HomZ0(E ,F) ,

which gives fullness and faithfulness.

271



M.R. Ballard

Lemma 2.26. Assume that the weights of the conormal sheaf of Z in X are all strictly negative,
and let tZ be the weight of the relative canonical sheaf ωZ|X . Assume v − u > −tZ . There is a
semi-orthogonal decomposition

=W=([u, v],Z0) = 〈Υv,
=W=([u, v − 1],Z0)〉 .

Proof. Take E ∈ =W=([u, v],Z0) and consider the exact triangle from the proof of Lemma 2.22,

E ′ → E → i∗W.

It is clear from the definition that i∗W lies in the image of Υv, and we have already seen that E ′
lies in =W=([u, v − 1],Z0). Thus, the two subcategories generate =W=([u, v],Z0). It remains to
check the semi-orthogonality. This follows as in the proof of Lemma 2.21.

Remark 2.27. The reader should observe that everything still holds if X is singular but smooth
along Z.

Definition 2.28. Let X be a smooth algebraic stack of finite type over k. A stacky BB stratum Z
in X is called an elementary stratum if the weights of ΩZ|X along Z are strictly negative.

A pair of elementary strata Z− and Z+ is called an elementary wall crossing if Z−,0 = Z+,0

and the two embeddings of Gm into the automorphisms of Z±,0 differ by inversion.

Theorem 2.29. Assume that we have an elementary wall crossing given by Z− and Z+. Fix
d ∈ Z.

a) If tZ+ < tZ− , then there are fully faithful functors

Φ+
d : Db(cohU−)→ Db(cohU+)

and

Υ̃−j : Cj(Z−)→ Db(cohU+)

for −tZ− + d 6 j 6 −tZ+ + d− 1 and a semi-orthogonal decomposition

Db(cohU+) =
〈
Υ̃−−tZ−+d, . . . , Υ̃

−
−tZ++d−1,Φ

+
d

〉
.

b) If tZ+ = tZ− , then there is an exact equivalence

Φ+
d : Db(cohU−)→ Db(cohU+) .

c) If tZ+ > tZ− , then there are fully faithful functors

Φ−d : Db(cohU+)→ Db(cohU−) ,

and

Υ̃+
j : Cj(Z+)→ Db(cohU−)

for −tZ+ + d 6 j 6 −tZ− + d− 1 and a semi-orthogonal decomposition

Db(cohU−) =
〈
Υ̃+
−tZ++d, . . . , Υ̃

+
−tZ−+d−1,Φ

−
d

〉
.

Proof. The argument is the same as that for the proof of [BFK16, Theorem 3.5.2]. Again, we
recall it in some detail. Swapping the roles of Z+ and Z−, we can assume tZ+ 6 tZ− . Choose
intervals I− ⊆ I+ with the diameter of I± equal to −tZ± − 1, and let d := min I− = min I+.
From Lemma 2.26, there is a semi-orthogonal decomposition

=W=(I+,Z0) =
〈
Υ−−tZ−+d, . . . ,Υ

−
−tZ++d−1,

=W=(I−,Z0)
〉
.
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Using Corollary 2.23, we can pull back to U+ to get

Db(cohU+) =
〈
i∗+ ◦Υ−−tZ−+d, . . . , i

∗
+ ◦Υ−−tZ++d−1, i

∗
+

=W=(I−,Z0)
〉
.

Applying Corollary 2.23 again, we know that i∗− induces an equivalence between =W=(I−,Z0)
and Db(cohU−). To finish, we set

Υ̃−j := i∗+ ◦Υ−j and Φ+
d := i∗+ ◦ (i∗−)−1 .

3. Stable sheaves on rational surfaces

In this section, we apply Theorem 2.29 using the well-known structure of semi-stable rank two
torsion-free sheaves on rational surfaces [EG95, FQ95, MW97].

Let S be a smooth complex projective surface. In this section, we will show how to apply The-
orem 2.29 to a wall crossing of Gieseker stable sheaves obtained by variation of the polarization
on S.

3.1 Basics

Let us recall the main notions of stability. Let L be an ample line bundle on S.

Definition 3.1. Let E be coherent sheaf on S. The sheaf E is Gieseker L-semi-stable [Gie77]
if it is torsion free and for any proper subsheaf F ( E, one has pL(F ) 6 pL(E), where pL is the
reduced Hilbert polynomial associated with the embedding given by L. If the inequality is strict
for any proper subsheaf, E is Gieseker L-stable. If E is not Gieseker L-semi-stable, then E is
Gieseker L-unstable.

The sheaf E is Mumford L-semi-stable [Mum63, Tak72] if it is torsion free and for any proper
subsheaf F ⊂ E, one has µL(F ) 6 µL(E), where µL is the L-slope of the sheaf. Again, if the
inequality is always strict, E is Mumford L-stable and if E is not Mumford L-semi-stable, then
it is Mumford L-unstable.

Fix invariants c0, c1, c2 and consider the moduli functors M̃L(c0, c1, c2) and M̃umL(c0, c1, c2)
given by

X 7→ {iso. classes of Gieseker L-s.s. families with c0(Fx) = c0, c1(Fx) = c1, c2(Fx) = c2} ,
X 7→ {iso. classes of Mumford L-s.s. families with c0(Fx) = c0, c1(Fx) = c1, c2(Fx) = c2} .

The following is well known.

Lemma 3.2. The functor M̃L(c0, c1, c2) is an algebraic stack of finite type over k. The same is

true for M̃umL(c0, c1, c2).

Proof. First, M̃L(c0, c1, c2) is open [HL10, Proposition 2.3.1] in the stack of coherent sheaves

on S, which is algebraic [SP16, Theorem 75.5.12]. Thus, M̃L(c0, c1, c2) is algebraic stack. There is
a bounded family of L-semi-stable sheaves with fixed numerical invariants [HL10, Theorem 3.3.7].

Base changing the induced map to M̃L(c0, c1, c2) gives a smooth, surjective map with source of

finite type. A similar argument shows the statement for M̃umL(c0, c1, c2).

Next, we address smoothness. Recall that E is Gieseker (Mumford) polystable if it is the
direct sum of Gieseker (Mumford) stable sheaves.
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Lemma 3.3. Assume KS < 0. Let E be Gieseker L-polystable or simple. Then, E is a smooth

point of M̃L(c0, c1, c2). A similar statement holds for M̃umL(c0, c1, c2).

Proof. Write E =
⊕

i∈I Ei with each Ei stable. First, since each Ei is stable, or since E is simple,
and S is proper, we have

Hom(E,E) ⊂ Mm(Γ(S,OS)) = Mm(k) ,

where Mm(k) is the group of m×m-matrices in k.

To check smoothness, it suffices to show that ext1(E,E)−hom(E,E) = χ(Ext∗(E,E)), which
remains constant over ML(c0, c1, c2). It suffices, therefore, to show that Ext2(E,E) = 0. From
Serre duality, we have

ext2(E,E) = h0(Hom(E,E)⊗ ωS) .

Since KS < 0, there exist an inclusion ωS → OS and an inclusion

Hom(E,E)⊗ ωS → Hom(E,E) .

Taking global sections, we see that h0(Hom(E,E) ⊗ ωS) gives the dimension of the subspace
of global sections of Hom(E,E) which vanish along −KS . Since all global sections are constant
over S, we have

h0(Hom(E,E)⊗ ωS) = 0 .

Since Mumford stability implies Gieseker stability, we get the same statement for Mumford
semi-stable sheaves.

3.2 Rank two stable sheaves

We now restrict ourselves to the case where S is a rational surface and c0 = 2. For notational
convenience, we now denote the divisor c1 by ∆ and set c := c2. We recall the results of Friedman
and Qin [FQ95]; see also [EG95, MW97]. Let L+ and L− be two ample line bundles on S. For
ξ ∈ H2(S,Z) satisfying ξ ≡ ∆(mod 2) and ∆2−4c 6 ξ2 6 0, consider the hyperplane in Amp(S)R
given by

W ξ := {D | D · ξ = 0} .
The hyperplane W ξ is called the wall associated with ξ. For simplicity, we shall assume that the
line segment joining L+ and L− intersects only a single W ξ, determined by a unique ξ. The more
general case, where rational multiples of ξ may remain integral and define the same wall, requires
minimal modification of the argument [FQ95]. Denote the polarization given by the intersection
of the line and the hyperplane by L0. We assume that L0 lies in no other walls.

We have two inclusions

M̃L−(∆, c) ⊆ M̃umL0(∆, c) ⊇ M̃L+(∆, c) ,

where we change the notation

M̃L(2,∆, c) =: M̃L(∆, c)

to reflect that the focus of our attention is upon rank two sheaves. Note the switch to Mumford
semi-stable in the wall. Friedman and Qin study Mumford L0-semi-stable sheaves of a particular
form.

Definition 3.4. For a divisor F on S, let Zk(F ) be the set of sheaves E occurring in a short
exact sequence

0→ IZ1(F )→ E → IZ2(∆− F )→ 0 ,
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where ξ = 2F −∆, Z1 ∈ Hilbk(S), and Z2 ∈ Hilblξ−k(S) with

lξ =
(
4c−∆2 + ξ2

)
/4 .

Denote the associated substack of M̃umL0(∆, c) by Z̃k(F ).

Proposition 3.5. The substack Z̃k(F ) is closed in M̃umL0(∆, c), and M̃umL0(∆, c) is smooth
along Z̃k(F ).

Proof. A Mumford L0-semi-stable sheaf E lies in Zk(F ) if and only if there is a surjective map

E(−F )→ IZ2 → 0

with ξ = 2F −∆ and l(Z2) = lξ − k. This is a closed condition as it states that E(−F ) lies in
the Quot scheme for the Hilbert polynomial associated with IZ2 .

By [FQ95, Lemma 2.2], the non-split extensions in Zk(F ) are simple. The split extensions
are polystable. So Lemma 3.3 gives the last statement.

Applying this proposition with the switch F → ∆−F also gives the corresponding statement
for Z̃k(∆− F ).

The stacks Z̃k(F ) admit particularly simple geometric descriptions. Let Ek(F ) be the coherent
sheaf on Hk := Hilbk(S)×Hilblξ−k(S) classifying the extensions appearing in Zk(F ); that is, its
fiber over (Z1, Z2) is

Ext1
S(IZ2(∆− F ), IZ1(F )) .

By [FQ95, Lemma 2.6], the sheaf Ek(F ) is locally free. Let

Xk(F ) := Spec(Ek(F ))

be the associated geometric vector bundle on Hk. There is a natural action of G2
m on Xk(F ) given

by endomorphisms of IZ1(F )⊕IZ2(∆−F ), which on a fiber is simply (α·1IZ1
(F ), β ·1IZ2

(∆−F ))·e =

αeβ−1 = αβ−1e for e ∈ Ext1
S(IZ2(∆− F ), IZ1(F )).

Proposition 3.6. There are isomorphisms

Z̃k(F ) ∼=
[
Xk(F )/G2

m

]
,

Z̃k(∆− F ) ∼=
[
Xk(∆− F )/G2

m

]
.

Proof. From [FQ95, Lemma 2.2.i], given E in Z̃k(F ), the schemes Z1 and Z2 are uniquely
determined and the map IZ1(F )→ E is unique up to scaling. So the extension class for a given
E is determined up to scaling.

To move closer to schemes, we now rigidify our stacks and remove the residual Gm coming from
multiples of the identity. We denote the rigidified stacks by removing the tilde; for example, the
Gm-rigidified moduli stack of Mumford L0-semi-stable sheaves will be denoted byMumL0(∆, c).
We do this now, at the current point in the argument, to guarantee that the following result
holds.

Proposition 3.7. The substacks Zk(F ) and Z lξ−k(∆−F ) form an elementary wall crossing in
the stack MumL0(∆, c).

Proof. We have a presentation of Zk(F ) given by

Gm ×Xk(F ) = G2
m/Gm ×Xk(F )⇒ Xk(F ) .
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Now, take the Gm given by the first summand in Gm, that is, scalar endomorphisms of IZ1(F ).
Under this Gm-action, Xk(F ) contracts onto the zero locus, Hk, so is a BB stratum. This also
gives the morphisms l : Gm×Xk(F )→ G2

m×Xk(F ) and l : Gm×Xk(F )→ G2
m/Gm×Xk(F ). The

adjoint action is trivial on the first factor and is the action on the second. Thus, it extends to A1

and Zk(F ) is a stacky BB stratum. Computations in [FQ95, Section 3] identify the conormal
sheaf of Zk(F ) with E lξ−k(∆−F ), which has weight −1 with respect to this Gm-action. So Zk(F )
is an elementary stratum. Similarly, one shows that Z lξ−k(∆−F ) is an elementary stratum. Since
we have rigidified, the two choices of Gm-actions on the fixed substacks differ by inversion.

From here on, we assume

L− · (2F −∆) < 0 < L+ · (2F −∆)

and

ω−1
S · (2F −∆) > 0 .

Next, we want to compare the moduli stacks ML+(∆, c) and ML−(∆, c) via a sequence to
elementary wall crossings.

To do so, we consider the following intermediate stacks:

M6l,>t :=MumL0(∆, c) \

(⋃
k>l

Zk(F ) ∪
⋃
k<t

Zk(∆− F )

)
.

Lemma 3.8 ([FQ95, Lemma 3.2.ii]). We have ML+(∆, c) = M6lξ,>lξ+1 and ML−(∆, c) =
M6−1,>0.

We get a sequence of elementary wall crossing given by

M6l,>l+1 ⊂M6l+1,>l+1 ⊃M6l+1,>l+2 .

Applying Theorem 2.29, we get the following statement.

Proposition 3.9. With the assumptions as above, there is a semi-orthogonal decomposition

Db(cohM6l+1,>l+2) =

〈
Db(cohH l), . . . ,Db(cohH l)︸ ︷︷ ︸

µξ

,Db(cohM6l,>l+1)

〉
,

where

H l := Hilbl(S)×Hilblξ−l(S) and µξ := ω−1
S · (2F −∆) = ω−1

S · ξ .

Proof. This is an immediate application of Theorem 2.29 using [FQ95, Lemma 2.6] to compute
the number of copies of Db(cohH l).

Corollary 3.10. Let S be a smooth rational surface over C, and let L− and L+ be ample lines
bundles on S separated by a single wall defined by the unique divisor ξ satisfying

L− · ξ < 0 < L+ · ξ ,
0 6 ω−1

S · ξ .

LetML±(∆, c) be the Gm-rigidified moduli stack of Gieseker L±-semi-stable torsion-free sheaves
of rank two with first Chern class c1 and second Chern class c2.
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There is a semi-orthogonal decomposition of Db(cohML+(∆, c)) as〈
Db(cohH lξ), . . . ,Db(cohH lξ)︸ ︷︷ ︸

µξ

, . . . ,Db(cohH0), . . . ,Db(cohH0)︸ ︷︷ ︸
µξ

,Db(cohML−(∆, c))

〉
,

where

lξ :=
(
4c2 − c2

1 + ξ2
)
/4 , H l := Hilbl(S)×Hilblξ−l(S) , µξ := ω−1

S · ξ ,

with the convention that Hilb0(S) := SpecC.

Proof. This is an iterated application of Proposition 3.9 using Lemma 3.8 to identify the first
and last moduli spaces.

Remark 3.11. The results on wall crossing of moduli spaces of semi-stable sheaves in [EG95,
FQ95, MW97] were originally obtained to compute the change in the Donaldson invariants under
a change of the polarization. Thus, Corollary 3.10 can be viewed as a categorification of that
wall-crossing formula.

3.3 An example

Let us work out the consequences of Corollary 3.10 in the case S = P1×P1 with c1 = 5H1 + 5H2

and c2 = 14. We get the following decomposition of the ample cone into walls and chambers:

W ξ2W ξ1

W ξ3

CI
CII

CIV

CIII

where

ξ1 = 3H1 −H2 , ξ2 = H1 −H2 , ξ3 = −H1 + 3H2 .

We have

lξ1 = 0 , µξ1 = 5 , lξ2 = 1 , µξ2 = 0 , lξ3 = 0 , µξ3 = 5 .

Let MJ denote the (rigidified) moduli stack of Gieseker L-semi-stable torsion-free sheaves
of rank two with c1 = 5H1 + 5H2 and c2 = 14, L ∈ CJ , and J ∈ {I, II, III, IV}. Applying
Corollary 3.10 to a crossing of W1, we see that there is a semi-orthogonal decomposition

Db(cohMII) =
〈
E1, . . . , E5,D

b(cohMI)
〉
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with Ei exceptional. Applying it to W2, we get an equivalence

Φ: Db(cohMII)
∼→ Db(cohMIII).

Applying it to W3, we get a semi-orthogonal decomposition

Db(cohMIII) =
〈
F1, . . . , F5,D

b(cohMIV)
〉

with Fi exceptional.

The involution i that exchanges the two factors of P1 × P1 induces isomorphisms

MI
∼=MIV and MII

∼=MIII ,

so there are really only two moduli spaces here. Note, however, that the equivalence Φ is not
the pullback i∗ as it leaves unchanged sheaves that are semi-stable in both chambers. Combining
the two equivalences, we get an interesting autoequivalence i∗ ◦ Φ of Db(cohMII) which is a
spherical twist around the destabilized locus.
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