Skip to main content
Log in

Lissencephaly 1 linking to multiple diseases

Mental Retardation, Neurodegeneration, Schizophrenia, Male Sterility, and More

  • Review Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Lissencephaly 1 (LIS1) was the first gene implicated in the pathogenesis of type-1 lissencephaly. More than a decade of research by multiple laboratories has revealed that LIS1 is a key node protein, which participates in several pathways, including association with the molecular motor cytoplasmic dynein, the reelin signaling pathway, and the platelet-activating factor pathway. Mutations in LIS1-interacting proteins, either in human, or in mouse models has suggested that LIS1 might play a role in the pathogenesis of numerous diseases such as male sterility, schizophrenia, neuronal degeneration, and viral infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi T., Aoki J., Manya H., Asou H., Arai H., and Inoue K. (1997) PAF analogues capable of inhibiting PAF acetylhydrolase activity suppress migration of isolated rat cerebellar granule cells. Neurosci. Lett. 235, 133–136.

    PubMed  CAS  Google Scholar 

  • Aicardi J. (1989) The lissencephaly syndromes. Int. Pediatr. 4, 118–126.

    Google Scholar 

  • Akbarian S., Bunney W. E. Jr., Potkin S. G., et al. (1993) Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch. Gen. Psychiatry 50, 169–177.

    PubMed  CAS  Google Scholar 

  • Akhmanova A., Mausset-Bonnefont A. L., van Cappellen W., et al. (2005) The microtubule plus-endtracking protein CLIP-170 associates with the spermatid manchette and is essential for spermatogenesis. Genes Dev. 19, 2501–2515.

    PubMed  CAS  Google Scholar 

  • Al-Chalabi A. and Miller C. C. (2003) Neurofilaments and neurological disease. BioEssays 25, 346–355.

    PubMed  CAS  Google Scholar 

  • Arnold S. E., Hyman B. T., Van Hoesen G. W., and Damasio A. R. (1991) Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch. Gen. Psychiatry 48, 625–632.

    PubMed  CAS  Google Scholar 

  • Assadi A. H., Zhang G., Beffert U., et al. (2003) Interaction of reelin signaling and Lis1 in brain development. Nat. Genet. 35, 270–276.

    PubMed  CAS  Google Scholar 

  • Aumais J. P., Tunstead J. R., McNeil R. S., et al. (2001) NudC associates with Lis1 and the dynein motor at the leading pole of neurons. J. Neurosci. 21, RC187.

    PubMed  CAS  Google Scholar 

  • Barkovich A. J. and Raybaud C. A. (2004) Malformations of cortical development. Neuroimaging Clin. N. Am. 14, 401–423.

    PubMed  Google Scholar 

  • Barkovich A. J., Guerrini R., Battaglia G., et al. (1994) Band heterotopia: correlation of outcome with magnetic resonance imaging parameters. Ann. Neurol. 36, 609–617.

    PubMed  CAS  Google Scholar 

  • Barth P. G. (1987) Disorders of Neuronal Migration. Can. J. Neurol. Sci. 14, 1–16.

    PubMed  CAS  Google Scholar 

  • Bassi M. T., Ramesar R. S., Caciotti B., et al. (1999) X-linked late-onset sensorineural deafness caused by a deletion involving OA1 and a novel gene containing WD-40 repeats. Am. J. Hum. Genet. 64, 1604–1616.

    PubMed  CAS  Google Scholar 

  • Bazan N. G. (2005) Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol. Neurobiol. 32, 89–103.

    PubMed  CAS  Google Scholar 

  • Bear J. E., Loureiro J. J., Libova I., Fassler R., Wehland and Gertler F. B. (2000) Negative regulation of fibroblast motility by Ena/VASP proteins. Cell 101, 717–728.

    PubMed  CAS  Google Scholar 

  • Beasley C. L. and Reynolds G. P. (1997) Parvalbuminimmunoreactive neurons are reduced in the prefrontal cortex of schizophrenics. Schizophr. Res. 24, 349–355.

    PubMed  CAS  Google Scholar 

  • Beasley C. L., Zhang Z. J., Patten I., and Reynolds G. (2002) Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined the presence of calcium-binding proteins. Biol. Psychiatry 52, 708–715.

    PubMed  CAS  Google Scholar 

  • Beaulieu J. M., Nguyen M. D., and Julien J. P. (1999) Late onset of motor neurons in mice overexpressing wild-type peripherin. J. Cell Biol. 147, 531–544.

    PubMed  CAS  Google Scholar 

  • Beckwith S. M., Roghi C. H., Liu B., and Ronald Morris N. (1998) The “8-kD” cytoplasmic dynein light chain is required for nuclear migration and for dynein heavy chain localization in Aspergillus nidulans. J. Cell Biol. 143, 1239–1247.

    PubMed  Google Scholar 

  • Benes F. M. and Berretta S. (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25, 1–27.

    PubMed  CAS  Google Scholar 

  • Benes F. M., McSparren J., Bird E. D., SanGiovanni J. and Vincent S. L. (1991) Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch. Gen. Psychiatry 48, 996–1001.

    PubMed  CAS  Google Scholar 

  • Bix G. J. and Clark G. D. (1998) Platelet-activating factor receptor stimulation disrupts neuronal migration In vitro. J. Neurosci. 18, 307–318.

    PubMed  CAS  Google Scholar 

  • Boulton S. J., Brook A., Staehling-Hampton K., Heitzler P., and Dyson N. (2000) A role for Ebi in neuronal cell cycle control. EMBO J. 19, 5376–5386.

    PubMed  CAS  Google Scholar 

  • Brandon N. J., Handford E. J., Schurov I., et al. (2004) Disrupted in Schizophrenia 1 and Nudel form neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders. Mol. Cell Neurosci. 25, 42–55.

    PubMed  CAS  Google Scholar 

  • Cahana A. and Reiner O. (1999) LIS1 and platelet-activating factor acetylhydrolase (fb) catalytic sub units, expressions in the mouse oocyte and zygote. FEBS Lett. 451, 99–102.

    PubMed  CAS  Google Scholar 

  • Cahana A., Jin X. L., Reiner O., Wynshaw-Boris A., and O'Neill C. (2003) A study of the nature of embryonic lethality in LIS1-/- mice. Mol. Reprod. Dev. 66, 134–142.

    PubMed  CAS  Google Scholar 

  • Cahana A., Escamez T., Nowakowski R. S., et al. (2001) Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization. Proc. Natl. Acad. Sci. USA 98, 6429–6434.

    PubMed  CAS  Google Scholar 

  • Campbell G. R., Pasquier E., Watkins J., et al. (2004) The glutamine-rich region of the HIV-1 Tat protein is involved in T-cell apoptosis. J. Biol. Chem. 279, 48,197–48,204.

    CAS  Google Scholar 

  • Cannon T. D., Hennah W., van Erp T. G., et al. (2005) Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch. Gen. Psychiatry 62, 1205–1213.

    PubMed  CAS  Google Scholar 

  • Cardoso C., Leventer R. J., Dowling J. J., et al. (2002) Clinical and molecular basis of classical lissencephaly: Mutations in the LIS1 gene (PAFAH1B1). Hum. Mutat. 19, 4–15.

    PubMed  CAS  Google Scholar 

  • Cardoso C., Leventer R. J., Ward H. L., et al. (2003) Refinement of a 400-kb Critical Region Allows Genotypic Differentiation between Isolated Lissencephaly, Miller-Dieker Syndrome, and Other Phenotypes Secondary to Deletions of 17p13.3. Am. J. Hum. Genet. 72, 918–930.

    PubMed  CAS  Google Scholar 

  • Caspi M., Atlas R., Kantor A., Sapir T., and Reiner O. (2000) Interaction between LIS1 and doublecortin, two lissencephaly gene products. Hum. Mol. Genet. 9, 2205–2213.

    PubMed  CAS  Google Scholar 

  • Chae T., Kwon Y. T., Bronson R., Dikkes P., Li E., and Tsai L.-H. (1997) Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18, 29–42.

    PubMed  CAS  Google Scholar 

  • Chance S. A., Walker M., and Crow T. J. (2005) Reduced density of calbindin-immunoreactive interneurons in the planum temporale in schizophrenia. Brain Res. 1046, 32–37.

    PubMed  CAS  Google Scholar 

  • Chao W. and Olson M. S. (1993) Platelet-activating factor: receptors and signal transduction. Biochem. J. 292, 617–629.

    PubMed  CAS  Google Scholar 

  • Chen D., Wang M., Zhou S., and Zhou Q. (2002) HIV-1 Tat targets microtubules to induce apoptosis, a process promoted by the pro-apoptotic Bcl-2 relative Bim. EMBO J. 21, 6801–6810.

    PubMed  CAS  Google Scholar 

  • Chong S. S., Lo Nigro C., Roschke A. V., et al. (1996) Point mutations and an intragenic deletion in three ILS patients confirm LIS1 as the lissencephaly causative gene in isolated lissencephaly sequence and Miller-Dieker syndrome. Am. J. Hum. Genet. 59(suppl), A23.

    Google Scholar 

  • Coquelle F. M., Caspi M., Cordelieres F. P., et al. (2002) LIS1, CLIP-170's key to the dynein/dynactin pathway. Mol. Cell Biol. 22, 3089–3102.

    PubMed  CAS  Google Scholar 

  • Costa E., Chen Y., Davis J., et al. (2002) REELIN and Schizophrenia:: A Disease at the Interface of the Genome and the Epigenome. Mol. Interv. 2, 47–57.

    PubMed  CAS  Google Scholar 

  • D'Arcangelo G., Homayouni R., Keshvara L., Rice D. S., Sheldon M., and Curran T. (1999) Reelin is a ligand for lipoprotein receptors. Neuron 24, 471–479.

    PubMed  Google Scholar 

  • D'Arcangelo G., Miao G. G., Chen S. C., Soares H. D., Morgan J. I., and Curran T. (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374, 719–723.

    PubMed  Google Scholar 

  • de Mareuil J., Carre M., Barbier P., et al. (2005) HIV-1 Tat protein enhances microtubule polymerization. Retrovirology 2, 5.

    PubMed  Google Scholar 

  • De Rijk-van Andel J. F., Arts W. F., Hofman A., Staal A., and Niermeijer M. F. (1991) Epidemiology of lissencephaly type I. Neuroepidemiology 10, 200–204.

    PubMed  Google Scholar 

  • des Portes V., Pinard J. M., Billuart P., et al. (1998) A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar hetrotropia and lissencephaly syndrome. Cell 92, 51–61.

    PubMed  Google Scholar 

  • Dobyns W. B., Reiner O., Carrozzo R., and Ledbetter D. H. (1993) Lissencephaly: a human brain malformation associated with deletion of the LIS1 gene located at chromosome 17p13. J. Am. Med. Ass. 270, 2838–2842.

    CAS  Google Scholar 

  • Dohner K., Nagel C. H., and Sodeik B. (2005) Viral stop-and-go along microtubules: taking a ride with dynein and kinesins. Trends Microbiol. 13, 320–327.

    PubMed  Google Scholar 

  • Dohner K., Wolfstein A., Prank U., et al. (2002) Function of dynein and dynactin in herpes simplex virus capsid transport. Mol. Biol. Cell 13, 2795–2809.

    PubMed  CAS  Google Scholar 

  • Dong X., Tsuda L., Zavitz K. H., et al. (1999) ebi regulates epidermal growth factor receptor signaling pathways in Drosophila. Genes Dev. 13, 954–965.

    PubMed  CAS  Google Scholar 

  • Dujardin D. L., Barnhart L. E., Stehman S. A., Gomes E. R., Gundersen G. G., and Vallee R. B. (2003) A role for cytoplasmic dynein and LIS1 in directed cell movement. J. Cell Biol. 163, 1205–1211.

    PubMed  CAS  Google Scholar 

  • Efimov V. P. and Morris N. R. (2000) The LIS1-related NUDF protein of Aspergillus nidulans interacts with the coiled-coil domain of the NUDE/RO11 protein. J. Cell Biol. 150, 681–688.

    PubMed  CAS  Google Scholar 

  • Ekelund J., Hennah W., Hiekkalinna T., et al. (2004) Replication of 1q42 linkage in Finnish schizophrenia pedigrees. Mol. Psychiatry 9, 1037–1041.

    PubMed  CAS  Google Scholar 

  • Ekelund J., Hovatta I., Parker A., et al. (2001) Chromosome 1 loci in Finnish schizophrenia families. Hum. Mol. Genet. 10, 1611–1617.

    PubMed  CAS  Google Scholar 

  • Emes R. D. and Ponting C. P. (2001) A new sequence motif linking lissencephaly, Treacher Collins and oral-facial-digital type 1 syndromes, microtubule dynamics and cell migration. Hum. Mol. Genet. 10, 2813–2820.

    PubMed  CAS  Google Scholar 

  • Epie N., Ammosova T., Sapir T., et al. (2005) HIV-1 Tat interacts with LIS1 protein. Retrovirology 2, 6.

    PubMed  Google Scholar 

  • Fatemi S. H. (2005) Reelin glycoprotein: structure, biology and roles in health and disease. Mol. Psychiatry 10, 251–257.

    PubMed  CAS  Google Scholar 

  • Fatemi S. H., Snow A. V., Stary J. M., et al. (2005) Reelin signaling is impaired in autism. Biol. Psychiatry 57, 777–787.

    PubMed  CAS  Google Scholar 

  • Faulkner N. E., Dujardin D. L., Tai C. Y., et al. (2000) A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function. Nat. Cell Biol. 2, 784–791.

    PubMed  CAS  Google Scholar 

  • Feng Y. and Walsh C. A. (2004) Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron 44, 279–293.

    PubMed  CAS  Google Scholar 

  • Feng Y., Olson E. C., Stukenberg P. T., Flanagan L. A., Kirschner M. W., and Walsh C. A. (2000) LIS1 regulates CNS lamination by interacting with mNudE, a central component of the centrosome. Neuron 28, 665–679.

    PubMed  CAS  Google Scholar 

  • Ferrante M. I., Giorgio G., Feather S. A., et al. (2001) Identification of the gene for oral-facial-digital type I syndrome. Am. J. Hum. Genet. 68, 569–576.

    PubMed  CAS  Google Scholar 

  • Fleck M. W., Hirotsune S., Gambello M. J., et al. (2000) Hippocampal abnormalities and enhanced excitability in a murine model of human lissencephaly. J. Neurosci. 20, 2439–2450.

    PubMed  CAS  Google Scholar 

  • Forman M. S., Squier W., Dobyns W. B., and Golden J. A. (2005) Genotypically defined lissencephalies show distinct pathologies. J. Neuropathol. Exp. Neurol. 64, 847–857.

    PubMed  Google Scholar 

  • Fujiwara T., Tanaka K., Inoue E., Kikyo M., and Takai Y. (1999) Bni1p regulates microtubule-dependent nuclear migration through the actin cytoskeleton in Saccharomyces cerevisiae. Mol. Cell Biol. 19, 8016–8027.

    PubMed  CAS  Google Scholar 

  • Gambello M. J., Darling D. L., Yingling J., Tanaka T., Gleeson J. G., and Wynshaw-Boris A. (2003) Multiple dose-dependent effects of Lis1 on cerebral cortical development. J. Neurosci. 23, 1719–1729.

    PubMed  CAS  Google Scholar 

  • Garcia-Higuera I., Fenoglio J., Li Y., et al. (1996) Folding of proteins with WD-repeats: comparison of six members of the WD-repeat superfamily to the G protein β-subunit. Biochemistry 35, 13,985–13,994.

    CAS  Google Scholar 

  • Garcia M. L., Singleton A. B., Hernandez D., et al. (2006) Mutations in neurofilament genes are not a significant primary cause of non-SOD1-mediated amyotrophic lateral sclerosis. Neurobiol. Dis. 21, 102–109.

    PubMed  CAS  Google Scholar 

  • Gerlitz G., Darhin E., Giorgio G., Franco B., and Reiner O. (2005) Novel functional features of the Lis-H domain: role in protein dimerization, half-life and cellular localization. Cell Cycle 4, 1632–1640.

    PubMed  CAS  Google Scholar 

  • Gertler F. B., Hill K. K., Clark M. J., and Hoffmann F. M. (1993) Dosage-sensitive modifiers of Drosophila abl tyrosine kinase function: prospero, a regulator of axonal outgrowth, and disabled, a novel tyrosine kinase substrate. Genes Dev. 7, 441–453.

    PubMed  CAS  Google Scholar 

  • Gertler F. B., Niebuhr K., Reinhard M., Wehland J., and Soriano P. (1996) Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87, 227–239.

    PubMed  CAS  Google Scholar 

  • Gilmore E. C., Ohshima T., Goffinet A. M., Kulkarni A. B., and Herrup K. (1998) Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J. Neurosci. 18, 6370–6377.

    PubMed  CAS  Google Scholar 

  • Gleeson J. G., Allen K. M., Fox J. W., et al. (1998) double-cortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92, 63–72.

    PubMed  CAS  Google Scholar 

  • Goh K. L., Cai L., Cepko C. L., and Gertler F. B. (2002) Ena/VASP proteins regulate cortical neuronal positioning. Curr. Biol. 12, 565–569.

    PubMed  CAS  Google Scholar 

  • Goldstein L. S. and Yang Z. (2000) Microtubule-based transport systems in neurons: the roles f kinesins and dyneins. Annu. Rev. Neurosci. 23, 39–71.

    PubMed  CAS  Google Scholar 

  • Gothelf D., Soreni N., Nachman R. P., et al. (2000) Evidence for the involvement of the hippocampus in the pathophysiology of schizophrenia. Eur. Neuropsychopharmacol. 10, 389–395.

    PubMed  CAS  Google Scholar 

  • Grayson D. R., Jia X., Chen Y., et al. (2005) Reelin promoter hypermethylation in schizophrenia. Proc. Natl. Acad. Sci. USA 102, 9341–9346.

    PubMed  CAS  Google Scholar 

  • Guerrini R. and Filippi T. (2005) Neuronal migration disorders, genetics, and epileptogenesis. J. Child. Neurol. 20, 287–299.

    PubMed  Google Scholar 

  • Guidotti A., Auta J., Davis J. M., et al. (2000) Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch. Gen. Psychiatry 57, 1061–1069.

    PubMed  CAS  Google Scholar 

  • Gupta A., Tsai L. H., and Wynshaw-Boris A. (2002) Life is a journey: a genetic look at neocortical development. Nat. Rev. Genet. 3, 342–355.

    PubMed  CAS  Google Scholar 

  • Hafezparast M., Klocke R., Ruhrberg C., et al. (2003) Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300, 808–812.

    PubMed  CAS  Google Scholar 

  • Hanahan D. J. (1986) Platelet activating factor: a biologically active phosphoglyceride. Ann. Rev. Biochem. 55, 483–509.

    PubMed  CAS  Google Scholar 

  • Harada A., Takei Y., Kanai Y., Tanaka Y., Nonaka S., and Hirokawa N. (1998) Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J. Cell Biol. 141, 51–59.

    PubMed  CAS  Google Scholar 

  • Harper M. J. (1989) Platelet-activating factor: a paracrine factor in preimplantation stages of reproduction? Biol. Reprod. 40, 907–913.

    PubMed  CAS  Google Scholar 

  • Harrison P. J. (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122(Part 4), 593–624.

    PubMed  Google Scholar 

  • Harrison P. J. and Weinberger D. R. (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry 10, 40–68; image 45.

    PubMed  CAS  Google Scholar 

  • Hattori M., Adachi H., Tsujimoto M., Arai N., and Inoue K. (1994) Miller-Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor. Nature 370, 216–218.

    PubMed  CAS  Google Scholar 

  • Heerssen H. M., Pazyra M. F., and Segal R. A. (2004) Dynein motors transport activated Trks to promote survival of target-dependent neurons. Nat. Neurosci. 7, 596–604.

    PubMed  CAS  Google Scholar 

  • Hennah W., Varilo T., Kestila M., et al. (2003) Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum. Mol. Genet. 12, 3151–3159.

    PubMed  CAS  Google Scholar 

  • Hiesberger T., Trommsdorff M., Howell B. W., et al. (1999) Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24, 481–489.

    PubMed  CAS  Google Scholar 

  • Hirotsune S., Fleck M. W., Gambello M. J., et al. (1998) Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat. Genet. 19, 333–339.

    PubMed  CAS  Google Scholar 

  • Hirotsune S., Takahara T., Sasaki N., et al. (1995) The reeler gene encodes a protein with an EGF-like motif expressed by pioneer neurons. Nat. Genet. 10, 77–84.

    PubMed  CAS  Google Scholar 

  • Hodgkinson C. A., Goldman D., Jaeger J., et al. (2004) Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am. J. Hum. Genet. 75, 862–872.

    PubMed  CAS  Google Scholar 

  • Holzbaur E. L. (2004) Motor neurons rely on motor proteins. Trends. Cell Biol. 14, 233–240.

    PubMed  CAS  Google Scholar 

  • Hong S. E., Shugart Y. Y., Huang D. T., et al. (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat. Genet. 26, 93–96.

    PubMed  CAS  Google Scholar 

  • Howell B. W., Hawkes R., Soriano P., and Cooper J. A. (1997) Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389, 733–737.

    PubMed  CAS  Google Scholar 

  • Howell B. W., Lanier L. M., Frank R., Gertler F. B., and Cooper J. A. (1999) The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glycoproteins and to phospholipids. Mol. Cell Biol. 19, 5179–5188.

    PubMed  CAS  Google Scholar 

  • Impagnatiello F., Guidotti A. R., Pesold C., et al. (1998) Adecrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc. Natl. Acad. Sci. USA 95, 15,718–15,723.

    CAS  Google Scholar 

  • Jimenez-Mateos E. M., Wandosell F., Reiner O., Avila J., and Gonzalez-Billault C. (2005) Binding of microtubule-associated protein 1B to LIS1 affects the interaction between dynein and LIS1. Biochem. J. 389, 333–341.

    PubMed  CAS  Google Scholar 

  • Kamiya A., Kubo K., Tomoda T., et al. (2005) A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat. Cell Biol. 7, 1067–1078.

    CAS  Google Scholar 

  • Kholmanskikh S. S., Dobrin J. S., Wynshaw-Boris A., Letourneau P. C., and Ross M. E. (2003) Disregulated RhoGTPases and actin cytoskeleton contribute to the migration defect in Lis1-deficient neurons. J. Neurosci. 23, 8673–8681.

    PubMed  CAS  Google Scholar 

  • Kholmanskikh S. S., Koeller H. B., Wynshaw-Boris A., Gomez T., Letourneau P. C., and Ross M. E. (2005) Calcium-dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility. Nat Neurosci. 9, 50–57.

    PubMed  Google Scholar 

  • Kim M. H., Cooper D. R., Oleksky A., et al. (2004) The structure of the N-terminal domain of the product of the lissencephaly gene Lis1 and its functional implications. Structure 12, 987–998.

    PubMed  CAS  Google Scholar 

  • Kitagawa M., Umezu M., Aoki J., Koizumi H., Arai H., and Inoue K. (2000) Direct association of LIS1, the lissencephaly gene product, with a mammalian homologue of a fungal nuclear distribution protein, rNUDE. FEBS Lett. 479, 57–62.

    PubMed  CAS  Google Scholar 

  • Kochanski A. (2004) Mutations in the neurofilament light chain gene (NEFL)-a study of a possible pathogenous effect. Folia. Neuropathol. 42, 187–190.

    PubMed  CAS  Google Scholar 

  • Koizumi H., Yamaguchi N., Hattori M., et al. (2003) Targeted Disruption of Intracellular Type I Platelet Activating Factor-acetylhydrolase Catalytic Subunits Causes Severe Impairment in Spermatogenesis. J. Biol. Chem. 278, 12,489–12,494.

    CAS  Google Scholar 

  • Koltai M., Hosford D., Guinot P., Esanu A., and Braquet P. (1991) Platelet activating factor (PAF). A review of its effects, antagonists and possible future clinical implications (Part I). Drugs 42, 9–29.

    Article  PubMed  CAS  Google Scholar 

  • Kondratova A. A., Neznanov N., Kondratov R. V., and Gudkov A. V. (2005) Poliovirus protein 3A binds and inactivates LIS1, causing block of membrane protein trafficking and deregulation of cell division. Cell Cycle 4, 1403–1410.

    PubMed  CAS  Google Scholar 

  • Kornecki E. and Ehrlich Y. H. (1988) Neuroregulatory and neuropathological actions of the etherphospholipid platelet-activating factor. Science 240, 1792–1794.

    PubMed  CAS  Google Scholar 

  • Kunst C. B. (2004) Complex genetics of amyotrophic lateral sclerosis. Am. J. Hum. Genet. 75, 933–947.

    PubMed  CAS  Google Scholar 

  • Kuppuswamy M., Subramanian T., Srinivasan A., and Chinnadurai G. (1989) Multiple functional domains of Tat, the trans-activator of HIV-1, defined by mutational analysis. Nucleic Acids Res. 17, 3551–3561.

    PubMed  CAS  Google Scholar 

  • Kwon Y. T. and Tsai L. H. (1998) A novel disruption of cortical development in p35(-/-) mice distinct from reeler. J. Comp. Neurol. 395, 510–522.

    PubMed  CAS  Google Scholar 

  • Kwon Y. T. and Tsai L. H. (2000) The role of the p35/cdk5 kinase in cortical development. Results Probl. Cell Differ. 30, 241–253.

    PubMed  CAS  Google Scholar 

  • LaMonte B. H., Wallace K. E., Holloway B. A., et al. (2002) Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late onset progressive degeneration. Neuron 34, 715–727.

    PubMed  CAS  Google Scholar 

  • Lariviere R. C. and Julien J. P. (2004) Functions of intermediate filaments in neuronal development and disease. J. Neurobiol. 58, 131–148.

    PubMed  CAS  Google Scholar 

  • Lee W. L., Oberle J. R., and Cooper J. A. (2003) The role of the lissencephaly protein Pac1 during nuclear migration in budding yeast. J. Cell Biol. 160, 355–364.

    PubMed  CAS  Google Scholar 

  • Lei Y. and Warrior R. (2000) The drosophila lissencephaly1 (DLis1) gene is required for nuclear migration. Dev. Biol. 226, 57–72.

    PubMed  CAS  Google Scholar 

  • Li J., Lee W. L., and Cooper J. A. (2005) NudEL targets dynein to microtubule ends through LIS1. Nat. Cell Biol. 7, 686–690.

    PubMed  CAS  Google Scholar 

  • Liu Z., Steward R., and Luo L. (2000) Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport. Nat. Cell Biol. 2, 776–783.

    PubMed  CAS  Google Scholar 

  • Liu Z., Xie T., and Steward R. (1999) Lis1, the Drosophila homolog of a human issencephaly disease gene, is required for germline cell division and oocyte differentiation. Development 126, 4477–4488.

    PubMed  CAS  Google Scholar 

  • Liu Q., Xie F., Siedlak S. L., et al. (2004) Neurofilament proteins in neurodegenerative diseases. Cell Mol. Life Sci. 61, 3057–3075.

    PubMed  CAS  Google Scholar 

  • McManus M. F., Nasrallah I. M., Pancoast M. M., Wynshaw-Boris A., and Golden J. A. (2004) Lis1 is necessary for normal non-radial migration of inhibitory interneurons. Am. J. Pathol. 165, 775–784.

    PubMed  CAS  Google Scholar 

  • Millar J. K., Christie S., Semple C. A., and Porteous D. J. (2000) Chromosomal location and genomic structure of the human translin-associated factor X gene (TRAX; TSNAX) revealed by intergenic splicing to DISC1, a gene disrupted by a translocation segregating with schizophrenia. Genomics 67, 69–77.

    PubMed  CAS  Google Scholar 

  • Minhas B. S., Ripps B. A., Zhu Y. P., Kim H. N., Burwinkel T. H., and Gleicher N. (1996) Platelet activating factor and conception. Am. J. Reprod. Immunol. 35, 267–271.

    PubMed  CAS  Google Scholar 

  • Minke P. F., Lee I. H., Tinsley J. H., Bruno K. S., and Plamann M. (1999) Neurospora crassa ro-10 and ro-11 genes encode novel proteins required for nuclear distribution. Mol. Microbiol. 32, 1065–1076.

    PubMed  CAS  Google Scholar 

  • Morris N. R., Efimov V. P., and Xiang X. (1998a) Nuclear migration, nucleokinesis and lissencephaly. Trends. Cell Biol. 8, 467–470.

    PubMed  CAS  Google Scholar 

  • Morris J. A., Kandpal G., Ma L., and Austin C. P. (2003) DISC1 (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum. Mol. Genet. 12, 1591–1608.

    PubMed  CAS  Google Scholar 

  • Morris S. M., Albrecht U., Reiner O., Eichele G., and Yu-Lee L.-y. (1998b) The lissencephaly gene product Lis1, a protein involved in neuronal migration, interacts with a nuclear movement protein, NudC. Curr. Biol. 8, 603–606.

    PubMed  CAS  Google Scholar 

  • Nayernia K., Vauti F., Meinhardt A., et al. (2003) Inactivation of a testis-specific Lis1 transcript in mice prevents spermatid differentiation and causes male infertility. J. Biol. Chem. 278, 48,377–48,385.

    CAS  Google Scholar 

  • Neer E. J., Schmidt C. J., Nambudripad R., and Smith T. F. (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297–300.

    PubMed  CAS  Google Scholar 

  • Nguyen M. D., Shu T., Sanada K., et al. (2004) A NUDEL-dependent mechanism of neurofilament assembly regulates the integrity of CNS neurons. Nat. Cell Biol. 6, 595–608.

    PubMed  CAS  Google Scholar 

  • Niethammer M., Smith D. S., Ayala R., et al. (2000) Nudel is a novel Cdk5 substrate that associates with Lis1 and cytoplasmic dynein. Neuron 28, 697–711.

    PubMed  CAS  Google Scholar 

  • Nothwang H. G., Kim H. G., Aoki J., et al. (2001) Functional hemizygosity of PAFAH1B3 due to a PAFAH1B3-CLK2 fusion gene in a female with mental retardation, ataxia and atrophy of the brain. Hum. Mol. Genet. 10, 797–806.

    PubMed  CAS  Google Scholar 

  • Ogawa M., Miyata T., Nakajiman K., et al. (1995) The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14, 899–912.

    PubMed  CAS  Google Scholar 

  • Ohshima T., Ward J. M., Huh C. G., et al. (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl. Acad. Sci. USA 93, 11,173–11,178.

    CAS  Google Scholar 

  • Ozeki Y., Tomoda T., Kleiderlein J., et al. (2003) Disrupted-in-Schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc. Natl. Acad. Sci. USA 100, 289–294.

    PubMed  CAS  Google Scholar 

  • Pancoast M., Dobyns W., and Golden J. A. (2005) Interneuron deficits in patients with the Miller-Dieker syndrome. Acta Neuropathol. (Berl.) 109, 400–404.

    Google Scholar 

  • Paylor R., Hirotsune S., Gambello M. J., Yuva-Paylor L., Crawley J. N., and Wynshaw-Boris A. (1999) Impaired learning and motor behavior in heterozygous Pafah1b1 (Lis1) mutant mice. Learn Mem. 6 521–537.

    PubMed  CAS  Google Scholar 

  • Perez F., Diamantopoulos G. S., Stalder R., and Kreis E. (1999) CLIP-170 highlights growing microtubule ends in vivo. Cell 96, 517–527.

    PubMed  CAS  Google Scholar 

  • Pilz D. T., Matsumoto N., Minnerath S., et al. (1998) LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum. Mol. Genet. 7, 2029–2037.

    PubMed  CAS  Google Scholar 

  • Puls I., Jonnakuty C., LaMonte B. H., et al. (2003) Mutant dynactin in motor neuron disease. Nat. Genet. 33, 455–456.

    PubMed  CAS  Google Scholar 

  • Raedler I., Oh S. J., Sumner C. J., et al. (2005) Distal spinal and bulbar muscular atrophy caused by dynactin mutation. Ann. Neurol. 57, 687–694.

    Google Scholar 

  • Raedler T. J., Knable M. B., and Weinberger D. R. (1998) Schizophrenia as a developmental disorder of the cerebral cortex. Curr. Opin. Neurobiol. 8 157–161.

    PubMed  CAS  Google Scholar 

  • Rakic P., Knyihar-Csillik E., and Csillik B. (1996) Polarity of microtubule assemblies during neuronal cell migration. Proc. Natl. Acad. Sci. USA 93, 9218–9222.

    PubMed  CAS  Google Scholar 

  • Rehberg M., Kleylein-Sohn J., Faix J., Ho T. H., Schulz I., and Graf R. (2005) Dictyostelium LIS1 Is a Centrosomal Protein Required for Microtubule/Cell Cortex Interactions, Nucleus/Centrosome Linkage, and Actin Dynamics. Mol. Biol. Cell. 16, 2759–2771.

    PubMed  CAS  Google Scholar 

  • Reiner O. (2000) LIS1: Let's Interact Sometimes (Part 1). Neuron 28, 633–636.

    PubMed  CAS  Google Scholar 

  • Reiner O. and Coquelle F. M. (2005) Missense mutations resulting in type 1 lissencephaly. Cell Mol. Life Sci. 62, 425–434.

    PubMed  CAS  Google Scholar 

  • Reiner O. and Sapir T. (1998) Abnormal cortical development; towards elucidation of the LIS1 gene product function. Int. J. Mol. Med. 1, 849–853.

    PubMed  CAS  Google Scholar 

  • Reiner O., Cahana A., Escamez T., and Martinez S. (2002) LIS1-no more no less. Mol. Psychiatry 7, 12–16.

    PubMed  CAS  Google Scholar 

  • Reiner O., Albrecht U., Gordon M., et al. (1995) Lissencephaly gene (LIS1) expression in the CNS suggests a role in neuronal migration. J. Neurosci. 15, 3730–3738.

    PubMed  CAS  Google Scholar 

  • Reiner O., Carrozzo R., Shen Y., et al. (1993) Isolation of a Miller-Dieker lissencephaly gene containing G-protein β-subunit-like repeats. Nature 364, 717–721.

    PubMed  CAS  Google Scholar 

  • Reynolds G. P. and Beasley C. L. (2001) GABAergic neuronal subtypes in the human frontal cortex-development and deficits in schizophrenia. J. Chem. Neuroanat. 22, 95–100.

    PubMed  CAS  Google Scholar 

  • Reynolds G. P., Beasley C. L., and Zhang Z. J. (2002) Understanding the neurotransmitter pathology of schizophrenia: selective deficits of subtypes of cortical GABAergic neurons. J. Neural. Transm. 109, 881–889.

    PubMed  CAS  Google Scholar 

  • Reynolds G. P., Zhang Z. J., and Beasley C. L. (2001) Neurochemical correlates of cortical GABAergic deficits in schizophrenia: selective losses of calcium binding protein immunoreactivity. Brain Res. Bull. 55, 579–584.

    PubMed  CAS  Google Scholar 

  • Ross C. A. and Pearlson G. D. (1996) Schizophrenia, the heteromodal association neocortex and development: potential for a neurogenetic approach. Trends Neurosci. 19, 171–176.

    PubMed  CAS  Google Scholar 

  • Sapir T., Elbaum M., and Reiner O. (1997) Reduction of microtubule catastrophe events by LIS1, platelet-activating factor acetylhydrolase subunit. EMBO J. 16, 6977–6984.

    PubMed  CAS  Google Scholar 

  • Sapir T., Cahana A., Seger R., Nekhai S., and Reiner O. (1999) LIS1 is a microtubule-associated phosphoprotein. Eur. J. Biochem. 265, 181–188.

    PubMed  CAS  Google Scholar 

  • Sarnat H. B., Darwish H. Z., Barth P. G., et al. Ependymal abnormalities in lissencephaly/pachgyria. J. Neuropathol. Exper. Neuro. 52, 525–541.

  • Sasaki S., Mori D., Toyo-oka K., et al. (2005) Complete loss of Ndel1 results in neuronal migration defects and early embryonic lethality. Mol. Cell Biol. 25, 7812–7827.

    PubMed  CAS  Google Scholar 

  • Sasaki S., Shionoya A., Ishida M., et al. (2000) A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28, 681–696.

    PubMed  CAS  Google Scholar 

  • Sheeman B., Carvalho P., Sagot I., et al. (2003) Determinants of S. cerevisiae Dynein Localization and Activation. Implications for the Mechanism of Spindle Positioning. Curr. Biol. 13, 364–372.

    PubMed  CAS  Google Scholar 

  • Sheldon M., Rice D. S., D'Arcangelo G., et al. (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389, 730–733.

    PubMed  CAS  Google Scholar 

  • Shu T., Ayala R., Nguyen M. D., Xie Z., Gleeson J. G., and Tsai L. H. (2004) Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44, 263–277.

    PubMed  CAS  Google Scholar 

  • Sicca F., Kelemen A., Genton P., et al. (2003) Mosaic mutations of the LIS1 gene cause subcortical band heterotopia. Neurology 61, 1042–1046.

    PubMed  CAS  Google Scholar 

  • Skaar D. A., Shao Y., Haines J. L., et al (2005) Analysis of the RELN gene as a genetic risk factor for autism. Mol. Psychiatry 10, 563–571.

    PubMed  CAS  Google Scholar 

  • Smith G. A. and Enquist L. W. (2002) Break ins and break outs: viral interactions with the cytoskeleton of Mammalian cells. Annu. Rev. Cell Dev. Biol. 18, 135–161.

    PubMed  CAS  Google Scholar 

  • Smith A. E. and Helenius A. (2004) How viruses enter animal cells. Science 304, 237–242.

    PubMed  CAS  Google Scholar 

  • Smith D. S., Niethammer M., Ayala R., et al. (2000) Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nat. Cell Biol. 2, 767–775.

    PubMed  CAS  Google Scholar 

  • Sodeik B. (2002) Unchain my heart, baby let me go-the entry and intracellular transport of HIV. J. Cell Biol. 159, 393–395.

    PubMed  CAS  Google Scholar 

  • St Clair D., Blackwood D., Muir W., et al. (1990) Association within a family of a balanced autosomal translocation with major mental illness. Lancet 336, 13–16.

    PubMed  CAS  Google Scholar 

  • Stafforini D. M., McIntyre T. M., Zimmerman G. A., and Prescott S. M. (2003) Platelet-activating factor, a pleiotrophic mediator of physiological and pathological processes. Crit. Rev. Clin. Lab. Sci. 40, 643–672.

    PubMed  CAS  Google Scholar 

  • Swan A., Nguyen T., and Suter B. (1999) Drosophila Lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning. Nat. Cell Biol. 1, 444–449.

    PubMed  CAS  Google Scholar 

  • Tabarés-Seisdedos R., Escámez T., Martínez-Giménez J., et al. (2006) Mutations in genes regulating neuronal migration predict reduced prefrontal neurocognition in schizophrenia and bipolar disorder. Neuroscience. in press.

  • Tai C. Y., Dujardin D. L., Faulkner N. E., and Vallee R. B. (2002) Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function. J. Cell Biol. 11, 11.

    Google Scholar 

  • Tanaka T., Serneo F. F., Higgins C., Gambello M. J., Wynshaw-Boris A., and Gleeson J. G. (2004) Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J. Cell Biol. 165, 709–721.

    PubMed  CAS  Google Scholar 

  • Tarricone C., Perrina F., Monzani S., et al. (2004) Coupling PAF signaling to dynein regulation: structure of LIS1 in complex with PAF-acetylhydrolase. Neuron 44, 809–821.

    PubMed  CAS  Google Scholar 

  • Tissir F. and Goffinet A. M. (2003) Reelin and brain development. Nat. Rev. Neurosci. 4, 496–505.

    PubMed  CAS  Google Scholar 

  • Tokuoka S. M., Ishii S., Kawamura N., et al. (2003) Involvement of platelet-activating factor and LIS1 in neuronal migration. Eur. J. Neurosci. 18, 563–570.

    PubMed  Google Scholar 

  • Toyo-Oka K., Sasaki S., Yano Y., et al. (2005) Recruitment of katanin p60 by phosphorylated NDEL1, an LIS1 interacting protein, is essential for mitotic cell division and neuronal migration. Hum. Mol. Genet. 14, 3113–3128.

    PubMed  CAS  Google Scholar 

  • Toyo-oka K., Shionoya A., Gambello M. J., et al. (2003) 14-3-3epsilon is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome. Nat. Genet. 34, 274–285.

    PubMed  CAS  Google Scholar 

  • Trommsdorff M., Borg J. P., Margolis B., and Herz J. (1998) Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem. 273, 33,556–33,560.

    CAS  Google Scholar 

  • Tsai J. W., Chen Y., Kriegstein A. R., and Vallee R. B. (2005) LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J. Cell Biol. 170, 935–945.

    PubMed  CAS  Google Scholar 

  • van Reeuwijk J., Brunner H. G., and van Bokhoven, H. (2005) Glyc-O-genetics of Walker-Warburg syndrome. Clin. Genet. 67, 281–289.

    PubMed  Google Scholar 

  • Viot G., Sonigo P., Simon I., et al. (2004) Neocortical neuronal arrangement in LIS1 and DCX lissencephaly may be different. Am. J. Med. Genet. 126A, 123–128.

    Google Scholar 

  • Welte M. A. (2004) Bidirectional transport along microtubules. Curr. Biol. 14, R525–537.

    PubMed  CAS  Google Scholar 

  • Williams S. N., Locke C. J., Braden A. L., Caldwell K. A., and Caldwell G. A. (2004) Epileptic-like convulsions associated with LIS-1 in the cytoskeletal control of neurotransmitter signaling in Caenorhabditis elegans. Hum. Mol. Genet. 13, 2043–2059.

    PubMed  CAS  Google Scholar 

  • Willins D. A., Xiang X., and Morris N. R. (1995) An alpha tubulin mutation suppresses nuclear migration mutations in Aspergillus nidulans. Genetics 141, 1287–1298.

    PubMed  CAS  Google Scholar 

  • Xiang X., Beckwith S. M., and Morris N. R. (1994) Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 91, 2100–2104.

    PubMed  CAS  Google Scholar 

  • Xiang X., Han G., Winkelmann D. A., Zuo W., and Morris, N. R. (2000) Dynamics of cytoplasmic dynein in living cells and the effect of a mutation in the dynactin complex actin-related protein Arp1. Curr. Biol. 10, 603–606.

    PubMed  CAS  Google Scholar 

  • Xiang X., Osmani A. H., Osmani S. A., Xin M., and Morris N. R. (1995) NudF, a nuclear migration gene in Aspergillus nidulans, is similar to the human LIS-1 gene required for neuronal migration. Mol. Biol. Cell 6, 297–310.

    PubMed  CAS  Google Scholar 

  • Yan W., Assadi A. H., Wynshaw-Boris A., Eichele G., Matzuk M. M., and Clark G. D. (2003) Previously uncharacterized roles of platelet-activating factor acetylhydrolase 1b complex in mouse spermatogenesis. Proc. Natl. Acad. Sci. USA 100, 7189–7194.

    PubMed  CAS  Google Scholar 

  • Yano H., Lee F. S., Kong H., et al. (2001) Association of Trk neurotrophin receptors with components of the cytoplasmic dynein motor. J. Neurosci. 21, RC125.

    PubMed  CAS  Google Scholar 

  • Yue T. L. and Feuerstein G. Z. (1994) Platelet-activating factor: a putative neuromodulator and mediator in the pathophysiology of brain injury. Crit. Rev. Neurobiol. 8, 11–24.

    PubMed  CAS  Google Scholar 

  • Zhang J., Li S., Fischer R., and Xiang X. (2003) Accumulation of Cytoplasmic Dynein and Dynactin at Microtubule Plus Ends in Aspergillus nidulans Is Kinesin Dependent. Mol. Biol. Cell 14, 1479–1488.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Author to whom all correspondence and reprint requests should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiner, O., Sapoznik, S. & Sapir, T. Lissencephaly 1 linking to multiple diseases. Neuromol Med 8, 547–565 (2006). https://doi.org/10.1385/NMM:8:4:547

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:8:4:547

Keywords

Navigation