Skip to main content
Log in

Regulation of antidepressant activity by cAMP response element binding proteins

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Depression is a clinically and biologically heterogeneous disease that is one of the most prevalent and costly psychiatric disorders. It is theleading cause of disability regarding job performance and burden on family members in the United States and worldwide. (1). Although the therapeutic efficacy of antidepressant drugs has been recognized for years, the exact molecular mechanisms of action remain elusive, making the systematic approach to the development of new drugs difficult. The acute increases in levels of monoamines brought about by various classes of antidepressants cannot account for the requirement of repeated, chronic administration for up to 2–6 wk before treatment benefits become evident. Furthermore, despite their efficacy, current antidepressant drugs improve symptoms in only 60% of patients treated (2). The development of new and better therapies depends on a thorough understanding of the neurobiology of depression and the molecular mechanisms underlying antidepressant drug action. Early studies focusing on alterations in the levels of receptors and second messengers helped define the important signaling pathways initiated by these drugs, whereas recent molecular studies suggested that long-term adaptations in cellular signaling mechanisms may be required for the onset and/or maintenance of antidepressant effects. Attention has now focused on downstream targets of Ca++ and cyclic adenosine monophosphate (cAMP) in the cell, such as the activation of transcription factors. This article discusses the transcription factor cAMP response element binding protein and a related protein, cyclic AMP response element modulator, and their role as molecular mediators of antidepressant action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crown W. H., Finkelstein S., Berndt E. R., et al. (2002). The impact of treatment-resistant depression on health care utilization and costs. J. Clin. Psychiatry 63, 963–971.

    PubMed  Google Scholar 

  2. Nelson J. C. (1999). A review of the efficacy of serotonergic and noradrenergic reuptake inhibitors for treatment of major depression. Biol. Psychiatry 46, 1301–1308.

    Article  PubMed  CAS  Google Scholar 

  3. Hoeffler J. P., Meyer T. E., Yun Y., Jameson J. L., Habener J. F. (1988). Cyclic AMP-responsive DNA-binding protein: structure based on a cloned placental cDNA. Science 242, 1430–1433.

    Article  PubMed  CAS  Google Scholar 

  4. Landschulz W. H., Johnson P. F., McKnight S. L. (1988). The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759–1764.

    Article  PubMed  CAS  Google Scholar 

  5. Mayr B., Montminy M. (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599–609.

    Article  PubMed  CAS  Google Scholar 

  6. Shaywitz A. J., Greenberg M. E. (1999). CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68, 821–861.

    Article  PubMed  CAS  Google Scholar 

  7. Maekawa T., Sakura H., Kanei-Ishii C., et al. (1989). Leucine zipper structure of the protein CRE-BP1 binding to the cyclic AMP response element in brain. EMBO J. 8, 2023–2028.

    PubMed  CAS  Google Scholar 

  8. Hai T. W., Liu F., Coukos W. J., Green M. R. (1989). Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev. 3, 2083–2090.

    Article  PubMed  CAS  Google Scholar 

  9. Hai T., Curran T. (1991). Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc. Natl. Acad. Sci. USA 88, 3720–3724.

    Article  PubMed  CAS  Google Scholar 

  10. Williams J. S., Dixon J. E., Andrisani O. M. (1993). Binding constant determination studies utilizing recombinant delta CREB protein. DNA Cell Biol. 12, 183–190.

    PubMed  CAS  Google Scholar 

  11. Gonzalez G. A., Yamamoto K. K., Fischer W. H., et al. (1989). A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. Nature 337, 749–752.

    Article  PubMed  CAS  Google Scholar 

  12. Yamamoto K. K., Gonzalez G. A., Biggs W. H. R., Montminy M. R. (1988). Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature 334, 494–498.

    Article  PubMed  CAS  Google Scholar 

  13. Gonzalez G. A., Montminy M. R. (1989). Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59, 675–680.

    Article  PubMed  CAS  Google Scholar 

  14. Heninger G. R., Charney D. S. (1987). Psychopharmacology: The Third Generation of Progress. New York: Raven Press, pp. 535–544.

    Google Scholar 

  15. Sheng M., Thompson M. A., Greenberg M. E. (1991). CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252, 1427–1430.

    Article  PubMed  CAS  Google Scholar 

  16. de Groot R. P., Delmas V., Sassone-Corsi P. (1994). DNA bending by transcription factors CREM and CREB. Oncogene 9, 463–468.

    PubMed  Google Scholar 

  17. Xing J., Ginty D. D., Greenberg M. E. (1996). Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273, 959–963.

    Article  PubMed  CAS  Google Scholar 

  18. Nichols M., Weih F., Schmid W., et al. (1992). Phosphorylation of CREB affects its binding to high and low affinity sites: implications for cAMP induced gene transcription. Embo J. 11, 3337–3346.

    PubMed  CAS  Google Scholar 

  19. Krebs E. G., Beavo J. A. (1979). Phosphorylation-dephosphorylation of enzymes. Annu. Rev. Biochem. 48, 923–959.

    Article  PubMed  CAS  Google Scholar 

  20. Sun P., Enslen H., Myung P. S., Maurer R. A. (1994). Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 8, 2527–2539.

    Article  PubMed  CAS  Google Scholar 

  21. Sun P., Maurer R. A. (1995). An inactivating point mutation demonstrates that interaction of cAMP response element binding protein (CREB) with the CREB binding protein is not sufficient for transcriptional activation. J. Biol. Chem. 270, 7041–7044.

    Article  PubMed  CAS  Google Scholar 

  22. Dash P. K., Karl K. A., Colicos M. A., Prywes R., Kandel E. R. (1991). cAMP response element-binding protein is activated by Ca2+/calmodulin- as well as cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 88, 5061–5065.

    Article  PubMed  CAS  Google Scholar 

  23. Ginty D. D., Glowacka D., DeFranco C., Wagner J. A. (1991). Nerve growth factor-induced neuronal differentiation after dominant repression of both type I and type II cAMP-dependent protein kinase activities. J. Biol. Chem. 266, 15,325–15,333.

    CAS  Google Scholar 

  24. De Cesare D., Jacquot S., Hanauer A., Sassone-Corsi P. (1998). Rsk-2 activity is necessary for epidermal growth factor-induced phosphorylation of CREB protein and transcription of c-fos gene. Proc. Natl. Acad. Sci. USA 95, 12,202–12,207.

    Article  Google Scholar 

  25. Conkright M. D., Guzman E., Flechner L., Su A. I., Hogenesch J. B., Montminy M. (2003). Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness. Mol. Cell 11, 1101–1108.

    Article  PubMed  CAS  Google Scholar 

  26. Yamamoto K. K., Gonzalez G. A., Menzel P., Rivier J., Montminy M. R. (1990). Characterization of a bipartite activator domain in transcription factor CREB. Cell 60, 611–617.

    Article  PubMed  CAS  Google Scholar 

  27. Hoeffler J. P., Meyer T. E., Waeber G., Habener J. F. (1990). Multiple adenosine 3′,5′-cyclic [corrected] monophosphate response element DNA-binding proteins generated by gene diversification and alternative exon splicing. Mol. Endocrinol. 4, 920–930.

    PubMed  CAS  Google Scholar 

  28. Waeber G., Meyer T. E., LeSieur M., Hermann H. L., Gerard N., Habener J. F. (1991). Developmental stage-specific expression of cyclic adenosine 3′,5′-monophosphate response element-binding protein CREB during spermatogenesis involves alternative exon splicing. Mol. Endocrinol. 5, 1418–1430.

    PubMed  CAS  Google Scholar 

  29. Cole T. J., Copeland N. G., Gilbert D. J., Jenkins N. A., Schutz G., Ruppert S. (1992). The mouse CREB (cAMP responsive element binding protein) gene: structure, promoter analysis, and chromosomal localization. Genomics 13, 974–982.

    Article  PubMed  CAS  Google Scholar 

  30. Berkowitz L. A., Gilman M. Z. (1990). Two distinct forms of active transcription factor CREB (cAMP response element binding protein). Proc. Natl. Acad. Sci. USA 87, 5258–5262.

    Article  PubMed  CAS  Google Scholar 

  31. Ruppert S., Cole T. J., Boshart M., Schmid E., Schutz G. (1992). Multiple mRNA isoforms of the transcription activator protein CREB: generation by alternative splicing and specific expression in primary spermatocytes. EMBO J. 11, 1503–1512.

    PubMed  CAS  Google Scholar 

  32. Blendy J. A., Kaestner K. H., Schmid W., Gass P., Schutz G. (1996). Targeting of the CREB gene leads to up-regulation of a novel CREB mRNA isoform. EMBO J. 15, 1098–1106.

    PubMed  CAS  Google Scholar 

  33. Rudolph D., Tafuri A., Gass P., Hammerling G. J., Arnold B., Schutz G. (1998). Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc. Natl. Acad. Sci. USA 95, 4481–4486.

    Article  PubMed  CAS  Google Scholar 

  34. Foulkes N. S., Mellstrom B., Benusiglio E., Sassone-Corsi P. (1992). Developmental switch of CREM function during spermatogenesis: from antagonist to activator. Nature 355, 80–84.

    Article  PubMed  CAS  Google Scholar 

  35. Blendy J. A., Kaestner K. H., Weinbauer G. F., Nieschlag E., Schutz G. (1996). Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature 380, 162–165.

    Article  PubMed  CAS  Google Scholar 

  36. Nantel F., Monaco L., Foulkes N. S., et al. (1996). Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature 380, 159–162.

    Article  PubMed  CAS  Google Scholar 

  37. Molina C. A., Foulkes N. S., Lalli E., Sassone-Corsi P. (1993). Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell 75, 875–886.

    Article  PubMed  CAS  Google Scholar 

  38. Stehle J. H., Foulkes N. S., Molina C. A., Simonneaux V., Pevet P., Sassone-Corsi P. (1993). Adrenergic signals direct rhythmic expression of transcriptional repressor CREM in the pineal gland. Nature 365, 314–320.

    Article  PubMed  CAS  Google Scholar 

  39. Duman R. S., Heninger G. R., Nestler E. J. (1997). A molecular and cellular theory of depression. Arch. Gen. Psychiatry 54, 597–606.

    PubMed  CAS  Google Scholar 

  40. Perez J., Tardito D., Mori S., Racagni G., Smeraldi E., Zanardi R. (2000). Abnormalities of cAMP signaling in affective disorders: implication for pathophysiology and treatment. Bipolar. Disord. 2, 27–36.

    Article  PubMed  CAS  Google Scholar 

  41. Ozawa H., Rasenick M. M. (1991). Chronic electroconvulsive treatment augments coupling of the GTP-binding protein Gs to the catalytic moiety of adenylyl cyclase in a manner similar to that seen with chronic antidepressant drugs. J. Neurochem. 56, 330–338.

    Article  PubMed  CAS  Google Scholar 

  42. Menkes D. B., Rasenick M. M., Wheeler M. A., Bitensky M. W. (1983). Guanosine triphosphate activation of brain adenylate cyclase: enhancement by long-term antidepressant treatment. Science 219, 65–67.

    Article  PubMed  CAS  Google Scholar 

  43. Nestler E. J., Terwilliger R. Z., Duman R. S. (1989). Chronic antidepressant administration alters the subcellular distribution of cyclic AMP-dependent protein kinase in rat frontal cortex. J. Neurochem. 53, 1644–1647.

    Article  PubMed  CAS  Google Scholar 

  44. Racagni G., Brunello N., Tinelli D., Perez J. (1992). New biochemical hypotheses on the mechanism of action of antidepressant drugs: cAMP-dependent phosphorylation system. Pharmacopsychiatry 25, 51–55.

    Article  PubMed  CAS  Google Scholar 

  45. Nibuya M., Nestler E. J., Duman R. S. (1996). Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J. Neurosci. 16, 2365–2372.

    PubMed  CAS  Google Scholar 

  46. Thome J., Sakai N., Shin K., et al. (2000). cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J. Neurosci. 20, 4030–4036.

    PubMed  CAS  Google Scholar 

  47. Manier D. H., Shelton R. C., Sulser F. (2002). Noradrenergic antidepressants: does chronic treatment increase or decrease nuclear CREB-P? J. Neural. Transm. 109, 91–99.

    Article  PubMed  CAS  Google Scholar 

  48. Frechilla D., Otano A., Del Rio J. (1998). Effect of chronic antidepressant treatment on transcription factor binding activity in rat hippocampus and frontal cortex. Prog. Neuropsychopharmacol. Biol. Psychiatry 22, 787–802.

    Article  PubMed  CAS  Google Scholar 

  49. Schwaninger M., Schofl C., Blume R., Rossig L., Knepel W. (1995). Inhibition by antidepressant drugs of cyclic AMP response element-binding protein/cyclic AMP response element-directed gene transcription. Mol. Pharmacol. 47, 1112–1118.

    PubMed  CAS  Google Scholar 

  50. Hurst H. C. (1994). Protein Profile. London, UK: Academic Press.

    Google Scholar 

  51. Porsolt R. D., Bertin A., Jalfre M. (1978). “Behavioural despair” in rats and mice: strain differences and the effects of imipramine. Eur. J. Pharmacol. 51, 291–294.

    Article  PubMed  CAS  Google Scholar 

  52. Steru L., Chermat R., Thierry B., Simon P. (1985). The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85, 367–370.

    Article  PubMed  CAS  Google Scholar 

  53. Lucki I. (1997). The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav. Pharmacol. 8, 523–532.

    Article  PubMed  CAS  Google Scholar 

  54. Weiss J. M., Kilts C. D. (1998). Textbook of Psychopharmacology. Arlington, VA: American Psychiatry Press.

    Google Scholar 

  55. Chen A. C., Shirayama Y., Shin K., Neve R. L., Duman R. S. (2001). Expression of the cAMP response element binding protein (CREB) in hippocampus produces an antidepressant effect. Biol. Psychiatry 49, 753–762.

    Article  PubMed  CAS  Google Scholar 

  56. Pliakas A. M., Carlson R. R., Neve R. L., Konradi C., Nestler E. J., Carlezon W. A., Jr. (2001). Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens. J. Neurosci. 21, 7397–7403.

    PubMed  CAS  Google Scholar 

  57. Newton S. S., Thome J., Wallace T. L., et al. (2002). Inhibition of cAMP response element-binding protein or dynorphin in the nucleus accumbens produces an antidepressant-like effect. J. Neurosci. 22, 10,883–10,890.

    CAS  Google Scholar 

  58. Hummler E., Cole T. J., Blendy J. A., et al. (1994). Targeted mutation of the CREB gene: compensation within the CREB/ATF family of transcription factors. Proc. Natl. Acad. Sci. USA 91, 5647–5651.

    Article  PubMed  CAS  Google Scholar 

  59. Walters C. L., Blendy J. A. (2001). Different requirements for cAMP response element binding protein in positive and negative reinforcing properties of drugs of abuse. J. Neurosci. 21, 9438–9444.

    PubMed  CAS  Google Scholar 

  60. Graves L., Dalvi A., Lucki I., Blendy J. A., Abel T. (2002). Behavioral analysis of the CREBαΔ mutation on a B6/129 F1 hybrid background. Hippocampus 12, 18–26.

    Article  PubMed  CAS  Google Scholar 

  61. Foulkes N. S., Borrelli E., Sassone-Corsi P. (1991). CREM gene: use of alternative DNA-binding domains generates multiple antagonists of cAMP-induced transcription. Cell 64, 739–749.

    Article  PubMed  CAS  Google Scholar 

  62. Delmas V., Laoide B. M., Masquilier D., de Groot R. P., Foulkes N. S., Sassone-Corsi P. (1992). Alternative usage of initiation codons in mRNA encoding the cAMP-responsive-element modulator generates regulators with opposite functions. Proc. Natl. Acad. Sci. USA 89, 4226–4230.

    Article  PubMed  CAS  Google Scholar 

  63. Foulkes N. S., Sassone-Corsi P. (1992). More is better: activators and repressors from the same gene. Cell 68, 411–414.

    Article  PubMed  CAS  Google Scholar 

  64. Laoide B. M., Foulkes N. S., Schlotter F., Sassone-Corsi P. (1993). The functional versatility of CREM is determined by its modular structure. EMBO J. 12, 1179–1191.

    PubMed  CAS  Google Scholar 

  65. Maldonado R., Smadja C., Mazzucchelli C., Sassone-Corsi P., Mazucchelli C. (1999). Altered emotional and locomotor responses in mice deficient in the transcription factor CREM. Proc. Natl. Acad. Sci. USA 96, 14,094–14,099.

    Article  CAS  Google Scholar 

  66. Conti A. C., Blendy J. A. (2004). CREM mediates suppression of swim-stress induced HPA axis activity following antidepressant treatment. J. Neurosci., in press.

  67. Shieh P. B., Hu S. C., Bobb K., Timmusk T., Ghosh A. (1998). Identification of a signaling pathway involved in calcium regulation of BDNF expression. Neuron 20, 727–740.

    Article  PubMed  CAS  Google Scholar 

  68. Saarelainen T., Hendolin P., Lucas G., et al. (2003). Activation of the trkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J. Neurosci. 23, 349–357.

    PubMed  CAS  Google Scholar 

  69. Nibuya M., Morinobu S., Duman R. S. (1995). Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci. 15, 7539–7547.

    PubMed  CAS  Google Scholar 

  70. Siuciak J. A., Lewis D. R., Wiegand S. J., Lindsay R. M. (1997). Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol. Biochem. Behav. 56, 131–137.

    Article  PubMed  CAS  Google Scholar 

  71. Shirayama Y., Chen A. C., Nakagawa S., Russell D. S., Duman R. S. (2002). Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 22, 3251–3261.

    PubMed  CAS  Google Scholar 

  72. Chen B., Dowlatshahi D., MacQueen G. M., Wang J. F., Young L. T. (2001). Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol. Psychiatry 50, 260–265.

    Article  PubMed  CAS  Google Scholar 

  73. Tao X., Finkbeiner S., Arnold D. B., Shaywitz A. J., Greenberg M. E. (1998). Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20, 709–726.

    Article  PubMed  CAS  Google Scholar 

  74. Carlezon W. A., Jr., Thome J., Olson V. G., et al. (1998). Regulation of cocaine reward by CREB. Science 282, 2272–2275.

    Article  PubMed  CAS  Google Scholar 

  75. Sakai N., Thome J., Newton S. S., et al. (2002). Inducible and brain region-specific CREB transgenic mice. Mol. Pharmacol. 61, 1453–1464.

    Article  PubMed  CAS  Google Scholar 

  76. Russo-Neustadt A., Beard R. C., Cotman C. W. (1999). Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21, 679–682.

    Article  PubMed  CAS  Google Scholar 

  77. Memberg S. P., Hall A. K. (1995). Proliferation, differentiation, and survival of rat sensory neuron precursors in vitro require specific trophic factors. Mol. Cell Neurosci. 6, 323–335.

    Article  PubMed  CAS  Google Scholar 

  78. Palmer T. D., Takahashi J., Gage F. H. (1997). The adult rat hippocampus contains primordial neural stem cells. Mol. Cell Neurosci. 8, 389–404.

    Article  PubMed  CAS  Google Scholar 

  79. Takahashi J., Palmer T. D., Gage F. H. (1999). Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. J. Neurobiol. 38, 65–81.

    Article  PubMed  CAS  Google Scholar 

  80. Smith M. A., Makino S., Kvetnansky R., Post R. M. (1995). Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J. Neurosci. 15, 1768–1777.

    PubMed  CAS  Google Scholar 

  81. Duman R. S., Malberg J., Nakagawa S., D’Sa C. (2000). Neuronal plasticity and survival in mood disorders. Biol. Psychiatry 48, 732–739.

    Article  PubMed  CAS  Google Scholar 

  82. Malberg J. E., Eisch A. J., Nestler E. J., Duman R. S. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20, 9104–9110.

    PubMed  CAS  Google Scholar 

  83. Lee H. J., Kim J. W., Yim S. V., et al. (2001). Fluoxetine enhances cell proliferation and prevents apoptosis in dentate gyrus of maternally separated rats. Mol. Psychiatry 6, 610,725–610,728.

    Google Scholar 

  84. Czeh B., Michaelis T., Watanabe T., et al. (2001). Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc. Natl. Acad. Sci. USA 98, 12,796–12,801.

    Article  CAS  Google Scholar 

  85. Nakagawa S., Kim J. E., Lee R., et al. (2002). Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J. Neurosci. 22, 3673–3682.

    PubMed  CAS  Google Scholar 

  86. Furth P. A., St. Onge L., Boger H., et al. (1994). Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl. Acad. Sci. USA 91, 9302–9306.

    Article  PubMed  CAS  Google Scholar 

  87. Chen J., Kelz M. B., Zeng G., et al. (1998). Transgenic animals with inducible, targeted gene expression in brain. Mol. Pharmacol. 54, 495–503.

    PubMed  CAS  Google Scholar 

  88. Struthers R. S., Vale W. W., Arias C., Sawchenko P. E., Montminy M. R. (1991). Somatotroph hypoplasia and dwarfism in transgenic mice expressing a non-phosphorylatable CREB mutant. Nature 350, 662–664.

    Article  Google Scholar 

  89. Bourtchuladze R., Frenguelli B., Blendy J., Cioffi D., Schutz G., Sliva A. J. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68.

    Article  PubMed  CAS  Google Scholar 

  90. Conti A. C., Cryan J. F., Dalvi A., Lucki I., Blendy J. A. (2002). cAMP responsive elementbinding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs. J. Neurosci. 22, 3262–3268.

    PubMed  CAS  Google Scholar 

  91. Mantamadiotis T., Lemberger T., Bleckmann S. C., et al. (2002). Disruption of CREB function in brain leads to neurodegeneration. Nat. Gen. 31, 47–54.

    Article  CAS  Google Scholar 

  92. Balschun D., Wolfer D. P., Gass P., et al. (2003). Does cAMP responsive element-binding protein have a pivotal role in hippocampal synaptic plasticity and hippocampus-dependent memory? J. Neurosci. 23, 6304–6314.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie A. Blendy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conti, A.C., Blendy, J.A. Regulation of antidepressant activity by cAMP response element binding proteins. Mol Neurobiol 30, 143–155 (2004). https://doi.org/10.1385/MN:30:2:143

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:30:2:143

Index Entries

Navigation