Skip to main content
Log in

Ubiquinone-10 production using Agrobacterium tumefaciens dps gene in Escherichia coli by coexpression system

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Ubiquinone (Coenzyme Q; abbreviation, UQ) acts as a mobile component of the respiratory chain by playing an essential role in the electron transport system, and has been widely used in pharmaceuticals. The biosynthesis of UQ involves 10 sequential reactions brought about by various enzymes. In this study we have cloned, expressed the decaprenyl diphosphate synthase, designated dps gene, from Agrobacterium tumefaciens, and succeeded in detecting UQ-10 in addition to innate UQ-8 in Escherichia coli. Furthermore, the production of UQ-10 was higher than UQ-8. To establish an efficient expression system for UQ-10 production, we used genes, including ubiC, ubiA, and ubiG involved in UQ biosynthesis in E. coli, to construct a better co-expression system. The expression coupled by dps and ubiCA was effective for increasing UQ-10 production by five times than that by expressing single dps gene in the shake flask culture. To study for a large-scale production of UQ-10 in E. coli, fed-batch fermentations were implemented to achieve a high cell density culture. A cell concentration of 85.40 g/L and 94.58 g/L dry cell weight (DCW), and UQ-10 content of 50.29 mg/L and 45.86 mg/L was obtained after 32.5 h and 27.5 h of cultivation, subsequent to isopropyl-β-d-thiogalactopy ranoside and lactose induction, respectively. In addition, plasmid stability was maintained at high level throughout the fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takada, M., Ikenoya, S., Yuzuriha, T., and Katayama, K. (1984) Simultaneous determination of reduced and oxidized ubiquinones. Methods Enzymol. 105, 147–155.

    Article  PubMed  CAS  Google Scholar 

  2. Bentley, R. and Meganathan, R. (1987) Biosynthesis of the isoprenoid quinines, in Escherichia coli and Salmonella typhimurium (Neidhardt, F. C., ed.), pp. 512–520. American Society of Microbiology, Washington, DC.

    Google Scholar 

  3. Lee, J., Her, G., Kim, S., and Seo, J. (2004) Cloning and functional expression of the dps gene encoding decaprenyl diphosphate synthase from Agrobacterium tumefaciens. Biotechnol. Prog. 20, 51–56.

    Article  PubMed  CAS  Google Scholar 

  4. Frei, B., Kim, M. C., and Ames, B. N. (1990) Ubiquinone-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc. Natl Acad. Sci. USA 87, 4879–4883.

    Article  PubMed  CAS  Google Scholar 

  5. Stocker, R., Bowry, V. W., and Frei, B. (1991) Ubiquinone-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol. Proc. Natl Acad. Sci. USA 88, 1646–1650.

    Article  PubMed  CAS  Google Scholar 

  6. Eerrante, R. J., Andreassen, O. A., Dedeoglu, A., et al. (2002) Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington's disease. J. Neurosci. 22, 1592–1599.

    Google Scholar 

  7. Muller, T., Buttner, T., Gholipour, A. F., and Kuhn, W. (2003) Coenzyme Q10 supplementation provides mild symptomatic benefit in patients with Parkinson's disease. Neurosci. Lett. 341, 201–204.

    Article  PubMed  CAS  Google Scholar 

  8. Meganathan, R. (1996) Biosynthesis of the isoprenoid quinones menaquinone (vitamin K2) and ubiquinone (coenzyme Q), in Escherichia coli and Salmonella: Cellular and Molecular Biology. Vol. I (Neidhardt, F. C., Curtiss, R. III, Ingraham, J. L. et al., eds.), pp. 642–656, American Society for Microbiology, Washington, DC.

    Google Scholar 

  9. Meganathan, R. (2001) Ubiquinone biosynthesis in microorganisms. MiniReview, FEMS Microbiol. Lett. 203, 131–139.

    Article  PubMed  CAS  Google Scholar 

  10. Suzuki, K., Ueda, M., Yuasa, M., Nakagawa, T., Kawamukai, M., and Matsuda, H. (1994) Evidence that Escherihia coli ubiA product is a functional homolog of yeast COQ2, and the regulation of ubiA gene expression. Biosci. Biotechnol. Biochem. 58, 1814–1819.

    Article  PubMed  CAS  Google Scholar 

  11. Okada, K., Kainou, T., Matusda, H., and Kawamukai, M. (1998) Biological significance of the side chain length of ubiquinone in Saccharomyces cerevisiae, FEBS Lett. 431, 241–244.

    Article  PubMed  CAS  Google Scholar 

  12. Wu, G., Williams, H. D., Zamanian, M., Gibson, F., and Poole, R. K. (1992) Isolation and characterization of Escherichia coli mutants affected in aerobic respiration: the cloning and nucleotide sequence of ubiG. Identification of an S-adenosylmethionine-binding motif in protein, RNA, and small-molecule methyltransferases. J. Gen. Microb. 138, 2101–2112.

    CAS  Google Scholar 

  13. SØballe, B. and Poole, R. K. (1997) Aerobic and anaerobic regulation of the ubiCA operon, encoding enzymes for the first two committed steps of ubiquinone biosynthesis in Escherichia coli. FEBS Lett. 414, 373–376.

    Article  PubMed  Google Scholar 

  14. Suzuki, K., Okada, K., Kamiya, Y., et al. (1997) Analysis of the decaprenyl diphosphate synthase (dps) gene in fission yeast suggests a role of ubiquinone as an antioxidant. J. Biochem. 121, 496–505.

    PubMed  CAS  Google Scholar 

  15. Asai, K., Fujisaki, S., Nishimura, Y., et al. (1994) The identification of Escherichia coli ispB (cel) gene encoding the octaprenyl diphosphate synthase. Biochem. Biophys. Res. Commun. 202, 340–345.

    Article  PubMed  CAS  Google Scholar 

  16. Ashby, M. N. and Edwards, P. A. (1990) Elucidation of the deficiency in two yeast coenzyme Q mutants Characterization of the structural gene encoding hexaprenyl pyrophosphate synthetase. J. Biol. Chem. 265, 13157–13164.

    PubMed  CAS  Google Scholar 

  17. Zhang, Y. W., Koyama, T., and Ogura, K. (1997). Two cistrons of the gerC operon of Bacillus subtilis encode the two subunits of heptaprenyl diphosphate synthase. J. Bacteriol. 179, 1417–1419.

    PubMed  CAS  Google Scholar 

  18. Takahashi, S., Nishino, T., and Koyama T. (2003). Isolation and expression of Paracoccus denitrificans decaprenyl diphosphate synthase gene for production of ubiquinone-10 in Escherichia coli. Biochem. Engineer. J. 16, 183–190.

    Article  CAS  Google Scholar 

  19. Okada, K., Kainou, T., Tanaka, K., Nakagawa, T., Matsuda, H., and Kawamukai, M. (1998) Molecular cloning and mutational analysis of the ddsA gene encoding decaprenyl diphosphate synthase from Gluconobacter suboxydans Eur. J. Biochem. 225, 52–59.

    Google Scholar 

  20. Yoshida, H., Kotani, Y., Ochiai, K., and Araki, K. (1998), Production of ubiquinone-10 using bacteria. J. Gen. Appl. Microbiol. 44, 19–26.

    Article  PubMed  CAS  Google Scholar 

  21. Ma, H., Wang, H., Liu, Y., and Yang, H. (2002) Expression of Barnase gene in tobacco under control of Arabidopsis anther-specific promoters. J. Agri. Biotech. China 10, 144–147.

    Google Scholar 

  22. Wang, F. H., Qu, H. J., Huang, H., and Tan, T. W., (2005) High level expression of the 1,3-propanediol oxidoreductase from Klebsiella pneumoniae in Escherichia coli. Mol. Biotechnol. 31, 211–220.

    Article  CAS  Google Scholar 

  23. Sambrook, J. and Russel, D. W. (2001) Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  24. Sanger, F., Nicklen, S., and Coulson, A. R. (1997) DNA sequencing with chain termination inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467.

    Article  Google Scholar 

  25. Siebert, M., Bechthold, A., Melzer, M., et al. (1992) Cloning of the genes coding for chorismate pyruvatelyase and 4-hydroxybenzoate octaprenyl transferase from Escherichia coli. FEBS Lett. 307, 347–350.

    Article  PubMed  CAS  Google Scholar 

  26. Kim, S. Y., Lee, J. K., Ahn, S. J., Her, G., and Ryu, J. H. (2002) Fermentation process for preparing coenzyme Q10 by the mutant strain Agrobacterium tumefaciens BNQ 0605. Korean pat. Pending, 02-53692.

  27. Wallance, B. J. and Young, I. G. (1977) Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Biochim. Biophys. Acta 461, 84–100.

    Article  Google Scholar 

  28. Srivastava, M., Nayak, J., Mehrotra, V., et al. (1999) High level expression in Escherichia coli and purification of immunoreactive recombinant bonnet monkey zone pellucida glycoprotein-3. Process Biochem. 35, 451–457.

    Article  Google Scholar 

  29. Wang, J.-F., Xiu, Z.-L., and Fan, S.-D. (2001) Determination of glycerin concentration during the fermentation of glycerin to 1,3-propanediol. Chinese Industrial Microbiol. 31, 33–35.

    Google Scholar 

  30. Hu, S.-Y., Wu, J.-L., and Huang, J.-H. (2004) Production of tilapia insulin-like growth factor-2 in high cell density cultures of recombinantEscherichia coli. J. Biotechnol. 107, 161–171.

    Article  PubMed  CAS  Google Scholar 

  31. Santhanam, R., Panda, A. K., Kumar, V. S., and Gupta, S. K. (1998) Dog zona pellucida glycoprotein-3 (ZP3): expression inEscherichia coli and immunological characterization. Protein Express. Purif. 12, 331–339.

    Article  CAS  Google Scholar 

  32. Okada, K., Minehira, M., Zhu, X., et al. (1997) The ispB gene encoding octaprenyl diphosphate synthase is essential for growth of Escherichia coli. J. Bacteriol. 179, 3058–3060.

    PubMed  CAS  Google Scholar 

  33. Saik, R., Nagata, A., Uchida, U., Kainow, T., Matsuda, H., and Kawamukai, M. (2003) Fission yeast decaprenyl diphosphate synthase consists of Dps1 and the newly characterized D1p1 protein in a novel heteroterameric structure. Eur. J. Biochem. 270, 4113–4121.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianwei Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Shrestha, B., Li, Z. et al. Ubiquinone-10 production using Agrobacterium tumefaciens dps gene in Escherichia coli by coexpression system. Mol Biotechnol 35, 1–14 (2007). https://doi.org/10.1385/MB:35:1:1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:35:1:1

Index Entries

Navigation