Skip to main content
Log in

Methods for the analysis of protein-chromatin interactions

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The analysis of protein interactions with chromatin is vital for the understanding of DNA sequence recognition in vivo. Chromatin binding requires the interaction of proteins with DNA lying on the macromolecular protein surface of nucleosomes, a situation that can alter factor binding characteristics substantially when compared with naked DNA. It is therefore important to study these protein-DNA interactions in the context of a chromatin substrate, the more physiologically relevant binding situation. In this article we review techniques used in the investigation of protein interactions with defined nucleosomal templates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolffe, A. P. (1992) Chromatin Structure and Function. Academic Press.

  2. Weintraub, H. and Groudine, M. (1976) Chromosomal subunits in active genes have an altered conformation. Science 193, 848–856.

    Article  PubMed  CAS  Google Scholar 

  3. Pardue, M. L. and Hennig, W. (1990) Heterochromatin: Junk or Collectors Item? Chromosoma 100 3–7.

    Article  PubMed  CAS  Google Scholar 

  4. Chevret, E., Volpi, E. V., and Sheer, D. (2000) Mini review: form and function in the human interphase chromosome. Cytogenet. Cell Genet. 90, 13–21.

    Article  PubMed  CAS  Google Scholar 

  5. Noll, M. (1974) Subunit structure of chromatin. Nucleic Acids Res. 1, 1573–1578.

    Article  PubMed  CAS  Google Scholar 

  6. Van Holde, K. E., Allen, J. R., Tatchell, K., Weischet, W. O., and Lohr, D. (1980) DNA-histone interactions in nucleosomes. Biophys. J. 32, 271–282.

    Article  PubMed  Google Scholar 

  7. Varshavsky, A. J., Bakayev, V. V., and Georgiev, G. P. (1976) Heterogeneity of chromatin subunits in vitro and the location of histone H1. Nucleic Acids Res. 3, 477–492.

    PubMed  CAS  Google Scholar 

  8. Guschin, D., Chandler, S., and Wolffe, A. P. (1998) Asymmetric linker histone association directs the asymmetric rearrangement of core histone interactions in a positioned nucleosome containing a thyroid hormone response element. Biochemistry 37, 8629–8636.

    Article  PubMed  CAS  Google Scholar 

  9. Li, G., Chandler, S. P., Wolffe, A. P., and Hall, T. C. (1998) Architectural specificity in chromatin structure at the TATA box in vivo: nucleosome displacement upon beta-phaseolin gene activation. Proc. Natl. Acad. Sci. USA 95, 4772–4777.

    Article  PubMed  CAS  Google Scholar 

  10. Golding, A., Chandler, S., Ballestar, E., Wolffe, A. P., and Schlissel, M. S. (1999) EMBO J. 18, 3712–3723.

    Article  PubMed  CAS  Google Scholar 

  11. Langst, G., Bonte, E. J., Corona, D. F., and Becker, P. B. (1999) Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97, 843–852.

    Article  PubMed  CAS  Google Scholar 

  12. Guschin, D. and Wolffe, A. P. (1999) SWItched-on mobility. Curr. Biol. 9, R742-R746.

    Article  PubMed  CAS  Google Scholar 

  13. Thoma, F. and Simpson, R. T. (1985) Local protein-DNA interactions may determine nucleosome positions on yeast plasmids. Nature 315, 250–252.

    Article  PubMed  CAS  Google Scholar 

  14. Livingstone-Zatchej, M. and Thoma, F. (1999) Mapping of nucleosome positions in yeast. Methods Mol. Biol. 119, 363–378.

    PubMed  CAS  Google Scholar 

  15. Winston, F. and Carlson, M. (1992) Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet 8, 387–391.

    PubMed  CAS  Google Scholar 

  16. Becker, P. B., Tsukiyama, T., and Wu, C. (1994) Chromatin assembly extracts from Drosophila embryos. Methods Cell Biol. 44, 207–223.

    PubMed  CAS  Google Scholar 

  17. Guille, M. J. (1999) Molecular methods in developmental biology: Xenopus and zebrafish. Humana Press.

  18. Hayes, J. J. and Wolffe, A. P. (1993) Preferential and asymmetric interaction of linker histones with 5S DNA in the nucleosome. Proc. Natl. Acad. Sci. USA 90, 6415–6419.

    Article  PubMed  CAS  Google Scholar 

  19. Chandler, S. P., Guschin D., Landsberger, N., and Wolffe, A. P. (1999) The methyl-CpG binding transcriptional repressor MeCP2 stably associates with nucleosomal DNA. Biochemistry 38, 7008–7018.

    Article  PubMed  CAS  Google Scholar 

  20. Shrader, T. E. and Crothers, D. M. (1989) Artificial nucleosome positioning sequences. Proc. Natl. Acad. Sci. USA 86, 7418–7422.

    Article  PubMed  CAS  Google Scholar 

  21. Widlund, H. R., Cao, H., Simonsson, S., et al. (1997) Identification and characterization of genomic nucleosome-positioning sequences. J. Mol. Biol. 267, 807–817.

    Article  PubMed  CAS  Google Scholar 

  22. Hayes, J. J., Bashkin, J., Tullius, T. D., and Wolffe, A. P. (1991) The histone core exerts a dominant constraint on the structure of DNA in a nucleosome. Biochemistry 30, 8434–8440.

    Article  PubMed  CAS  Google Scholar 

  23. Chandler, S. P. and Wolffe, A. P. (1999) Analysis of linker histone binding to mono- and dinucleosomes. Methods Mol. Biol.: Chromatin Protocols Humana Press. Ed. Becker, P.

  24. Wolffe, A. P., Jordan, E., and Brown, D. D. (1986) A bacteriophage RNA polymerase transcribes through a Xenopus 5S RNA gene transcription complex without disrupting it. Cell 44, 381–389.

    Article  PubMed  CAS  Google Scholar 

  25. Chen, Z. and Ruffner, D. E. (1996) Modified crush-and-soak method for recovering oligodeoxynucleotides from polyacrylamide gel. Biotechniques 21, 820–822.

    PubMed  CAS  Google Scholar 

  26. Zassenhaus, H. P., Butow, R. A., and Hannon, Y. P. (1982) Rapid electroelution of nucleic acids from agarose and acrylamide gels. Anal. Biochem. 125, 125–130.

    Article  PubMed  CAS  Google Scholar 

  27. Hebbes, T. R., Thorne, A. W., and Crane-Robinson, C. (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7, 1395–1402.

    PubMed  CAS  Google Scholar 

  28. Crane-Robinson, C. and Wolffe, A. P. (1998) Immunological analysis of chromatin: FIS and CHIPS. Trends Genet. 14, 477–480.

    Article  PubMed  CAS  Google Scholar 

  29. Hayes, J. J. and Wolffe, A. P. (1993) Preferential and asymmetric interaction of linker histones with 5S DNA in the nucleosome. Proc. Natl. Acad. Sci. USA 190, 6415–6419.

    Article  Google Scholar 

  30. Ramakrishnan, V. (1997) Histone H1 and chromatin higher-order structure. Crit. Rev. Eukaryot. Gene Expr. 7, 215–230.

    PubMed  CAS  Google Scholar 

  31. Simpson, R. T., Thoma, F., and Brubaker, J. M. (1985) Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell 42, 799–808.

    Article  PubMed  CAS  Google Scholar 

  32. Gelbart, M. E., Rechsteiner, T., Richmond, T. J., and Tsukiyama, T. (2001) Interactions of Isw2 chromatin remodeling complex with nucleosomal arrays: Analyses using recombinant yeast histones and immobilized templates. Mol. Cell. Biol. 21, 2098–2106.

    Article  PubMed  CAS  Google Scholar 

  33. Cairns B. R. (1998) Chromatin remodeling machines: similar motors, ulterior motives. Trends Biochem. Sci. 23, 20–25.

    Article  PubMed  CAS  Google Scholar 

  34. Kingston, R. E. and Narliker, G. J. (1999) ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev. 13, 2339–2352.

    Article  PubMed  CAS  Google Scholar 

  35. Almouzni, G. and Mechali, M. (1988) Assembly of spaced chromatin promoted by DNA synthesis in extracts from Xenopus eggs. EMBO J. 7, 665–672.

    PubMed  CAS  Google Scholar 

  36. Becker, P. B., Tsukiyama, T., and Wu, C. (1994) Chromatin assembly extracts ffrom Drosophila embryos. Methods Cell Biol. 44, 207–223.

    PubMed  CAS  Google Scholar 

  37. Widlund, H. R., Cao, H., Simonsson, S., et al. (1997) Identification and characterisation of genomic nucleosome-positioning sequences. J. Mol. Biol. 267, 807–817.

    Article  PubMed  CAS  Google Scholar 

  38. Guille, M. J. and Kneale, G. G. (1997) Methods for the analysis of DNA — protein interactions. Mol. Biotech. 8, 35–52.

    CAS  Google Scholar 

  39. Wolffe, A. P. and Kurumizaka, H. (1998) The nucleo some: a powerful regulator of transcription. Prog. Nucleic Acid Res. Mol. Biol. 61, 379–422.

    PubMed  CAS  Google Scholar 

  40. Chandler, S. P., Strekowski, L., Wilson, W. D., and Fox, K. R. (1995) Footprinting studies on ligands which stabilize DNA triplexes: Effects on stringency within a parallel triple helix. Biochemistry 34, 7234–7242.

    Article  PubMed  CAS  Google Scholar 

  41. Dixon, W. J., Hayes, J. J., Levin, J. R., et al. (1991) Hydroxyl radical footprinting. Methods Enzymol. 208, 380–413.

    Article  PubMed  CAS  Google Scholar 

  42. Vettese-Dadey, M., Walter, P., Chen, H., Juan, L. J., and Workman, J. L. (1994) Role of the histone amino termini in facilitated binding of a transcription factor, GAL4-AH, to nucleosome cores. Mol. Cell Biol. 14, 970–981.

    PubMed  CAS  Google Scholar 

  43. Vettese-Dadey, M., Grant, P. A., Hebbes, T. R., Crane-Robinson, C., Allis, C. D., and Workman, J. L. (1996) Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 15, 2508–2518.

    PubMed  CAS  Google Scholar 

  44. Amir, R. E., Van der Veyver, I. B., Wan, M., Tran, C. Q., Francke, U., and Zoghbi, H. Y. (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon P. Chandler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brickwood, S.J., Myers, F.A. & Chandler, S.P. Methods for the analysis of protein-chromatin interactions. Mol Biotechnol 20, 1–15 (2002). https://doi.org/10.1385/MB:20:1:001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:20:1:001

Index Entries

Navigation