Skip to main content
Log in

HLA antibody analysis

Sensitivity, specificity, and clinical significance in solid organ transplantation

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The clinical relevance of humoral allosensitization has gained a lot of attention in the last few years. An increasing number of studies have demonstrated adverse graft survival in patients who have either preformed or post-transplant-developed anti-HLA antibodies. The detection of HLA antibodies and the specificity analysis have evolved over time from primarily cell-based to solid-phase methods, including the availability of single-HLA antigen preparations. These technological advances combined with a better understanding of the epitope structure of HLA antigens have provided a more efficient, structurally based strategy to determine HLA compatibility. In conclusion, these emerging approaches can be reliably used to predict crossmatch results in highly sensitized patients and also to monitor the development of clinically relevant anti-HLA antibody after transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rodey GE, Fuller TC: Public epitopes and the antigenic structure of the HLA molecules. Crit Rev Immunol 1987; 7: 229–267.

    PubMed  CAS  Google Scholar 

  2. Konoeda Y, Terasaki PI, Wakisaka A, Park MS, Mickey MR: Public determinants of HLA indicated by pregnancy antibodies. Transplantation 1986; 41: 253–259.

    Article  PubMed  CAS  Google Scholar 

  3. Zachary AA, Montgomery RA, Leffell MS: Desensitization protocols improving access and outcome in transplantation. Clin Appl Immunol Rev 2005; 5: 373–395.

    Article  CAS  Google Scholar 

  4. Terasaki PI: Humoral theory of transplantation. Am J Transplant 2003; 3: 665–673.

    Article  PubMed  Google Scholar 

  5. Bray RA, Nickerson PW, Kerman RH, Gebel HM: Evolution of HLA antibody detection: technology emulating biology. Immunol Res 2004; 29: 41–54.

    Article  PubMed  CAS  Google Scholar 

  6. Duquesnoy RJ, Marrari M: HLAMatchmaker: a molecularly based algorithm for histocompatibility determination. II. Verification of the algorithm and determination of the relative immunogenicity of amino acid tripletdefined epitopes. Hum Immunol 2002; 63: 353–363.

    Article  PubMed  CAS  Google Scholar 

  7. Duquesnoy RJ: HLAMatchmaker: a molecularly based algorithm for histocompatibility determination. I. Description of the algorithm. Hum Immunol 2002; 63: 339–352.

    Article  PubMed  CAS  Google Scholar 

  8. Duquesnoy RJ, Howe J, Takemoto S: HLAmatchmaker: a molecularly based algorithm for histocompatibility determination. IV. An alternative strategy to increase the number of compatible donors for highly sensitized patients. Transplantation 2003; 75: 889–897.

    Article  PubMed  CAS  Google Scholar 

  9. Duquesnoy RJ, Takemoto S, de Lange P, et al: HLAmatchmaker: a molecularly based algorithm for histocompatibility determination. III. Effect of matching at the HLA-A,B amino acid triplet level on kidney transplant survival. Transplantation 2003; 75: 884–889.

    Article  PubMed  CAS  Google Scholar 

  10. Amos DB, Bashir H, Boyle W, MacQueen M, Tiilikainen A: A simple micro cytotoxicity test. Transplantation 1969; 7: 220–223.

    Article  PubMed  CAS  Google Scholar 

  11. Zachary AA, Klingman L, Thorne N, Smerglia AR, Teresi GA: Variations of the lymphocytotoxicity test. An evaluation of sensitivity and specificity. Transplantation 1995;60:498–503.

    Article  PubMed  CAS  Google Scholar 

  12. Kao KJ, Scornik JC, Small SJ: Enzyme-linked immunoassay for anti-HLA antibodies—an alternative to panel studies by lymphocytotoxicity. Transplantation 1993; 55: 192–196.

    Article  PubMed  CAS  Google Scholar 

  13. Pei R, Wang G, Tarsitani C, et al: Simultaneous HLA class I and class II antibodies screening with flow cytometry. Hum Immunol 1998; 59: 313–322.

    Article  PubMed  CAS  Google Scholar 

  14. Claas FH, Gijbels Y, von Veen A, et al: Selection of cross-match negative HLA-A and/or-B mismatched donors for highly sensitized patients. Transplant Proc 1989; 21(1 Pt 1): 665–666.

    PubMed  CAS  Google Scholar 

  15. Claas FH, Witvliet MD, Duquesnoy RJ, Persijn GG, Doxiadis II: The acceptable mismatch program as a fast tool for highly sensitized patients awaiting a cadaveric kidney transplantation: short waiting time and excellent graft outcome. Transplantation 2004; 78: 190–193.

    Article  PubMed  Google Scholar 

  16. Bohringer D, Reinhard T, Duquesnoy RJ, et al: Beneficial effect of matching at the HLA-A and-B amino-acid triplet level on rejection-free clear graft survival in penetrating keratoplasty. Transplantation 2004; 77: 417–421.

    Article  PubMed  Google Scholar 

  17. Laux G, Mytilineos J, Opelz G: Critical evaluation of the amino acid triplet-epitope matching concept in cadaver kidney transplantation. Transplantation 2004; 77: 902–907.

    Article  PubMed  Google Scholar 

  18. Lobashevsky AL, Senkbeil RW, Shoaf JL, et al: The number of amino acid residues mismatches correlates with flow cytometry crossmatching results in high PRA renal patients. Hum Immunol 2002; 63: 364–374.

    Article  PubMed  CAS  Google Scholar 

  19. Duquesnoy RJ, Witvliet M, Doxiadis II, de Fijter H, Claas FH: HLAMatchmaker-based strategy to identify acceptable HLA class I mismatches for highly sensitized kidney transplant candidates. Transpl Int 2004; 17: 22–30.

    Article  PubMed  CAS  Google Scholar 

  20. Iniotaki-Theodoraki A, Kalogeropoulou E. Apostolaki M, Doxiadis IN, Stavropoulos-Giokas C: Humoral sensitization against rejected grafts: specific antibodies to graft immunogenic amino acid triplets. Transplant Proc 2004; 36: 1728–1731.

    Article  PubMed  CAS  Google Scholar 

  21. Varnavidou-Nicolaidou A, Doxiadis II, Iniotaki-Theodoraki A, Patargias T, Stavropoulos-Giokas C, Kyriakides GK: HLA class I donor-specific triplet antibodies detected after renal transplantation. Transplant Proc 2004; 36: 1732–1734.

    Article  PubMed  CAS  Google Scholar 

  22. Adeyi OA, Girnita AL, Howe J, et al: Serum analysis after transplant nephrectomy reveals restricted antibody specificity patterns against structurally defined HLA class I mismatches. Transpl Immunol 2005; 14: 53–62.

    Article  PubMed  CAS  Google Scholar 

  23. Doxiadis II, Duquesnoy RJ, Claas FH: Extending options for highly sensitized patients to receive a suitable kidney graft. Curr Opin Immunol 2005; 17: 536–540.

    Article  PubMed  CAS  Google Scholar 

  24. Nambiar A, Duquesnoy RJ, Adams S, et al: HLAMatchmaker-driven analysis of responses to HLA-typed platelet transfusions in alloimmunized thrombocytopenic patients. Blood 2006; 107: 1680–1687.

    Article  PubMed  CAS  Google Scholar 

  25. Dankers MK, Witvliet MD, Roelen DL, et al: The number of amino acid triplet differences between patient and donor is predictive for the antibody reactivity against mismatched human leukocyte antigens. Transplantation 2004; 77: 1236–1239.

    Article  PubMed  CAS  Google Scholar 

  26. Bodmer JEA: HLA-D region monoclonal antibodies, in Albert MME, Mayr W (eds.) Histocompatibility Testing. Berlin, Springer-Verlag, 1984, pp. 217–236.

    Google Scholar 

  27. McKenna RM, Takemoto SK, Terasaki PI: Anti-HLA antibodies after solid organ transplantation. Transplantation 2000; 69: 319–326.

    Article  PubMed  CAS  Google Scholar 

  28. Takemoto SK, Zeevi A, Feng S, et al: National conference to assess antibody-mediated rejection in solid organ transplantation. Am J Transplant 2004; 4: 1033–1041.

    Article  PubMed  CAS  Google Scholar 

  29. Girnita AL, Webber SA, Zeevi A: Anti-HLA alloantibodies in pediatric solid organ transplantation. Pediatr Transplant 2006; 10: 146–153.

    Article  PubMed  CAS  Google Scholar 

  30. Feucht HE, Schneeberger H, Hillebrand G, et al: Capillary deposition of C4d complement fragment and early renal graft loss. Kidney Int 1993; 43: 1333–1338.

    Article  PubMed  CAS  Google Scholar 

  31. Nickeleit V, Zeiler M, Gudat F, Thiel G, Mihatsch MJ: Detection of the complement degradation product C4d in renal allografts: diagnostic and therapeutic implications. J Am Soc Nephrol 2002; 13: 242–251.

    Article  PubMed  CAS  Google Scholar 

  32. Terasaki PI, Ozawa M: Predicting kidney graft failure by HLA antibodies: a prospective trial. Am J Transplant 2004; 4: 438–443.

    Article  PubMed  CAS  Google Scholar 

  33. Lee PC, Terasaki P (I), Takemoto SK, et al: All chronic rejection failures of kidney transplants were preceded by the development of HLA antibodies. Transplantation 2002; 74: 1192–1194.

    Article  PubMed  CAS  Google Scholar 

  34. Terasaki PI, Ozawa M: Predictive value of HLA antibodies and serum creatinine in chronic rejection: results of a 2-year prospective trial. Transplantation 2005; 80: 1194–1197

    Article  PubMed  CAS  Google Scholar 

  35. Reed EF, Demetris AJ, Hammond E, et al: Acute antibody-mediated rejection of cardiac transplants. J Heart Lung Transplant 2006; 25: 153–159.

    Article  PubMed  Google Scholar 

  36. Reinsmoen NL, Nelson K, Zeevi A: Anti-HLA antibody analysis and crossmatching in heart and lung transplantation. Transpl Immunol 2004; 13: 63–71.

    Article  PubMed  CAS  Google Scholar 

  37. Michaels PJ, Espejo ML, Kobashigawa, J., et al: Humoral rejection in cardiac transplantation: risk factors, hemodynamic consequences and relationship to transplant coronary artery disease. J Heart Lung Transplant 2003; 22: 58–69.

    Article  PubMed  Google Scholar 

  38. Itescu S, Tung TC, Burke EM, et al: An immunological algorithm to predict risk of high-grade rejection in cardiac transplant recipients. Lancet 1998; 352: 263–270.

    Article  PubMed  CAS  Google Scholar 

  39. Girnita AL, McCurry KR, Iacono AT, et al: HLA-specific antibodies are associated with high-grade and persistent-recurrent lung allograft acute rejection. J Heart Lung Transplant 2004; 23: 1135–1141.

    Article  PubMed  Google Scholar 

  40. Girnita AL, Duquesnoy R, Yousem SA, et al: HLA-specific antibodies are risk factors for lymphocytic bronchiolitis and chronic lung allograft dysfunction. Am J Transplant 2005; 5: 131–138.

    Article  PubMed  CAS  Google Scholar 

  41. Jaramillo A, Smith MA, Phelan D, et al: Development of ELISA-detected anti-HLA antibodies precedes the development of bronchiolitis obliterans syndrome and correlates with progressive decline in pulmonary function after lung transplantation. Transplantation 1999; 67: 1155–1161.

    Article  PubMed  CAS  Google Scholar 

  42. Ionescu DN, Girnita AL, Zeevi A, et al: C4d deposition in lung allografts is associated with circulating anti-HLA alloantibody. Transpl Immunol 2005; 15: 63–68.

    Article  PubMed  CAS  Google Scholar 

  43. Miller GG, Destarac L, Zeevi A, et al: Acute humoral rejection of human lung allografts and elevation of C4d in bronchoalveolar lavage fluid. Am J Transplant 2004; 4: 1323–1330.

    Article  PubMed  Google Scholar 

  44. Zangwill SD, Ellis TM, Zlotocha J, et al: The virtual crossmatch—a screening tool for sensitized pediatric heart transplant recipients. Pediatr Transplant 2006; 10: 38–41.

    Article  PubMed  CAS  Google Scholar 

  45. Appel JZ 3rd, Hartwig MG, Cantu E 3rd, et al: Role of flow cytometry to define unacceptable HLA antigens in lung transplant recipients with HLA-specific antibodies. Transplantation 2006; 81: 1049–1057.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeevi, A., Girnita, A. & Duquesnoy, R. HLA antibody analysis. Immunol Res 36, 255–264 (2006). https://doi.org/10.1385/IR:36:1:255

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:36:1:255

Key Words

Navigation