Skip to main content
Log in

Erythrocyte osmotic fragility and oxidative stress in experimental hypothyroidism

  • Original Articles
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The present study was planned to explain the relation between erythrocyte osmotic fragility and oxidative stress and antioxidant statue in primary hypothyroid-induced experimental rats. Twenty-four Spraque Dawley type female rats were divided into two, as control (n=12) and experimental (n=12), groups weighing between 160 and 200 g. The experimental group animals have received tap water methimazole added standard fodder to block the iodine pumps for 30 d (75 mg/100 g). Control group animals were fed tap water and only standard fodder for the same period. At the end of 30 d blood samples were drawn from the abdominal aorta of the rats under ether anesthesia. T3, T4, and TSH levels were measured and the animals that had relatively lower T3, T4, and higher TSH levels were accepted as hypothyroid group. Hormone levels of the control group were at euthyroid conditions. Osmotic fragility, as a lipid peroxidation indicator malondialdehyde (MDA), antioxidant defense system indicators superoxide dismutase (SOD) and glutathione (GSH) levels were measured in the blood samples. Osmotic fragility test results: There was no statistically significant difference found between maximum osmotic hemolysis limit values of both group. Minimum osmotic hemolysis limit value of hypothyroid group was found to be higher than that of control group values (p<0.02). The standard hemolysis and hemolytic increment curve of the hypothyroid group drawn according to osmotic fragility test results was found to be shifted to the right when compared to control group’s curve. This situation and hemolytic increment value, which shows maximum hemolysis ratio, is the proof of increased osmotic fragility of the erythrocytes in hypothyroidism. There is no statistically significant difference found between hypothyroid and control groups in the lipid peroxidation indicator MDA and antioxidant indicators SOD and GSH levels. As a result of our study it may be concluded that hypothyroidism may lead to an increase in osmotic fragility of erythrocytes. But the increase in erythrocyte osmotic fragility does not originate from lipid peroxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ansell, J. E. (1996). In: Werner and Ingbar’s the thyroid. Braverman, L. E. and Utiger, R. D. (eds.). Lippincott-Raven: Philadelphia, PA, pp. 821–825.

    Google Scholar 

  2. Jain, S. K., Mohandas, N., Clark, M. R., and Shobel, S. B. (1983). Br. J. Haematol. 53, 247–252.

    PubMed  CAS  Google Scholar 

  3. Sies, H. (1985). In: Oxidative stress. Sies, H. (ed.). Academic Press: Orlando, FL.

    Google Scholar 

  4. Wills, E. D. (1985). In: The role of dietary components in oxidative stress in tissues. Sies, H. (ed.). Academic Press: Orlando, FL.

    Google Scholar 

  5. Hubel, C. A., Griggs, K. C., and McLaughlin, M. K. (1989). Am. J. Physiol. 256, H1539-H1545.

    PubMed  CAS  Google Scholar 

  6. van Ginkel, G. and Sevanian, A. (1994). Methods Enzymol. 233, 273–288.

    PubMed  Google Scholar 

  7. Aguirre, F., Martin, I., Grinspon, D., et al. (1998). Free Rad. Biol. Med. 24, 580–585.

    Article  PubMed  CAS  Google Scholar 

  8. Hebbel, R. P. (1986). J. Lab. Clin. Med. 107, 401–404.

    PubMed  CAS  Google Scholar 

  9. Brzezinska, S. (2001). Acta Vet. Hung. 49, 413–419.

    Article  Google Scholar 

  10. Devasena, T., Lalitha, S., and Padma, K. (2001). Clin. Chim. Acta 308, 155–161.

    Article  PubMed  CAS  Google Scholar 

  11. Asayama, K., Dobashi, K., Hayashibe, H., Megata, Y., and Kato, K. (1987). Endocrinol. 121, 2112–2118.

    Article  CAS  Google Scholar 

  12. Seymen, H. O., Seven, A., Civelek, S., et al. (1999). J. Basic Clin. Physiol. Pharmacol. 10, 315–325.

    PubMed  CAS  Google Scholar 

  13. Venditti, P., Balestrieri, M., Di Meo, S., and De Leo, T. (1997). J. Endocrinol. 155, 151–157.

    Article  PubMed  CAS  Google Scholar 

  14. Krishnamurthy, S. and Prasanna, D. (1984). Acta Vitaminol. Enzymol. 6, 17–21.

    PubMed  CAS  Google Scholar 

  15. Dumitriu, L., Bartoc, R., Ursu, H., Purice, M., and Ionescu, V. (1988). Endocrinologie 26, 35–38.

    PubMed  CAS  Google Scholar 

  16. Swaroop, A. and Ramasarma, T. (1985). Biochem. J. 226, 403–408.

    PubMed  CAS  Google Scholar 

  17. Paller, M. S. (1986). Kidney International 29, 1162–1166.

    Article  PubMed  CAS  Google Scholar 

  18. Mano, T., Sinohara, R., Sawai, Y., et al. (1995). J. Endocrinol. 147, 361–365.

    Article  PubMed  CAS  Google Scholar 

  19. Pereira, B., Rosa, L. F., Safi, D. A., Bechara, E. J., and Curi, R. (1994). J. Endocrinol. 140, 73–77.

    PubMed  CAS  Google Scholar 

  20. Venditti, P., De Rosa, R., and Di Meo, S. (2003). Free Radical Biology Medicine 35(5), 485–494.

    Article  PubMed  CAS  Google Scholar 

  21. Ghosh, S., Rahaman, S. O., and Sarkar, P. K. (1999). Neuro. Report 10, 2361–2365.

    CAS  Google Scholar 

  22. Rahaman, S. O., Ghosh, S., Mohanakumar, K. P., Das, S., and Sarkar, P. K. (2001). Neurosci. Res. 40, 273–279.

    Article  PubMed  CAS  Google Scholar 

  23. Sahun, M., Villabona, C., Rosel, P., et al. (2001). J. Endocrinol. 168(3), 435–445.

    Article  PubMed  CAS  Google Scholar 

  24. Bhatacharyya, A. D. and Dash R. J. (1994). J. Assoc. Physicians India. 42(5), 366–368.

    Google Scholar 

  25. Dariyerli, N., Andican, G., Çatakoglu, A. B., Hatemi, H., and Burçak, G. (2003). Tohoku J. Exp. Med. 199, 59–68.

    Article  PubMed  Google Scholar 

  26. Suess, J., Limenton, D., Dameshek, W., and Dolloft, J. M. A. (1954). Blood 3, 1250–1303.

    Google Scholar 

  27. Slater, T. F. (1984). Methods Enzymol. 105, 283–293.

    Article  PubMed  CAS  Google Scholar 

  28. Anderson, M. E. (1989). In: Enzymatic and chemical methods for the determination of glutathione; glutathione: chemical, biochemical and medical aspects. Vol. A. Dolphin, D., Poulson, R., and Avramovic, O. (eds.). Wiley: New York.

    Google Scholar 

  29. Nebot, C., Moutet, M., Huet, P., Xu, J. Z., Yadan, J. C., and Chaudiere, J. (1993). Anal. Biochem. 214, 442–451.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuran Dariyerli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dariyerli, N., Toplan, S., Akyolcu, M.C. et al. Erythrocyte osmotic fragility and oxidative stress in experimental hypothyroidism. Endocr 25, 1–5 (2004). https://doi.org/10.1385/ENDO:25:1:01

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:25:1:01

Key Words

Navigation