Skip to main content
Log in

Aryl hydrocarbon receptor null mice develop cardiac hypertrophy and increased hypoxia-inducible factor-1α in the absence of cardiac hypoxia

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The aryl hydrocarbon receptor (AhR) is a member of the basic helix-loop-helix PAS (Per-ARNT-SIM) transcription family, which also includes hypoxia-inducible factor-1α (HIF-1α) and its common dimerization partner AhR nuclear translocator (ARNT). Following ligand activation or hypoxia, AhR or HIF-1α, respectively, translocate into the nucleus, dimerize with ARNT, and regulate gene expresion. Mice lacking the AhR have been shown previously to develop cardiac enlargement. In cardiac hypertrophy, it has been suggested that the myocardium becomes hypoxic, increasing HIF-1α stabilization and inducing coronary neovascularization, however, this mechanism has not been demonstrated in vivo. The purpose of this study was to investigate the cardiac enlargement reported in AhR−/− mice and to determine if it was associated with myocardial hypoxia and subsequent activation of the HIF-1α pathway. We found that AhR−/− mice develop significant cardiac hypertrophy at 5 mo. However, this cardiac hypertrophy was not associated with myocardial hypoxia. Despite this finding, cardiac hypertrophy in AhR−/− mice was associated with increased cardiac HIF-1α protein expression and increased mRNA expression of the neovascularization factor vascular endothelial growth factor (VEGF). These data demonstrate that the development of cardiac hypertrophy in AhR−/− mice is not associated with myocardial hypoxia, but is correlated with increased cardiac HIF-1α protein and VEGF mRNA expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burbach, K.M., Poland, A., and Bradfield, C.A. (1992). Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proc. Natl. Acad. Sci. USA 89:8185–8189.

    Article  PubMed  CAS  Google Scholar 

  2. Wang, G.L. and Semenza, G.L. (1993). Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem. 268:21,513–21,518.

    CAS  Google Scholar 

  3. Denison, M.S., Fisher, J.M., and Whitlock, J.P., Jr. (1988). The DNA recognition site for the dioxin-Ah receptor complex. Nucleotide sequence and functional analysis. J. Biol. Chem. 263:17,221–17,224.

    CAS  Google Scholar 

  4. Fernandez-Salguero, P.M., Ward, J.M., Sundberg, J.P., and Gonzalez, F.J. (1997). Lesions of aryl-hydrocarbon receptor-deficient mice. Vet. Pathol. 34:605–614.

    Article  PubMed  CAS  Google Scholar 

  5. Walker, M.K., Pollenz, R.S., and Smith, S.M. (1997). Expression of the aryl hydrocarbon receptor (AhR) and AhR nuclear translocator during chick cardiogenesis is consistent with 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced heart defects. Toxicol. Appl. Pharmacol. 143:407–419.

    Article  PubMed  CAS  Google Scholar 

  6. Guiney, P.D., Walker, M.K., Spitsbergen, J.M., and Peterson, R.E. (2000). Hemodynamic dysfunction and cytochrome P4501A mRNA expression induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin during embryonic stages of lake trout development. Toxicol. Appl. Pharmacol. 168: 1–14.

    Article  PubMed  CAS  Google Scholar 

  7. Lin, T.M., Ko, K., Moore, R.W., Buchanan, D.L., Cooke, P.S., and Peterson, R.E. (2001). Role of the aryl hydrocarbon receptor in the development of control and 2,3,7,8-tetrachlorodibenzo-p-dioxin-exposed male mice. J. Toxicol. Environ. Health A 64:327–342.

    Article  PubMed  CAS  Google Scholar 

  8. Lahvis, G.P., Lindell, S.L., Thomas, R.S., et al. (2000). Portosystemic shunting and persistent fetal vascular structures in aryl hydrocarbon receptor-deficient mice. Proc. Natl. Acad. Sci. USA 9710,442–10,447.

    Article  CAS  Google Scholar 

  9. Lee, S.H., Wolf, P.L., Escudero, R., Deutsch, R. Jamieson, S.W., and Thistlethwaite, P.A. (2000). Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N. Engl. J. Med. 342:626–633.

    Article  PubMed  CAS  Google Scholar 

  10. Tomanek, R.J., Schalk, K.A., Marcus, M.L., and Harrison, D.G. (1989). Coronary angiogenesis during long-term hypertension and left ventricular hypertrophy in dogs. Circ. Res. 65:352–359.

    PubMed  CAS  Google Scholar 

  11. Ashruf, J.F., Ince, C., Bruining, H.A. (1999). Regional ischemia in hypertrophic Langendorff-perfused rat hearts. Am. J. Physiol. 277:H1532-H1539.

    PubMed  CAS  Google Scholar 

  12. Martin, G.V., Caldwell, J.H., Rasey, J.S., Grunbaum, Z., Cerqueira, M., and Krohn, K.A. (1989). Enhanced binding of the hypoxic cell marker [3H]fluoromisonidazole in ischemic myocardium. J. Nucl. Med. 30;194–201.

    PubMed  CAS  Google Scholar 

  13. Semenza, G.L., Jiang, B.H., Leung, S.W., et al. (1996). Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 271:32,529–32,537.

    CAS  Google Scholar 

  14. Forsythe, J.A., Jiang, B.H., Iyer, N.V., et al., (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16:4604–4613.

    PubMed  CAS  Google Scholar 

  15. Hu, J., Discher, D.J., Bishopric, N.H., and Webster, K.A. (1998). Hypoxia regulates expression of the endothelin-1 gene through a proximal hypoxia-inducible factor-1 binding site on the antisense strand. Biochem. Biophys. Res. Commun. 245:894–899.

    Article  PubMed  CAS  Google Scholar 

  16. Yue, X. and Tomanek, R.J. (1999). Stimulation of coronary vasculogenesis angiogenesis by hypoxia in cultured embryonic hearts. Dev. Dynam. 216:28–36.

    Article  CAS  Google Scholar 

  17. Matsunaga, T., Warltier, D.C., Weihrauch, D.W., Moniz, M., Tessmer, J., Chilian, W.M. (2002). Ischemia-induced coronary collateral growth is dependant on vascular endothelial growth factor and nitric oxide. Circulation 102, 3098–3103.

    Google Scholar 

  18. Ito, H., Adachi, S., Tamamori, M., et al. (1996). Mild hypoxia induces hypertrophy of cultured neonatal rat cardiomyocytes: a possible endogenous endothelin-1-mediated mechanism. J. Mol. Cell. Cardiol. 28:1271–1277.

    Article  PubMed  CAS  Google Scholar 

  19. Martin, C., Yu, A.Y., Jiang, B.H., et al. (1998). Cardiac hypertrophy in chronically anemic fetal sheep: increased vascularization is associated with increased myocardial expression of vascular endothelial growth factor and hypoxia-inducible factor 1. Am. J. Obstet. Gynecol. 178: 527–534.

    Article  PubMed  CAS  Google Scholar 

  20. Vanden Heuvel, J.P., Tyson, F.L., and Bell, D.A. (1993). Construction of recombinant RNA templates for use as internal standards in quantitative RT-PCR. Biotechniques 14:395–398.

    Google Scholar 

  21. Halder, J.B., Zhao, X., Soker, S., et al. (2000) Differential expression of VEGF isoforms and VEGF(164)-specific receptor neuropilin-1 in the mouse uterus suggests a role for VEGF(164) in vascular permeability and angiogenesis during implantation. Genesis: J. Gen. Dev. 26:213–224.

    CAS  Google Scholar 

  22. Os-Corby, D.J., Koch, C.J., and Chapman, J.D. (1987). Is misonidazole binding to mouse tissues a measure of cellular pO2?. Biochem. Pharmacol. 36:3487–3494.

    Article  PubMed  Google Scholar 

  23. Frohlich, E.D., Apstein, C., Chobanian, A.V., et al. (1992). The heart in hypertension. N. Engl. J. Med. 327:998–1008.

    Article  PubMed  CAS  Google Scholar 

  24. Mercadier, J.J., Samuel, J.L., Michel, J.B., et al. (1989). Atrial natriuretic factor gene expression in rat ventricle during experimental hypertension. Am. J. Physiol. 257: H979-H987.

    PubMed  CAS  Google Scholar 

  25. Lee, H.R., Henderson, S.A., Reynolds, R., Dunnmond, P., Yuan, D., and Chien, K.R. (1988). Alpha 1-adrenergic stimulation of cardiac genke transcription in neonatal rat myocardial cells. Effects on myosin light chain-2 gene expression. J. Biol. Chem. 263:7352–7358.

    PubMed  CAS  Google Scholar 

  26. Park, H.K., Park, S.J., Kim, C.S., Paek, Y.W., Lee, J.U., and Lee, W.J. (2001). Enhanced gene expression of reninangiotensin system, TGF-betal, endothelin-1 and nitric oxide synthase in right-ventricular hypertrophy. Pharmacol. Res. 43:265–273.

    Article  PubMed  CAS  Google Scholar 

  27. Brogi, E., Wu, T., Namiki, A., and Isner, J.M. (1994). Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only. Circulation 90:649–652.

    PubMed  CAS  Google Scholar 

  28. Frank, S., Hubner, G., Breier, G., Longaker, M.T., Greenhalgh, D.G., and Werner, S. (1995): Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. J. Biol. Chem. 270:12,607–12,613.

    Article  CAS  Google Scholar 

  29. McAinsh, A.M., Geyer, M., Fandrey, J., Ruegg, J.C., and Wiesner, R.J. (1998). Expression of vascular endothelial growth factor during the development of cardiac hypertrophy in spontaneously hypertensive rats. Mol. Cell. Biolchem. 187:141–146.

    Article  CAS  Google Scholar 

  30. Richard, D.E., Berra, E., and Pouyssegur, J. (2000). Non-hypoxic pathway mediates the induction of hypoxia-inducible factor 1 alpha in vascular smooth muscle cells. J. Biol. Chem. 275:26,765–26,771.

    Article  CAS  Google Scholar 

  31. Zelzer, E., Levy, Y., Kahana, C., Shilo, B.Z., Rubinstein, M., and Cohen, B. (1998). Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT. EMBO J. 17: 5085–5094.

    Article  PubMed  CAS  Google Scholar 

  32. Park, H. (1999). Aromatic hydrocarbon nuclear translocator as a common component for the hypoxia- and dioxin-induced gene expression. Mol. Cells 9:172–178.

    PubMed  CAS  Google Scholar 

  33. Lees, M.J. and Whitelaw, M.L. (1999). Multiple roles of ligand in transforming the dioxin receptor to an active basic helix-loop-helix/PAS transcription factor complex with the nuclear protein Arnt. Mol. Cell. Biol. 19:5811–5822.

    PubMed  CAS  Google Scholar 

  34. Heid, S.E., Pollenz, R.S., and Swanson, H.I. (2000). Role of heat shock protein 90 dissociation in mediating agonist-induced activation of the aryl hydrocarbon receptor. Mol Pharmacol. 57:82–92.

    PubMed  CAS  Google Scholar 

  35. Chan, W.K., Yao, G., Gu, Y.Z., and Bradfield, C.A. (1999). Cross-talk between the aryl hydrocarbon receptor and hypoxia inducible factor signaling pathways. Demonstration of competition and compensation. J. Biol. Chem. 274:12,115–12,123.

    CAS  Google Scholar 

  36. Pollenz, R.S., Davarinos, N.A., and Shearer, T.P. (1999). Analysis of aryl hydrocarbon receptor-mediated signaling during physiological hypoxia reveals lack of competition for the aryl hydrocarbon nuclear translocator transcription factor. Mol. Pharmacol. 56:1127–1137.

    PubMed  CAS  Google Scholar 

  37. Tomita, S., Sinal, C.J., Yim, S.H., and Gonzalez, F.J. (2000). Conditional disruption of the aryl hydrocarbon receptor nuclear translocator, (Arnt) gene leads to loss of target gene induction by the aryl hydrocarbon receptor and hypoxia-inducible factor 1alpha. Mol. Endocrinol. 14: 1674–1681.

    Article  PubMed  CAS  Google Scholar 

  38. Kuil, C.W., Brouwer, A., van der Saag, P.T., and van der Burg, G. (1998). Interference between progesterone and dioxin signal transduction pathways. Different mechanisms are involved in repression by the progesterone receptor A and B isoforms. J. Biol. Chem. 273:8829–8834.

    Article  PubMed  CAS  Google Scholar 

  39. Wormke, M., Stoner, M., Saville, B., and Safe, S. (2000). Crosstalk between estrogen receptor alpha and the,aryl hydrocarbon receptor in breast cancer cells involves unidirectional activation of proteasomes. FEBS Lett. 478:109–112.

    Article  PubMed  CAS  Google Scholar 

  40. Lund, A.K., Kanagy, N.L., and Walker, M.K. (2002). Aryl hydrocarbon receptor (AhR) null mice exhibit hypertension and increased plasma endothelin levels. Toxicol. Sci. 66:8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thackaberry, E.A., Gabaldon, D.M., Walker, M.K. et al. Aryl hydrocarbon receptor null mice develop cardiac hypertrophy and increased hypoxia-inducible factor-1α in the absence of cardiac hypoxia. Cardiovasc Toxicol 2, 263–273 (2002). https://doi.org/10.1385/CT:2:4:263

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:2:4:263

Key Words

Navigation