Skip to main content
Log in

Single-step multicolor fluorescence In situ hybridization using semiconductor quantum dot-DNA conjugates

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We report a rapid method for the direct multicolor imaging of multiple subnuclear genetic sequences using novel quantum dot-based fluorescence in situ hybridization (FISH) probes (QD-FISH). Short DNA oligonucleotides were attached on QDs and used in a single hybridization/detection step of target sites in situ. QD-FISH probes penetrate both intact interphase nuclei and metaphase chromosomes and showed good targeting of dense chromatin domains with minimal steric hindrances. We further demonstrated that QD’s broad absorption spectra allowed different colored probes specific for distinct subnuclear genetic sequences to be simultaneously excited with a single excition wavelength and imaged free of chromatic aberrations in a single exposure. Thus, these results demonstrate that QD-FISH probes are very effective in multicolor FISH applications. This work also documents new possibilities of using QD-FISH probes detection down to the single molecule level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nederlof, P. M., van der Flier, S., Wiegant, J., et al. (1990) Multiple fluorescence in situ hybridization. Cytometry 11, 126–131.

    Article  PubMed  CAS  Google Scholar 

  2. Michalet, X., Pinaud, F. F., Bentolila L. A., et al. (2005) Quantum dots for live cells and in vivo imaging, diagnostics and beyond. Science 307, 538–544.

    Article  PubMed  CAS  Google Scholar 

  3. Xiao, Y. and Barker, P. E. (2004) Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res. 32, e28.

    Article  PubMed  Google Scholar 

  4. Pathak, S., Choi, S. K., Arnheim, N., and Thompson, M. E. (2001) Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc. 123, 4103–4104.

    Article  PubMed  CAS  Google Scholar 

  5. Dirks, R. W., van de Rijke, F. M., Fujishita, S., van der Ploeg, M., and Raap, A. K. (1993) Methodologies for specific intron and exon RNA localization in cultured cells by haptenized and fluorochromized probes. J. Cell. Sci. 104, 1187–1197.

    PubMed  CAS  Google Scholar 

  6. Vissel, B., and Choo, K. H. (1989) Mouse major (gamma) satellite DNA is highly conserved and organized into extremely long tandem arrays: implications for recombinantion between nonhomologous chromosomes. Genomics 5, 407–414.

    Article  PubMed  CAS  Google Scholar 

  7. Nirmal, M., Dabbousi, B. O., Bawendi, M. G., et al. (1996) Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804.

    Article  CAS  Google Scholar 

  8. Banin, U., Bruchez, M., Alivisatos, A. P., Ha, T., Weiss, S., and Chemla, D. S. J. (1999) Evidence for a thermal contribution to emission intermittency in single CdSe/CdS core/shell nanocrystals. Chem. Phys. 110, 1195–1201.

    Article  CAS  Google Scholar 

  9. Hohng, S., and Ha, T. (2004) Near-complete suppression of quantum dot blinking in ambient conditions. J. Am. Chem. Soc. 126, 1325–1325.

    Article  Google Scholar 

  10. Joseph, A., Mitchell, A. R., and Miller, O. J. (1989) The organization of the mouse satellite DNA at centromeres. Exp. Cell. Res. 183, 494–500.

    Article  PubMed  CAS  Google Scholar 

  11. Doose, S., Tsay, J. M., Pinaud, F., and Weiss, S. (2005) Comparison of photophysical and colloidal properties of biocompatible semiconductor nanocrystals using fluorescence correlation spectroscopy. Anal. Chem. 77, 2235–2242.

    Article  PubMed  CAS  Google Scholar 

  12. Kuno, M., Fromm, D. P, Hamann, H. F., Gallagher, A., and Nesbitt, D. J. (2000) No exponential “blinking” kinetics of single CdSe quantum dots: a universal power law behavior. J. Chem. Phys. 112, 3117–3120.

    Article  CAS  Google Scholar 

  13. Silver, J., and Ou, W. (2005) Photoactivation of quantum dot fluorescence following endocytosis. Nano Lett. 5, 1445–1449.

    Article  PubMed  CAS  Google Scholar 

  14. Hess, B. C., Okhrimenko, I. G., Davis, R. C., et al. (2001) Surface transformation and photoinduced recovery in CdSe nanocrystals. Phys. Rev. Lett. 86, 3132–3135.

    Article  PubMed  CAS  Google Scholar 

  15. Heng, H. H., Squire, J., and Tsui, L. C. (1992) High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc. Natl. Acad. Sci. USA 89, 9509–9513.

    Article  PubMed  CAS  Google Scholar 

  16. Wiegant, J., Kalle, W., Mullenders, L., et al. (1992) High-resolution in situ hybridization using DNA halo preparations. Hum. Mol Genet. 1, 587–591.

    Article  PubMed  CAS  Google Scholar 

  17. Parra, I., and Windle, B. (1993) High-resolution visual mapping of stretched DNA by fluorescent hybridization. Nat. Genet. 5, 17–21.

    Article  PubMed  CAS  Google Scholar 

  18. Michalet, X., Ekong, R., Fougerousse, F., et al. (1997) Dynamic molecular combing: stretching the whole human genome for high-resolution studies. Science 277, 1518–1523.

    Article  PubMed  CAS  Google Scholar 

  19. Crut, A., Geron-Landre, B., Bonnet, I., Bonneau, S., Desbiolles, P., and Escude, C. (2005) Detection of single DNA molecules by multicolor quantum-dot end-labeling. Nucleic Acids Res. 33, e98.

    Article  PubMed  Google Scholar 

  20. Lacoste, T. D., Michalet, X., Pinaud, E., Chemla, D. S., Alivisatos, A. P., and Weiss, S. (2000) Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc. Natl. Acad. Sci. USA 97, 9461–9466.

    Article  PubMed  CAS  Google Scholar 

  21. Schrock, E., du Manoir, S., Veldman, T., et al. (1996) Multicolor spectral karyotyping of human chromosomes. Science 273, 494–497.

    Article  PubMed  CAS  Google Scholar 

  22. Speicher, M. R., Gwyn Ballard, S., and Ward, D. C. (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH, Nat. Genet. 12, 368–375.

    Article  PubMed  CAS  Google Scholar 

  23. Trask, B. J. (2002) Human cytogenetics: 46 chromosomes, 46 years and counting. Nat. Rev. Genet. 3, 769–778.

    Article  PubMed  CAS  Google Scholar 

  24. Chan, P., Yuen, T., Ruf, F., et al. (2005) Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization. Nucleic Acids Res. 33, e161.

    Article  PubMed  Google Scholar 

  25. Xiao, Y., Telford, W. G., Ball, J. C., et al. (2005) Semiconductor nanocrystal conjugates, FISH and pH. Nat. Methods 2, 723

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent A. Bentolila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bentolila, L.A., Weiss, S. Single-step multicolor fluorescence In situ hybridization using semiconductor quantum dot-DNA conjugates. Cell Biochem Biophys 45, 59–70 (2006). https://doi.org/10.1385/CBB:45:1:59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:45:1:59

Index Entries

Navigation