Skip to main content
Log in

DNA structure and dynamics

An atomic force microscopy study

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This review primarily outlines the most recent atomic force microscopy (AFM) studies of DNA structure and dynamics. Sample preparation techniques allowing reliable and reproducible imaging of various DNA topologies are reviewed. Such important issues as imaging of supercoiled DNA conformations at different ionic conditions and detection of local alternative structures that are stabilized by negative DNA supercoiling are discussed in length in the article. The possibility of imaging DNA structural dynamics at different levels is another major focus of the article. Using time-lapse AFM imaging mode of nondried samples, such extensive DNA dynamic processes as transition of one local structure into another (H-DNA to B-form transition), the conformational transitions of DNA Holliday junctions and their branch migration were observed. Potential future applications of this single-molecule dynamics mode of AFM to analyses of various biochemical processes involving DNA are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binnig, G., Rohrer, H., Gerber, C., and Weibel, E. (1982) Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61.

    Google Scholar 

  2. Binnig, G. and Rohrer, H. (1983) Scanning tunneling microscopy. Surface Sci. 126, 236–244.

    CAS  Google Scholar 

  3. Binnig, G., Quate, C. F., and Gerber, C. (1986) Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933.

    PubMed  Google Scholar 

  4. Quate, C. (1986) Review. Phys. Today. 39, 26.

    CAS  Google Scholar 

  5. Hansma, P. K., Elings, V. B., Marti, O., and Bracker, C. E. (1988) Scanning tunneling microscopy and atomic force microscopy: application to biology and technology. Science. 242(4876), 209–216.

    PubMed  CAS  Google Scholar 

  6. Hansma, H. G., Sinsheimer, R. L., Groppe, J., et al. (1993) Recent advances in atomic force microscopy of DNA. Scanning 15(5), 296–299.

    PubMed  CAS  Google Scholar 

  7. Hansma, H. G., Laney, D. E., Bezanilla, M., Sinsheimer, R. L., and Hansma, P. K. (1995) Applications for atomic force microscopy of DNA. Biophys. J. 68(5), 1672–1677.

    PubMed  CAS  Google Scholar 

  8. Engel, A., Lyubchenko, Y., and Muller, D. (1999) Atomic force microscopy: a powerful tool to observe biomolecules at work. Trends Cell Biol. 9(2), 77–80.

    PubMed  CAS  Google Scholar 

  9. Hansma, H. G. and Pietrasanta, L. (1998) Atomic force microscopy and other scanning probe microscopies [published erratum appears in Curr. Opin. Chem. Biol. 1998 Dec; 2(6): 767]. Curr. Opin. Chem. Biol. 2(5), 579–584.

    PubMed  CAS  Google Scholar 

  10. Hansma, H. G., Pietrasanta, L. I., Auerbach, I. D., Sorenson, C., Golan, R., and Holden, P. A. (2000) Probing biopolymers with the atomic force microscope: a review. J. Biomater. Sci. Polym. Ed. 11(7), 675–683.

    PubMed  CAS  Google Scholar 

  11. Hansma, H. G. (2001) Surface biology of DNA by atomic force microscopy. Annu. Rev. Phys. Chem. 52, 71–92.

    PubMed  CAS  Google Scholar 

  12. Engel, A. (1991) Biological applications of scanning probe microscopes. Annu. Rev. Biophys. Chem. 20, 79–108.

    CAS  Google Scholar 

  13. Engel, A. and Müller, D. J. (2000) Observing single biomolecules at work with the atomic force microscope. Nature Struct. Biol. 7(9), 715–718.

    PubMed  CAS  Google Scholar 

  14. Hansma, H. G. and Hoh, J. H. (1994) Biomolecular imaging with the atomic force microscope. Annu. Rev. Biophys. Biomol. Struct. 23, 115–139.

    PubMed  CAS  Google Scholar 

  15. Bustamante, C., Erie, D. A., and Keller, D. (1994) Biochemical and structural applications of scanning force microscopy. Curr. Opin. Struct. Biol. 3, 750–760.

    Google Scholar 

  16. Bustamante, C. and Rivetti, C. (1996) Visualizing protein-nucleic acid interactions on a large scale with the scanning force microscope. Annu. Rev. Biophys. Biomol. Struct. 25, 395–429.

    PubMed  CAS  Google Scholar 

  17. Bustamante, C., Rivetti, C., and Keller, D. J. (1997) Scanning force microscopy under aqueous solutions. Curr. Opin. Struct. Biol. 7(5), 709–716.

    PubMed  CAS  Google Scholar 

  18. Lyubchenko, Y. L., Jacobs, B. L., Lindsay, S. M., and Stasiak, A. (1995) Atomic force microscopy of nucleoprotein complexes. Scanning Microsc. 9(3), 705–724; discussion 724–707.

    PubMed  CAS  Google Scholar 

  19. Bustamante, C., Vesenka, J., Tang, C. L., Rees, W., Guthold, M., and Keller, R. (1992) Circular DNA molecules imaged in air by scanning force microscopy. Biochemistry 31(1): 22–26.

    PubMed  CAS  Google Scholar 

  20. Vesenka, J., Guthold, M., Tang, C. L., Keller, D., Delaine, E., and Bustamante, C. (1992) Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. Ultramicroscopy 42–44(Pt. B), 1243–1249.

    PubMed  Google Scholar 

  21. Hansma, H. G., Bezanilla, M., Zenhausern, F., Adrian, M., and Sinsheimer, R. L. (1993) Atomic force microscopy of DNA in aqueous solutions. Nucleic Acids Res. 21(3), 505–512.

    PubMed  CAS  Google Scholar 

  22. Hansma, H. G. and Laney, D. E. (1996) DNA binding to mica correlates with cationic radius: assay by atomic force microscopy. Biophys. J. 70(4), 1933–1939.

    PubMed  CAS  Google Scholar 

  23. Brack, C. (1981) DNA electron microscopy. Crit. Rev. Biochem. 10, 113–169

    CAS  Google Scholar 

  24. Thundat, T., Allison, D. P., Warmack, R. J., et al. (1992) Atomic force microscopy of DNA on mica and chemically modified mica. Scanning Microsc. 6(4), 911–918.

    PubMed  CAS  Google Scholar 

  25. Thundat, T., Allison, D. P., Warmack, R. J. and Ferrell, T. L. (1992) Imaging isolated strands of DNA molecules by atomic force microscopy. Ultramicroscopy 42–44(Pt. B), 1101–1106.

    PubMed  Google Scholar 

  26. Erie, D. A., Yang, G., Schultz, H. C., and Bustamante, C. (1994) DNA bending by Cro protein in specific and nonspecific complexes: implications for protein site recognition and specificity [see comments]. Science. 266(5190), 1562–1566.

    PubMed  CAS  Google Scholar 

  27. Zlatanova, J., Leuba, S. H., Yang, G., Bustamante, C., and van Holde, K. (1994) Linker DNA accessibility in chromatin fibers of different conformations: a reevaluation. Proc. Natl. Acad. Sci. USA 91(12), 5277–5280.

    PubMed  CAS  Google Scholar 

  28. Wyman, C., Grotkopp, E., Bustamante, C., and Nelson, H. C. (1995) Determination of heat-shock transcription factor 2 stoichiometry at looped DNA complexes using scanning force microscopy. EMBO J. 14(1), 117–123.

    PubMed  CAS  Google Scholar 

  29. Wyman, C., Rombel, I., North, A. K., Bustamante, C., and Kustu, S. (1997) Unusual oligomerization required for activity of NtrC, a bacterial enhancer-binding protein [see comments]. Science 275(5306), 1658–1661.

    PubMed  CAS  Google Scholar 

  30. Rippe, K., Guthold, M., von Hippel, P. H., and Bustamante, C. (1997) Transcriptional activation via DNA-looping: visualization of intermediates in the activation pathway of E. coli RNA polymerase x sigma 54 holoenzyme by scanning force microscopy. J. Mol. Biol. 270(2), 125–138.

    PubMed  CAS  Google Scholar 

  31. Zuccheri, G. and Samori, B. (2002) Scanning force microscopy studies on the structure and dynamics of single DNA molecules. Methods Cell Biol. 68, 357–395.

    PubMed  CAS  Google Scholar 

  32. Yang, J., Takeyasu, K., and Shao, Z. (1992) Atomic force microscopy of DNA molecules. FEBS Lett. 301(2), 173–176.

    PubMed  CAS  Google Scholar 

  33. Mou, J., Czajkowsky, D. M., Zhang, Y., and Shao, Z. (1995) High-resolution atomic-force microscopy of DNA: the pitch of the double helix. FEBS Lett. 371(3), 279–282.

    PubMed  CAS  Google Scholar 

  34. Hegner, M., Wagner, P., and Semenza, G. (1993) Immobilizing DNA on gold via thiol modification for atomic force microscopy imaging in buffer solutions. FEBS Lett. 336(3), 452–456.

    PubMed  CAS  Google Scholar 

  35. Allen, M. J., Dong, X. F., O'Neill, T. E., et al. (1993) Atomic force microscope measurements of nucleosome cores assembled along defined DNA sequences. Biochemistry 32(33), 8390–8396.

    PubMed  CAS  Google Scholar 

  36. Lyubchenko, Y. L., Gall, A. A., Shlyakhtenko, L. S., et al. (1992) Atomic force microscopy imaging of double stranded DNA and RNA. J. Biomol. Struct. Dynam. 10(3), 589–606.

    CAS  Google Scholar 

  37. Lyubchenko, Y. L., Jacobs, B. L., and Lindsay, S. M. (1992) Atomic force microscopy of reovirus dsRNA: a routine technique for length measurements. Nucleic Acids Res. 20(15), 3983–3986.

    PubMed  CAS  Google Scholar 

  38. Lyubchenko, Y. L., Oden, P. I., Lampner, D., Lindsay, S. M., and Dunker, K. A. (1993) Atomic force microscopy of DNA and bacteriophage in air, water and propanol: the role of adhesion forces. Nucleic Acids Res. 21(5), 1117–1123.

    PubMed  CAS  Google Scholar 

  39. Lyubchenko, Y., Shlyakhtenko, L., Harrington, R., Oden, P., and Lindsay, S. (1993) Atomic force microscopy of long DNA: imaging in air and under water. Proc. Natl. Acad. Sci. USA 90(6), 2137–2140.

    PubMed  CAS  Google Scholar 

  40. Lyubchenko, Y. L., Blankenship, R. E., Gall, A. A., et al. (1996) Atomic force microscopy of DNA, nucleoproteins and cellular complexes: the use of functionalized substrates. Scanning Microsc. 10(Suppl.), 97–107.

    CAS  Google Scholar 

  41. Lyubchenko, Y. L. and Shlyakhtenko, L. S. (1997) Visualization of supercoiled DNA with atomic force microscopy in situ. Proc. Natl. Acad. Sci. USA 94(2), 496–501.

    PubMed  CAS  Google Scholar 

  42. Herbert, A., Schade, M., Lowenhaupt, K., et al. (1998) The Zalpha domain from human ADAR1 binds to the Z-DNA conformer of many different sequences. Nucleic Acids Res. 26(15), 3486–3493.

    PubMed  CAS  Google Scholar 

  43. Lyubchenko, Y. L. and Lindsay, S. M. (1998) Functionalized AP-mica. DNA, RNA and nucleoprotein complexes immobilized on AP-mica and imaged with AFM, in Procedures in Scanning Probe Microscopy Colton, R. J., et al., eds.), Wiley, Chichester, pp. 493–496.

    Google Scholar 

  44. Lyubchenko, Y. L., Gall, A. A., and Shlyakhtenko, L. S. (2001) Atomic force microscopy of DNA and protein-DNA complexes using functionalized mica substrates. Methods Mol. Biol. 148, 569–578.

    PubMed  CAS  Google Scholar 

  45. Yodh, J. G., Lyubchenko, Y. L., Shlyakhtenko, L. S., Woodbury, N., and Lohr, D. (1999) Evidence for nonrandom behavior in 208-12 subsaturated nucleosomal array populations analyzed by AFM. Biochemistry 38(48), 15756–15763.

    PubMed  CAS  Google Scholar 

  46. Shlyakhtenko, L. S., Potaman, V. N., Sinden, R. R., Gall, A. A., and Lyubchenko, Y. L. (2000) Structure and dynamics of three-way DNA junctions: atomic force microscopy studies. Nucleic Acids Res. 28(18), 3472–3477.

    PubMed  CAS  Google Scholar 

  47. Shlyakhtenko, L. S., Gall, A. A., Filonov, A., Cerovac, Z., Lushnikov, A., and Lyubchenko, Y. L. (2003) Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy. 97, 279–287.

    PubMed  CAS  Google Scholar 

  48. Lyubchenko, Y. L., Shlyakhtenko, L. S., Binus, M., Gaillard, C., and Strauss, F. (2002) Visualization of hemiknot DNA structure with an atomic force microscope. Nucleic Acids Res. 30(22), 4902–4909.

    PubMed  CAS  Google Scholar 

  49. Riener, C. K., Stroh, C. M., Ebner, A., et al. (2003) A simple test system for single molecule recognition force microscopy. Anal. Chim. Acta 479, 59–75.

    CAS  Google Scholar 

  50. Fang, Y. and Hoh, J. H. (1998) Surface-directed DNA condensation in the absence of soluble multivalent cations. Nucleic Acids Res. 26(2), 588–593.

    PubMed  CAS  Google Scholar 

  51. Vologodskii, A. V., Levene, S. D., Klenin, K. V., Frank-Kamenetskii, M., and Cozzarelli, N. R. (1992) Conformational and thermodynamic properties of supercoiled DNA. J. Mol. Biol. 227(4), 1224–1243.

    PubMed  CAS  Google Scholar 

  52. Vologodskii, A. V. and Cozzarelli, N. R. (1994) Conformational and thermodynamic properties of supercoiled DNA. Annu. Rev. Biophys. Biomol. Struct. 23, 609–643.

    PubMed  CAS  Google Scholar 

  53. Vologodskii, A. and Cozzarelli, N. R. (1996) Effect of supercoiling on the juxtaposition and relative orientation of DNA sites. Biophys. J. 70(6), 2548–2556.

    PubMed  CAS  Google Scholar 

  54. Boles, T. C., White, J. H., and Cozzarelli, N. R. (1990) Structure of plectonemically supercoiled DNA. J. Mol. Biol. 213(4), 931–951.

    PubMed  CAS  Google Scholar 

  55. Rybenkov, V. V., Vologodskii, A. V., and Cozzarelli, N. R. (1997) The effect of ionic conditions on DNA helical repeat, effective diameter and free energy of supercoiling. Nucleic Acids Res. 25(7), 1412–1418.

    PubMed  CAS  Google Scholar 

  56. Rybenkov, V. V., Vologodskii, A. V., and Cozzarelli, N. R. (1997) The effect of ionic conditions on the conformations of supercoiled DNA. I. Sedimentation analysis. J. Mol. Biol. 267(2), 299–311.

    PubMed  CAS  Google Scholar 

  57. Sinden, R. R. (1994) DNA Structure and Function, Academic, San Diego, CA.

    Google Scholar 

  58. Thundat, T., Allison, D. P., and Warmack, R. J. (1994) Stretched DNA structures observed with atomic force microscopy. Nucleic Acids Res. 22(20), 4224–4228.

    PubMed  CAS  Google Scholar 

  59. Bezanilla, M., Manne, S., Laney, D. E., Lyubchenko, Y. L., and Hansma, H. C. (1995) Adsorption of DNA to mica, silylated mica and minerals: characterization by atomic force microscopy, Langmuir 11, 655–659.

    CAS  Google Scholar 

  60. Samori, B., Siligardi, G., Quagliariello, C., Weisenhorn, A. L., Vesenka, J., and Bustamante, C. J. (1993) Chirality of DNA supercoiling assigned by scanning force microscopy. Proc. Natl. Acad. Sci. USA 90(8), 3598–3601.

    PubMed  CAS  Google Scholar 

  61. Lett, S. D., Cherny, D. J., Subramaniam, V., and Jovin, T. M. (2000) Scanning force microscopy of the complexes of p53 core domain with supercoiled DNA. J. Mol. Biol. 299(3), 585–592.

    Google Scholar 

  62. Pfannschmidt, C., Schaper, A., Heim, G., Jovin, T. M., and Langowski, J. (1996) Sequence-specific labeling of superhelical DNA by triple helix formation and psoralen crosslinking. Nucleic Acids Res. 24(9), 1702–1709.

    PubMed  CAS  Google Scholar 

  63. Pfannschmidt, C. and Langowski, J. (1998) Superhelix organization by DNA curvature as measured through site-specific labeling. J. Mol. Biol. 275(4), 601–611.

    PubMed  CAS  Google Scholar 

  64. Rippe, K., Mucke, N., and Langowski, J. (1997) Superhelix dimensions of a 1868 base pair plasmid determined by scanning force microscopy in air and in aqueous solution. Nucleic Acids Res. 25(9), 1736–1744.

    PubMed  CAS  Google Scholar 

  65. Nagami, F., Zuccheri, G., Samori, B., and Kuroda, R. (2002) Time-lapse imaging of conformational changes in supercoiled DNA by scanning force microscopy. Anal. Biochem. 300(2), 170–176.

    PubMed  CAS  Google Scholar 

  66. Rivetti, C., Guthold, M., and Bustamante, C. (1996) Scanning force microscopy of DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical polymer chain analysis. J. Mol. Biol. 264(5), 919–932.

    PubMed  CAS  Google Scholar 

  67. Cherny, D. I., Fourcade, A., Svinarchuk, F., Nielsen, P. E., Malvy, C., and Delain, E. (1998) Analysis of various sequence-specific triplexes by electron and atomic force microscopies. Biophys. J. 74(2 Pt. 1), 1015–1023.

    PubMed  CAS  Google Scholar 

  68. Rybenkov, V. V., Vologodskii, A. V., and Cozzarelli, N. R. (1997) The effect of ionic conditions] on the conformations of supercoiled DNA. II. Equilibrium catenation. J. Mol. Biol. 267(2), 312–323.

    PubMed  CAS  Google Scholar 

  69. Shlyakhtenko, L. S., Miloseska, L., Potaman, V. N., Sinden, R. R., and Lyubchenko, Y. L. (2003) Intersegmental interactions in supercoiled DNA: atomic force microscope study. Ultramicroscopy 97(1–4) 263–270.

    PubMed  CAS  Google Scholar 

  70. Vologodskii, A. and Cozzarelli, N. (1995) Modeling of long-range electrostatic interactions in DNA. Biopolymers 35(3), 289–296.

    PubMed  CAS  Google Scholar 

  71. Lyubchenko, Y. L., Shlyakhtenko, L. S., Aki, T., and Adhya, S. (1997) Atomic force microscopic demonstration of DNA looping by GaIR and HU. Nucleic Acids Res. 25(4), 873–876.

    PubMed  CAS  Google Scholar 

  72. Shlyakhtenko, L. S., Hsieh, P., Grigoriev, M., Potaman, V. N., Sinden, R. R., and Lyubchenko, Y. L. (2000) A cruciform structural transition provides a molecular switch for chromosome structure and dynamics. J. Mol. Biol. 296(5), 1169–1173.

    PubMed  CAS  Google Scholar 

  73. Shaw, S. Y. and Wang, J. C. (1993) Knotting of a DNA chain during ring closure. Science 260(5107), 533–536.

    PubMed  CAS  Google Scholar 

  74. Hatfield, G. W. and Benham, C. J. (2002) DNA topology-mediated control of global gene expression in Escherichia coli. Annu. Rev. Genet. 36, 175–203.

    PubMed  CAS  Google Scholar 

  75. Soyfer, V. N. and Potaman, V. N. (1996) Triple-Helical Nucleic Acids, Springer-Verlag, New York.

    Google Scholar 

  76. Palecek, E. (1992) Probing DNA structure with osmium tetroxide complexes in vitro. Methods Enzymol. 212, 139–155.

    PubMed  CAS  Google Scholar 

  77. Mizuuchi, K., Mizuuchi, M., and Gellert, M. (1982) Cruciform structures in palindromic DNA are favored by DNA supercolling. J. Mol. Biol. 156(2), 229–243.

    PubMed  CAS  Google Scholar 

  78. Shlyakhtenko, L. S., Potaman, V. N., Sinden, R. R., and Lyubchenko, Y. L. (1998) Structure and dynamics of supercoil-stabilized DNA cruciforms. J. Mol. Biol. 280(1), 61–72.

    PubMed  CAS  Google Scholar 

  79. Zheng, G. X., Kochel, T., Hoepfner, R. W., Timmons, S. E., and Sinden, R.R. (1991) Torsionally tuned cruciform and Z-DNA probes for measuring unrestrained supercoiling at specific sites in DNA of living cells. J. Mol. Biol. 221(1), 107–122.

    PubMed  CAS  Google Scholar 

  80. Laundon, C. H. and Griffith, J. D. (1988) Curved helix segments can uniquely orient the topology of supertwisted DNA. Cell 52(4), 545–549.

    PubMed  CAS  Google Scholar 

  81. Adhya, S. (1989) Multipartile genetic control elements: communication by DNA loop. Annu. Rev. Genet. 23, 227–250.

    PubMed  CAS  Google Scholar 

  82. Gellert, M. and Nash, H. (1987) Communication between segments of DNA during site-specific recombination. Nature 325, 401–404.

    PubMed  CAS  Google Scholar 

  83. Paull, T. T. and Johnson, R. C. (1995) DNA looping by Saccharomyces cerevisiae high mobility group proteins NHP6A/B. Consequences for nucleoprotein complex assembly and chromatin condensation. J. Biol. Chem. 270(15), 8744–8754.

    PubMed  CAS  Google Scholar 

  84. Gellert, M. and Nash, H. (1987) Communication between segments of DNA during site-specific recombination. Nature 325(6103), 401–404.

    PubMed  CAS  Google Scholar 

  85. Langowski, J., Olson, W. K., Pedersen, S. C., Tobias, I., Westcott, T. P., and Yang, Y. (1996) DNA supercoiling, localized bending and thermal fluctuations. Trends Biochem. Sci. 21(2), 50.

    PubMed  CAS  Google Scholar 

  86. Chirico, G. and Langowski, J. (1996) Brownian dynamics simulations of supercoiled DNA with bent sequences. Biophys. J. 71(2), 955–971.

    PubMed  CAS  Google Scholar 

  87. Jian, H., Schlick, T., and Vologodskii, A. (1998) Internal motion of supercoiled DNA: Brownian dynamics simulations of site juxtaposition. J. Mol. Biol. 284(2), 287–296.

    PubMed  CAS  Google Scholar 

  88. Parsons, C. A., Stasiak, A., Bennett, R. J., and West, S. C. (1995) Structure of a multisubunit complex that promotes DNA branch migration. Nature 374(6520), 375–378.

    PubMed  CAS  Google Scholar 

  89. Rafferty, J. B., Sedelnikova, S. E., Hargreaves, D., et al. (1996) Crystal structure of DNA recombination protein RuvA and a model for its binding to the Holliday junction. Science 274(5286), 415–421.

    PubMed  CAS  Google Scholar 

  90. Yu, X., West, S. C., and Egelman, E. H. (1997) Structure and subunit composition of the RuvAB-Holliday junction complex. J. Mol. Biol. 266(2), 217–222.

    PubMed  CAS  Google Scholar 

  91. Roe, S. M., Barlow, T., Brown, T., et al. (1998) Crystal structure of an octameric RuvA—Holliday junction complex. Mol. Cell 2(3), 361–372.

    PubMed  CAS  Google Scholar 

  92. West, S. C. (1997) Processing of recombination intermediates by the RuvABC proteins. Annu. Rev. Genet. 31, 213–244.

    PubMed  CAS  Google Scholar 

  93. Mirkin, S. M. and Frank-Kamenetskii, M. D. (1994) H-DNA and related structures. Annu. Rev. Biophys. Biomol. Struct. 23, 541–576.

    PubMed  CAS  Google Scholar 

  94. Lee, J. S., Woodsworth, M. L., Latimer, L. J., and Morgan, A. R. (1984) Poly(pyrimidine)· poly(purine)_synthetic DNAs containing 5-methylcytosine form stable triplexes at neutral pH. Nucleic Acids Res. 12(16), 6603–6614.

    PubMed  CAS  Google Scholar 

  95. Dayn, A., Samadashwily, G. M., and Mirkin, S. M. (1992) Intramolecular DNA triplexes: unusual sequence requirements and influence on DNA polymerization. Proc. Natl. Acad. Sci. USA 89(23), 11406–11410.

    PubMed  CAS  Google Scholar 

  96. Kohwi, Y. and Panchenko, Y. (1993) Transcription-dependent recombination induced by triple-helix formation. Genes Dev. 7(9), 1766–1778.

    PubMed  CAS  Google Scholar 

  97. Veselkov, A. G., Malkov, V. A., Frank-Kamenetskll, M. D., and Dobrynin, V. N. (1993) Triplex model of chromosome ends. Nature 364(6437), 496.

    PubMed  CAS  Google Scholar 

  98. Tiner, W. J., Sr., Potaman, V. N., Sinden, R. R., and Lyubchenko, Y. L. (2001) The structure of intramolecular triplex DNA: atomic force microscopy study. J. Mol. Biol. 314(3), 353–357.

    PubMed  CAS  Google Scholar 

  99. Potaman, V. N., Ussery, D. W., and Sinden, R. R. (1996) Formation of a combined H-DNA/open TATA box structure in the promoter sequence of the human Na,K-ATPase alpha2 gene. J. Biol. Chem. 271(23), 13441–13447.

    PubMed  CAS  Google Scholar 

  100. Kato, M., McAllister, C. J., Hokabe, S., Shimizu, N., and Lyubchenko, Y. L. (2002) Structural heterogeneity of pyrimidine/purine-biased DNA sequence analyzed by atomic force microscopy. Eur. J. Biochem. 269(15), 3632–3636.

    PubMed  CAS  Google Scholar 

  101. Hansma, H. G., Weisenhorn, A. L., Edmudson, A. B., Gaub, H. E., and Hansma, P. K. (1991) Atomic force microscopy: seeing molecules of lipid and immunoglobulin. Clin. Chem. 37(9), 1497–1501.

    PubMed  CAS  Google Scholar 

  102. Guthold, M., Bezanilla, M., Erie, D. A., Jenkins, B., Hansma, H. G., and Bustamante, C. (1994) Following the assembly of RNA polymerase-DNA complexes in aqueous solutions with the scanning force microscope. Proc. Natl. Acad. Sci. USA 91(26), 12927–12931.

    PubMed  CAS  Google Scholar 

  103. Kasas, S., Thomson, N. H., Smith, B. L., et al. (1997) Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry 36(3), 461–468.

    PubMed  CAS  Google Scholar 

  104. Bustamante, C., Guthold, M., Zhu, X., and Yang, G. (1999) Facilitated target location on DNA by individual Escherichia coli RNA polymerase molecules observed with the scanning force microscope operating in liquid. J. Biol. Chem. 274(24), 16,665–16,668.

    CAS  Google Scholar 

  105. Bezanilla, M., Drake, B., Nudler, E., Kashlev, M., Hansma, P. K., and Hansma, H. G. (1994) Motion and enzymatic degradation of DNA in the atomic force microscope. Biophys. J. 67(6), 2454–2459.

    PubMed  CAS  Google Scholar 

  106. Argaman, M., Golan, R., Thomson, N. H., and Hansma, H. G. (1997) Phase imaging of moving DNA molecules and DNA molecules replicated in the atomic force microscope. Nucleic Acids Res. 25(21), 4379–4384.

    PubMed  CAS  Google Scholar 

  107. van Noort, J., Orsini, F., Eker A., Wyman, C., de Grooth, B., and Greve, J. (1999) DNA bending by photolyase in specific and non-specific complexes studied by atomic force microscopy. Nucleic Acids Res. 27(19), 3875–3880.

    PubMed  Google Scholar 

  108. Sheng, S., Czajkowsky, D. M., and Shao, Z. (1999) AFM tips: how sharp are they? J. Microsc. 196(Pt. 1), 1–5.

    PubMed  CAS  Google Scholar 

  109. Lyubchenko, Y. L., Shlyakhtenko, L. S., Potaman, V. P., and Sinden, R. R. (2002) Global and local DNA structure and dynamics. Single molecule studies with AFM. Microsc. Microanal. 8(Suppl. 2), 170–171.

    Google Scholar 

  110. Lushnikov, A. Y., Bogdanov, A., and Lyubchenko, Y. L. (2003) DNA Recombination: holliday junctions dynamics and branch migration. J. Biol. Chem. 278(44), 43,130–43,134.

    CAS  Google Scholar 

  111. Panyutin, I. G. and Hsieh, P. (1994) The kinetics of spontaneous DNA branch migration. Proc. Natl. Acad. Sci. USA 91(6), 2021–2025.

    PubMed  CAS  Google Scholar 

  112. Panyutin, I. G., Biswas, I., and Hsieh, P. (1995) A pivotal role for the structure of the Holliday junction in DNA branch migration. EMBO J. 14(8), 1819–1826.

    PubMed  CAS  Google Scholar 

  113. Grigoriev, M. and Hsieh, P. (1998) Migration of a Holliday junction through a nucleosome directed by the E. coli RuvAB motor protein. Mol. Cell 2(3), 373–381.

    PubMed  CAS  Google Scholar 

  114. Sigal, N. and Alberts, B. (1972) Genetic recombination: the nature of a crossed strand-exchange between two homologous DNA molecules. J. Mol. Biol. 71(3): 789–793.

    PubMed  CAS  Google Scholar 

  115. Meselson, M. (1972) Formation of hybrid DNA by rotary diffusion during genetic recombination. J. Mol. Biol. 71(3), 795–798.

    PubMed  CAS  Google Scholar 

  116. Guthold, M., Zhu, X., Rivetti, C., et al. (1999) Direct observation of one-dimensional diffusion and transcription by Escherichia coli RNA polymerase. Biophys. J. 77(4): 2284–2294.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri L. Lyubchenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyubchenko, Y.L. DNA structure and dynamics. Cell Biochem Biophys 41, 75–98 (2004). https://doi.org/10.1385/CBB:41:1:075

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:41:1:075

Index Entries

Navigation