Skip to main content
Log in

The expression and regulation of the iron transport molecules hephaestin and IREG1

Implications for the control of iron export from the small intestine

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The amount of iron in the body is controlled at the point of absorption in the proximal small intestine. Dietary iron enters the intestinal epithelium via the brush-border transporter DMT1 and exits through the basolateral membranes. The basolateral transfer of iron requires two components: a copper-containing iron oxidase known as hephaestin and a membrane transport protein IREG1. The amount of iron traversing the enterocytes is directly related to body iron requirements and inversely related to the iron content of the intestinal epithelium. We propose that body signals control iron absorption by first acting on crypt enterocytes to determine the expression of basolateral transport components. This, in turn, modulates the intracellular iron content of mature epithelial cells, which ultimately determines the activity of the brush-border transporter DMT1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bothwell, T. H., Charlton, R. W., Cook, J. D., and Finch, C. A. (1979) Iron Metabolism in Man, Blackwell Scientific, Oxford.

    Google Scholar 

  2. Raja, K. B., Simpson, R. J., and Peters, T. J. (1992) Investigation of a role for reduction in ferric iron uptake by mouse duodenum. Biochim. Biophys. Acta 1135, 141–146.

    Article  PubMed  CAS  Google Scholar 

  3. McKie, A. T., Barrow, D., Latunde-Dada, G. O., Rolfs, A., Sagar, G., Mudaly, E., et al. (1999) An iron-regulated ferric reductase associated with the absorption of dietary iron Science 291, 1755–1759.

    Article  Google Scholar 

  4. Gunshin, H., Mackenzie, B., Berger, U. V., Gunshin, Y., Romero, M. F., Boron, W. F., et al. (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488.

    Article  PubMed  CAS  Google Scholar 

  5. Fleming, M. D., Trenor, C. C., Su, M. A., Foernzler, D., Beier, D. R., Dietrich, W. F., et al. (1997) Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transport gene. Nature Genet. 16, 383–386.

    PubMed  CAS  Google Scholar 

  6. Vulpe, C. D., Kuo, Y.-M., Murphy, T. L., Cowley, L., Askwith, C., Libina, N., et al. (1999) Hephaestin: a ceruloplasmin homologue implicated in intestinal iron transport and its defect in the sla mouse. Nature Genet. 21, 195–199.

    Article  PubMed  CAS  Google Scholar 

  7. McKie, A. T., Marciani, P., Rolfs, A., Brennan, K., Wehr, K., Barrow, D., et al. (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell. 5, 299–309.

    Article  PubMed  CAS  Google Scholar 

  8. Donovan, A., Brownlie, A., Zhou, Y., Shepard, J., Pratt, S. J., Moynihan, J., et al. (2000) Positional cloning of zebrafish ferroportin 1 identifies a conserved vertebrate iron exporter. Nature 403, 776–781.

    Article  PubMed  CAS  Google Scholar 

  9. Abboud, S. and Haile, D. J. (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 275, 19—906—19,912.

    Article  Google Scholar 

  10. Russell, E. S. (1979) Hereditary anemias of the mouse: a review for geneticists. Adv. Genet. 20, 357–459.

    PubMed  CAS  Google Scholar 

  11. Anderson, G. J., Murphy, T. L., Cowley, L., Evans, B. A., Halliday, J. W., and McLaren, G. D. (1998) Mapping the gene for sex-linked anemia: an inherited defect of intestinl iron absorption in the mouse. Genomics 48, 34–39.

    Article  PubMed  CAS  Google Scholar 

  12. Frazer, D. M., Vulpe, C. D., McKie, A. T., Wilkins, S. J., Trinder, D., Cleghorn, G. J., et al. (2001) Cloning and gastrointestinal expression of rat hephaestin: relationship to other iron transport proteins. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G931-G939.

    PubMed  CAS  Google Scholar 

  13. Meyer, L. A., Durley, A. P., Prohaska, J. R., and Harris, Z. L. (2001) Copper transport and metabolism are normal in aceruloplasminemic mice. J. Biol. Chem. 276, 36,857–36,861.

    CAS  Google Scholar 

  14. Gitlin, J. D. (1998) Aceruloplasminemia. Pediatr. Res. 44, 271–276.

    Article  PubMed  CAS  Google Scholar 

  15. Harris, Z. L., Durley, A. P., Man, T. K., and Gitlin, J. D. (1999) Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc. Natl. Acad. Sci. USA 96, 10,812–10,817.

    CAS  Google Scholar 

  16. Lee, G. R., Nacht, S., Lukens, J. N., and Cartwright, G. E. (1968) Iron metabolism in copper-deficient swine. J. Clin. Invest. 47, 2058–2069.

    PubMed  CAS  Google Scholar 

  17. Attieh, Z., Alaeddine, R. M., Su, T., Anderson, G., and Vulpe, C. (2001) Identification of a feroxidase activity for hephaestin. Proceedings of Bioiron 2001. World Congress on Iron Metabolism, Cairns, Australia 184.

  18. Askwith, C. C., de Silva, D., and Kaplan, J. (1996) Molecular biology of iron acquisition in Saccharomyces cerevisiae. Mol. Microbiol. 20, 27–34.

    Article  PubMed  CAS  Google Scholar 

  19. Njajou, O. T., Vaessen, N., Joosse, M., Berghuis, B., van Dongen, J. W., Breuning, M. H., et al. (2001) A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. Nature Genet. 28, 213–214.

    Article  PubMed  CAS  Google Scholar 

  20. Montosi, G., Donovan, A., Totaro, A., Garuti, C. Pignatti, E., Cassanelli, S., et al. (2001) Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. J. Clin. Invest. 108, 619–623.

    Article  PubMed  CAS  Google Scholar 

  21. Feder, J. N., Gnirke, A., Thomas, W., Tsuchihashi, Z., Ruddy, D. A., Basava, A. et al. (1996) A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nature Genet. 13, 399–408.

    Article  PubMed  CAS  Google Scholar 

  22. Mendel, G. A. (1961) Studies of iron absorption. I. The relationships between the rate of erythropoiesis, hypoxia and iron absorption. Blood 18, 727–736.

    PubMed  CAS  Google Scholar 

  23. Conrad, M. E. and Crosby, W. H. (1963) Intestinal mucosal mechanisms controlling iron absorption. Blood 22, 406–415.

    PubMed  CAS  Google Scholar 

  24. Richmond, V. S., Worwood, M., and Jacobs, A. (1972) The iron content of intestinal epithelial cells and its subcellular distribution: studies on normal, iron-overloaded and iron-deficient rats. Br. J. Haematol. 23, 605–614.

    PubMed  CAS  Google Scholar 

  25. Lombard, M., Bomford, A. B., Polson, R. J., Bellingham, A. J., and Williams, R. (1990) Differential expression of transferrin receptor in duodenal mucosa in iron overload. Evidence for a site-specific defect in genetic hemochromatosis. Gastroenterology 98, 976–984.

    PubMed  CAS  Google Scholar 

  26. Wheby, M. S., Jones, L. G., and Crosby, W. H. (1964) Studies on iron absorption. Intestinal regulatory mechanisms. J. Clin. Invest. 43, 1433–1442.

    Article  PubMed  CAS  Google Scholar 

  27. Marx, J. J. (1979) Mucosal uptake, mucosal transfer and retention of iron, measured by whole-body counting. Scand. J. Haematol. 23, 293–302.

    Article  PubMed  CAS  Google Scholar 

  28. McLaren, G. D., Nathanson, M. H., Jacobs, A., Trevett, D., and Thomson, W. (1991) Regulation of intestinal iron absorption and mucosal iron kinetics in hereditary hemochromatosis. J. Lab. Clin. Med. 117, 390–401.

    PubMed  CAS  Google Scholar 

  29. Trinder, D., Oates, P. S., Thomas, C., Sadleir, J., and Morgan, E. H. (2000) Localisation of divalent metal transporter 1 (DMT1) to the microvillus membrane of rat duodenal enterocytes in iron deficiency, but to hepatocytes in iron overload. Gut 46, 270–276.

    Article  PubMed  CAS  Google Scholar 

  30. Canonne-Hergaux, F., Gruenheid, S., Ponka, P., and Gros, P. (1999) Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron. Blood 93, 4406–4417.

    PubMed  CAS  Google Scholar 

  31. Powell, L. W., Campbell, C. B., and Wilson, E. (1970) Intestinal mucosal uptake of iron and iron retention in idiopathic haemochromatosis as evidence for a mucosal abnormality. Gut 11, 727–731.

    PubMed  CAS  Google Scholar 

  32. Raja, K. B., Simpson, R. J., Pippard, M. J., and Peters, T. J. (1998) In vivo studies on the relationship between intestinal iron (Fe3+) absorption, hypoxia and erythropoiesis in the mouse. Br. J. Haematol. 68, 373–378.

    Google Scholar 

  33. Schumann, K., Moret, R., Kunzle, H., and Kuhn, L. C. (1999) Iron regulatory protein as an endogenous sensor of iron in rat intestinal mucosa. Possible implications for the regulation of iron absorption. Eur. J. Biochem. 260, 362–372.

    Article  PubMed  CAS  Google Scholar 

  34. Yeh, K. Y., Yeh, M., Watkins, J. A., Rodriguez-Paris, J., and Glass, J. (2000) Dietary iron induces rapid changes in rat intestinal divalent metal transporter expression. Am. J. Physiol. 279, G1070-G1079.

    CAS  Google Scholar 

  35. Zoller, H. Pietrangelo, A., Vogel, W., and Weiss, G. (1999) Duodenal metal-transporter (DMT-1, NRAMP-2) expression in patients with hereditary haemochromatosis. Lancet 353 2120–2123.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, G.J., Frazer, D.M., McKie, A.T. et al. The expression and regulation of the iron transport molecules hephaestin and IREG1. Cell Biochem Biophys 36, 137–146 (2002). https://doi.org/10.1385/CBB:36:2-3:137

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:36:2-3:137

Index Entries

Navigation