Skip to main content
Log in

Mechanotransduction in Caenorhabditis elegans

The role of DEG/ENaC ion channels

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

One of the looming mysteries in signal transduction today is the question of how mechanical signals, such as pressure or mechanical force delivered to a cell, are interpreted to direct biological responses. All living organisms, and probably all cells, have the ability to sense and respond to mechanical stimuli. At the single-cell level, mechanical signaling underlies cell-volume control and specialized responses such as the prevention of poly-spermy in fertilization. At the level of the whole organism, mechanotransduction underlies processes as diverse as stretch-activated reflexes in vascular epithelium and smooth muscle; gravitaxis and turgor control in plants; tissue development and morphogenesis; and the senses of touch, hearing, and balance. Intense genetic, molecular, and elecrophysiological studies in organisms ranging from nematodes to mammals have highlighted members of the recently discovered DEG/ENaC family of ion channels as strong candidates for the elusive metazoan mechanotransducer. Here, we discuss the evidence that links DEG/ENaC ion channels to mechanotransduction and review the function of Caenorhabiditis elegans members of this family called degenerins and their role in mediating mechanosensitive behaviors in the worm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. French, A. S. (1992) Mechanotransduction, Annu. Rev. Physiol. 54, 135–152.

    Article  PubMed  CAS  Google Scholar 

  2. Sackin, H. (1995) Mechanosensitive channels. Annu. Rev. Physiol. 57, 333–353.

    PubMed  CAS  Google Scholar 

  3. Koltzenburg, M., Stucky, C. L., and Lewin G. R. (1997) Receptive properties of mouse sensory neurons innervating hairy skin. J. Neurophysiol. 78, 1841–1850.

    PubMed  CAS  Google Scholar 

  4. Sukharev, S. I., Blount, P., Martinac, B., and Kung, C. (1997) Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu. Rev. Physiol. 59, 633–657.

    Article  PubMed  CAS  Google Scholar 

  5. Driscoll, M. and Kaplan, J. M. (1996) Mechanotransduction, in C. elegans II (Riddle, D. L., Blumenthal, T., Meyer, B. J., and Pries, J. R., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 645–677.

    Google Scholar 

  6. Herman, R. K. (1996) Touch sensation in Caenorhabditis elegans. Bioessays 18, 199–206.

    Article  PubMed  CAS  Google Scholar 

  7. Driscoll, M., and Chalfie, M. (1991) The mec-4 gene is a member of a family of Caenorhabditis elegans gene that can mutate to induce neuronal degeneration. Nature 349, 588–593.

    Article  PubMed  CAS  Google Scholar 

  8. Huang, M., and Chalfie, M. (1994) Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367, 467–470.

    Article  PubMed  CAS  Google Scholar 

  9. Liu, J., Schrank, B., and Waterston, R. H. (1996) Interaction between a putative mechanosensory membrane channel and a collagen. Science 273, 361–364.

    Article  PubMed  CAS  Google Scholar 

  10. Tavernarakis, N., Shreffler, W., Wang, S., and Driscoll, M. (1997) unc-8, a DEG/ENaC family member, encodes a subunit of a candidate mechanically gated channel that modulates C. elegans locomotion. Neuron 18, 107–119.

    Article  PubMed  CAS  Google Scholar 

  11. Chalfie, M., and Wolinsky, E. (1990) The identification and suppression of inherited neurodegeneration in Caenorhabditis elegans. Nature 345, 410–416.

    Article  PubMed  CAS  Google Scholar 

  12. Shreffler, W., Magardino, T., Shekdar, K., and Wolinsky, E. (1995) The unc-8 and sup-40 genes regulate ion channel function in Caenorhabditis elegans motorneuron. Genetics 139, 1261–1272.

    PubMed  CAS  Google Scholar 

  13. Chalfie, M., Driscoll, M., and Huang, M. (1993) Degenerin similarities. Nature 361, 504.

    Article  PubMed  CAS  Google Scholar 

  14. Rossier, B. C., Canessa, C. M., Schild, L., and Horisberger, J. D. (1994) Epithelial sodium channels. Curr. Opin. Nephrol. Hypertens. 3, 487–496.

    Article  PubMed  CAS  Google Scholar 

  15. Hummler, E., and Horisberger, J. D. (1999) Genetic disorders of membrane transport. V. The epithelial sodium channel and its implication in human diseases. Am. J. Physiol. 276, G567-G571.

    PubMed  CAS  Google Scholar 

  16. Waldmann, R. and Lazdunski, M. (1998) H(+)-gated cation channels: neuronal acid sensors in the ENaC/DEG family of ion channels. Curr. Opin. Neurobiol. 8, 418–424.

    Article  PubMed  CAS  Google Scholar 

  17. Corey, D. P., and Garcia-Anoveros, J. (1996) Mechanosensation and the DEG/ENaC ion channels. Science 273, 323–324.

    Article  PubMed  CAS  Google Scholar 

  18. Lingueglia, E., Champigny, G., Lazdunski, M., and Barbry, P. (1995) Cloning of the amiloridesensitive FMRFamide peptide-gated sodium channel. Nature 378, 730–733.

    Article  PubMed  CAS  Google Scholar 

  19. Adams, C. M., Anderson, M. G., Motto, D. G., Price, M. P., Johnson, W. A., and Welsh, M. J. (1998) Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. J. Cell. Biol. 140, 143–152.

    Article  PubMed  CAS  Google Scholar 

  20. Darboux, I., Lingueglia, E., Pauron, D., Barbry, P., and Lazdunski, M. (1998) A new member of the amiloride-sensitive sodium channels family in Drosophila melanogaster peripheral nervous system. Biochem. Biophys. Res. Commun. 246, 210–216.

    Article  PubMed  CAS  Google Scholar 

  21. Take-Uchi, M., Kawakami, M., Ishihara, T., Amano, T., Kondo, K., and Katsura, I. (1998) An ion channel of the degenerin/epithelial sodium channel superfamily controls the defecation rhythm in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 95, 11,775–11,780.

    Article  CAS  Google Scholar 

  22. Klass, M., and Hirsh, D. (1976) Non-ageing developmental variant of Caenorhabditis elegans. Nature 260, 523–525.

    Article  PubMed  CAS  Google Scholar 

  23. Sulston, J. E. and Horvitz, H. R. (1977) Post embryonic cell lineages of the nematode Caenorhabditis elegans. Dev. Biol. 56, 110–156.

    Article  PubMed  CAS  Google Scholar 

  24. Sulston, J. E., Schierenberg, E., White, J. G., and Thomson, J. N. (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119.

    Article  PubMed  CAS  Google Scholar 

  25. White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1986) The structure of the nervous system of Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. 314, 1–340.

    Article  Google Scholar 

  26. Bargmann, C. I., and Avery, L. (1995) Laser killing of cells in Caenorhabditis elegans. Methods Cell Biol. 48, 225–250.

    PubMed  CAS  Google Scholar 

  27. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71–94.

    PubMed  CAS  Google Scholar 

  28. Waterston, R., and Sulston, J. (1995) The genome of Caenorhabdits elegans. Proc. Natl. Acad. Sci. USA 92, 10,836–10,840.

    Article  CAS  Google Scholar 

  29. Hodgkin, J., Plasterk, R. H., and Waterston, R. H. (1995) The nematode Canorhabditis elegans and its genome. Science 270, 410–414.

    Article  PubMed  CAS  Google Scholar 

  30. Wilson, R., Ainscough, R., Anderson, K., Baynes, C., Berks, M., Bonfield, J., et al. (1994) 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 368, 32–38.

    Article  PubMed  CAS  Google Scholar 

  31. The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018.

    Article  Google Scholar 

  32. Liu, L. X., Spoerke, J. M., Mulligan, E. L., Chen, J., Reardon, B., Westlund, B., et al. (1999) Highthroughput isolation of Caenorhabditis elegans deletion mutants. Genome Res. 9, 859–867.

    Article  PubMed  CAS  Google Scholar 

  33. Fire, A. (1999) RNA-triggered gene silencing. Trends Genet. 15, 358–363.

    Article  PubMed  CAS  Google Scholar 

  34. Mello, C. C., Kramer, J. M., Stinchcomb, D., and Ambros, V. (1991) Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970.

    PubMed  CAS  Google Scholar 

  35. Fire, A., Harrison, S. W., and Dixon, D. (1990) A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene 93, 189–198.

    Article  PubMed  CAS  Google Scholar 

  36. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  37. Chalfie, M., and Sulston, J. (1981) Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev. Biol. 82, 358–370.

    Article  PubMed  CAS  Google Scholar 

  38. Chalfie, M., Sulston, J. E., White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1985) The neural circuit for touch sensitivity in Caenorhabditis elegans. J. Neurosci. 5, 956–964.

    PubMed  CAS  Google Scholar 

  39. Chalfie, M., and Au, M. (1989) Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243, 1027–1033.

    Article  PubMed  CAS  Google Scholar 

  40. Chalfie, M., and Thomson, J. N. (1979) Organization of neuronal microtubules in the nematode Caenorhabditis elegans. J. Cell. Biol. 82, 278–289.

    Article  PubMed  CAS  Google Scholar 

  41. Tavermarakis, N. and Driscoll, M. (1997) Molecular modeling of mechanotransduction in the nematode Caenorhabditis elegans. Annu. Rev. Physiol. 59, 659–689.

    Article  Google Scholar 

  42. Kaplan, J. M., and Horvitz, H. R. (1993) A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 90, 2227–2231.

    Article  PubMed  CAS  Google Scholar 

  43. Way, J. C., and Chalfie, M. (1989) The mec-3 gene of Caenorhabditis elegans requires its own product for maintained expression and is expressed in three neuronal cell types. Genes Dev. 3, 1823–1833.

    Article  PubMed  CAS  Google Scholar 

  44. Wicks, S. R., and Rankin, C. H. (1996) The integration of antagonistic reflexes revealed by laser ablation of identified neurons determines habituation kinetics of the Caenorhabditis elegans tap withdrawal response. J. Comp. Physiol. 179, 675–685.

    Article  CAS  Google Scholar 

  45. Lai, C. C., Hong, K., Kinnell, M., Chalfie, M. and Driscoll, M. (1996) Sequence and transmembrane topology of MEC-4, an ion channel subunit required for mechanotransduction in Caenorhabditis elegans. J. Cell. Biol. 133, 1071–1081.

    Article  PubMed  CAS  Google Scholar 

  46. Park, E. C. and Horvitz, H. R. (1986) Mutations with dominant effects on the behavior and morphology of the nematode Caenorhabditis elegans. Genetics 113, 821–852.

    PubMed  CAS  Google Scholar 

  47. Park, E. C. and Horvitz, H. R. (1986) C. elegans unc-105 mutations affect muscle and are suppressed by other mutations that affect muscle. Genetics 113, 853–867.

    PubMed  CAS  Google Scholar 

  48. Garcia-Anoveros, J., Garcia, J. A., Liu, J. D., and Corey, D. P. (1998) The nematode degenerin UNC-105 forms ion channels that are activated by degeneration- or hypercontraction-causing mutations. Neuron 20, 1231–1241.

    Article  PubMed  CAS  Google Scholar 

  49. Drummond, H. A., Price, M. P., Welsh, M. J., and Abboud, F. M. (1998) A molecular component of the arterial baroreceptor mechanotransducer. Neuron 21, 1435–1441.

    Article  PubMed  CAS  Google Scholar 

  50. Price, M. P., Lewin, G. R., Mcllwrath, S. L., Cheng, C., Xie, J., Heppenstall, P. A., et al. (2000) The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407, 1007–1011.

    Article  PubMed  CAS  Google Scholar 

  51. Driscoll, M. and Tavernarakis, N. (2000) Closing in on a mammalian touch receptor. Nature Neurosci. 3, 7–9.

    Article  Google Scholar 

  52. Garcia-Anoveros, J., Ma, C., and Chalfie, M. (1995) Regulation of Caenorhabditis elegans degenerin proteins by a putative extracellular domain. Curr. Biol. 5, 441–448.

    Article  PubMed  CAS  Google Scholar 

  53. Tavernarakis, N. and Driscoll, M. (2000) Caenorhabditis elegans degenerins and vertebrate ENaC ion channels contain an extracellular domain related to venom neurotoxins. J. Neurogenet. 13, 257–264.

    PubMed  CAS  Google Scholar 

  54. Renard, S., Lingueglia, E., Voilley, N., Lazdunski, M., and Barbry, P. (1994) Biochemical analysis of the membrane topology of the amiloride-sensitive Na+ channel. J. Biol. Chem. 269, 12,981–12,986.

    CAS  Google Scholar 

  55. Waldmann, R., Champigny, G., Voilley, N., Lauritzen, I., and Lazdunski, M. (1996) The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. J. Biol. Chem. 271, 10,433–10,436.

    CAS  Google Scholar 

  56. Champigny, G., Voilley, N., Waldmann, R., and Lazdunski, M. (1998) Mutations causing neurodegeneration in Caenorhabditis elegans drastically alter the pH sensitivity and inactivation of the mammalian H+-gated Na+ channel MDEG1. J. Biol. Chem. 273, 15,418–15,422.

    Article  CAS  Google Scholar 

  57. Hall, D. H., Gu, G., Garcia-Anoveros, J., Gong, L., Chalfie, M., and Driscoll, M. (1997) Neuropathology of degenerative cell death in Caenorhabditis elegans. J. Neurosci. 17, 1033–1045.

    PubMed  CAS  Google Scholar 

  58. Harbinder, S., Tavernarakis, N., Herndon, L. A., Kinnell, M., Xu, S. Q., Fire, A., and Driscoll, M. (1997) Genetically targeted cell disruption in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 94, 13,128–13,133.

    Article  CAS  Google Scholar 

  59. Hong, K. and Driscoll, M. (1994) A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration in C. elegans. Nature 367, 470–473.

    Article  PubMed  CAS  Google Scholar 

  60. Waldmann, R., Champigny, G., and Lazdunski, M. (1995) Functional degenerin-containing chimeras identify residues essential for amiloride-sensitive Na+ channel function. J. Biol. Chem. 270, 11,735–11,737.

    CAS  Google Scholar 

  61. Schild, L., Schneeberger, E., Gautschi, I., and Firsov, D. (1997) Identification of amino acid residues in the alpha, beta, and gamma subunits of the epithelial sodium channel (ENaC) involved in amiloride block and ion permeation. J. Gen. Physiol. 109, 15–26.

    Article  PubMed  CAS  Google Scholar 

  62. Snyder, P. M., Olson, D. R. and Bucher, D. B. (1999) A pore segment in DEG/ENaC Na(+) channels. J. Biol. Chem. 274, 28,484–28,490.

    CAS  Google Scholar 

  63. Hong, K., Mano, I., and Driscoll, M. (2000) In vivo structure-function analyses of Caenorhabditis elegans MEC-4, a candidate mechanosensory ion channel subunit. J. Neurosci. 20, 2575–2588.

    PubMed  CAS  Google Scholar 

  64. Gu, G., Caldwell, G. A., and Chalfie, M. (1996) Genetic interactions affecting touch sensitivity in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 93, 6577–6582.

    Article  PubMed  CAS  Google Scholar 

  65. Hudspeth, A. J (1989) How the ear's works work. Nature 341, 397–404.

    Article  PubMed  CAS  Google Scholar 

  66. Pickles, J. O., Rouse, G. W., and von Perger, M. (1991) Morphological correlates of mechanotransduction in acousticolateral hair cells. Scanning Microsc. 5, 1115–1124.

    PubMed  CAS  Google Scholar 

  67. Lane, J. W., McBride, D. W., Jr., and Hamill, O. P. (1991) Amiloride block of the mechanosensitive cation channel in Xenopus oocytes. J. Physiol. (Lond). 441, 347–366.

    CAS  Google Scholar 

  68. Avery, L., Raizen, D., and Lockery, S. (1995) Electrophysiological methods. Methods Cell. Biol. 48, 251–269.

    Article  PubMed  CAS  Google Scholar 

  69. Richmond, J. E., Davis, W. S., and Jorgensen, E. M. (1999) UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat. Neurosci. 2, 959–964.

    Article  PubMed  CAS  Google Scholar 

  70. Walker, R. G., Willingham, A. T., and Zuker, C. S. (2000) A Drosophila mechanosensory transduction channel. Science 287, 2229–2234.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nektarios Tavernarakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavernarakis, N., Driscoll, M. Mechanotransduction in Caenorhabditis elegans . Cell Biochem Biophys 35, 1–18 (2001). https://doi.org/10.1385/CBB:35:1:01

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:35:1:01

Index Entries

Navigation