Skip to main content
Log in

Changes in the content of zinc and fluoride during growth of the femur in chicken

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc and fluorides are capable of modifying the process of bone formation and mineralization. Statistically significant differences have been revealed in the content of zinc and fluorides between structures of the femur in chicken. The content of zinc in compact bone remained constant during the first 50 d of life. Lower and less stable contents were found in spongy bone and bone marrow. The content of fluorides in compact bone was higher than in spongy bone. The lowest concentrations of zinc and fluorides were found in articular cartilage and were further reduced at the end of observation. Correlations revealed between the content of zinc and fluorides point to structural and functional relationships between these elements in various parts of the bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Chen, L. C. Waite, and W. M. Pierce, Jr. In vitro bone resorption is dependent on physiological concentrations of zinc, Biol. Trace Element Res. 61, 9–18 (1998).

    CAS  Google Scholar 

  2. P. C. D’Haese, M. M. Couttenye, L. V. Lamberts, M. M. Elseviers, W. G. Goodman, I. Schrooten, et al., Aluminum, iron, lead, cadmium, copper, zinc, chromium, magnesium, strontium and calcium content in bone of end stage renal failure patients, Clin. Chem. 45, 1548–1556 (1999).

    PubMed  CAS  Google Scholar 

  3. T. M. Litchfield and G. R. Sauer, Metallothionein induction in calcifying growth plate cartilage chondrocytes, Connect. Tissue Res. 35, 189–195 (1996).

    PubMed  CAS  Google Scholar 

  4. S. Gomez, R. Rizzo, M. Pozzi-Mucelli, E. Bonucci, and F. Vittur, Zinc mapping in bone tissues by histochemistry and synchrotron radiation — induced X-ray emission: correlation with the distribution of alkaline phosphatase, Bone 25, 33–38 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. C. Seco, M. Revilla, E. R. Hernandez, J. Gervas, J. Gonzales-Riola, L. F. Villa, et al., Effects of zinc supplementation on vertebral and femoral bone mass in rats on strenuous treadmill training exercise, J. Bone Miner Res. 13, 508–512 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. A. Igarashi and M. Yamaguchi, Stimulatory effect of zinc acexamate administration on fracture healing of the femoral-diaphyseal tissues in rats, Gen. Pharm. 32, 463–469 (1998).

    Google Scholar 

  7. H. Kawamura, A. Ito, S. Miyakawa, P. Layrolle, K. Ojima, N. Ichinose, et al., Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora, J. Biomed. Mater. Res. 50, 184–190 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. D. Chen, L. C. Waite, and W. M. Pierce, Jr, In vitro effects of zinc on markers of bone formation, Biol. Trace Element Res. 68, 225–229 (1999).

    CAS  Google Scholar 

  9. K. Rosenberg, H. Olsson, M. Morgelin and D. Heinegard, Cartilage oligometric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen, J. Biol. Chem. 273, 20,397–20,403 (1998).

    Article  CAS  Google Scholar 

  10. Z. Szot, Biochemiczne aspekty procesu mineralizacji kości, Postępy Biochem. 14, 447–462 (1968).

    PubMed  CAS  Google Scholar 

  11. T. Kirsch, G. Harrison, K. P. Worch and E. E. Golub, Regulatory roles of zinc in matrix vesicle-mediated mineralization of growth plate cartilage, J. Bone Miner. Res. 15, 261–270 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. T. M. Litchfield, Y. Ishikawa, L. N. Y. Wu, R. E. Wuthier, and G. R. Sauer, Effect of metal ions on calcifying growth plate cartilage chondrocytes, Calcif. Tissue Int. 62, 341–349 (1998).

    Article  PubMed  CAS  Google Scholar 

  13. G. R. Sauer, D. Nie, L. N. Y. Wu and R. E. Wuthier, Induction and characterization of metallothionein in chicken epiphyseal growth plate cartilage chondrocytes, J. Cell. Biochem. 68, 110–120 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. F. Osati-Ashtiani, L. E. King and P. J. Fraker, Variance in resistance of murine early bone marrow B cells to a deficiency in zinc, Immunology 94, 94–100 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. D. Briancon and P. J. Meunier, Treatment of osteoporosis with fluoride, calcium and vitamin D, Orthop. Clin. North Am. 12, 629–635 (1981).

    PubMed  CAS  Google Scholar 

  16. K. Galus, Badania mechanizmu działania fluorku sodu u pacjentów z osteoporoza, Pol. Arch. Med. Wewn. 72, 91–98 (1984).

    PubMed  CAS  Google Scholar 

  17. P. J. Meunier and K. Galus, Treatment of idiopathic osteoporosis with sodium fluoride, Clin. Dis. Bone Miner. Metab. Exp. Med. 4, 360–382 (1983).

    Google Scholar 

  18. C. A. Baud and G. Boivin, Modifications of the perilacunar walls resulting from the effect of fluoride on osteocytic activity, Metab. Bone Dis. Related Res. 1, 49–52 (1978).

    Article  Google Scholar 

  19. M. D. Grynpus and C. Rey, The effect of fluoride treatment on bone mineral cristals in the rat, Bone 13, 423–432 (1992).

    Article  Google Scholar 

  20. C. H. Turner, K. Hasegawa, W. Zhang, M. Wilson, Y. Li, and A. J. Dunipace, Fluoride reduces bone strenght in older rats, J. Dent. Res. 74, 1475–1481 (1995).

    Article  PubMed  CAS  Google Scholar 

  21. G. Huyghebaert, G. De Groote, R. Froyman, and J. Derijcke, Effect of dietary fluoride on performances and bone characteristics of broilers and the influence of drying and defatting on bone-breaking strenght, Poult. Sci. 67, 950–955 (1988).

    PubMed  CAS  Google Scholar 

  22. M. Kleerekoper, A randomized triel of sodium fluoride as a treatment for post menopausal osteoporosis, Osteopor. Int. 1, 155–161 (1991).

    Article  CAS  Google Scholar 

  23. L. Krook and R. R. Minor, Fluoride and alkaline phosphatase, Fluoride 31, 177–182 (1998).

    CAS  Google Scholar 

  24. J. A. Fresen, F. H. Cox, and M. J. Witter, The determination of fluoride in biological materials by means of gas chromatography, Pharm. Weekblad. 103, 909–914 (1968).

    CAS  Google Scholar 

  25. T. Ogoński and D. Samujło, Metody stosowane w analityce fluoru, Metab. Fluoru 7, 11–14 (1996).

    Google Scholar 

  26. R. H. Randles and D. A. Wolfe, Introduction to the Theory of Nonparametric Statistics, Wiley, New York (1979).

    Google Scholar 

  27. B. Spilker and J. Schoenfelder, Presentation of Clinical Data, Raven, New York (1989).

    Google Scholar 

  28. C. Mohanna and Y. Nys, Effect of dietary zinc content and sources on the growth, body zinc deposition and retention, zinc excretion and immune response in chickens, Br. Poult. Sci. 40, 108–114 (1999).

    Article  PubMed  CAS  Google Scholar 

  29. Y. Li, C. Liong, C. W. Slemenda, R. Ji, S. Sun, J. Cao, et al., Effect of long-term exposure to fluoride in drinking water on risk of bone fractures, J. Bone Miner. Res. 16, 932–939 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. J. W. Suttie, D. L. Kolstad, and M. L. Sunde, Fluoride tolerance of the young chick and turkey poult, Poult. Sci. 63, 738–743 (1984).

    PubMed  CAS  Google Scholar 

  31. C. H. Turner, M. P. Akhter, and R. P. Heaney, The effects of fluoridated water on bone strenght, J. Orthop. Res. 10, 581–587 (1992).

    Article  PubMed  CAS  Google Scholar 

  32. A. Krasowska and T. Wlostowski, The effect of high fluoride intake on tissue trace elements and histology of testicular tubules in the rat, Comp. Biochem. Physiol. C. 103, 31–34 (1992).

    Article  PubMed  CAS  Google Scholar 

  33. C. B. Coetzze, N. H. Casey, and J. A. Meyer, Fluoride tolerance of laying hens, Br. Poult. Sci. 38, 597–602 (1997).

    Google Scholar 

  34. K. C. Kanwar and M. Singh, Zinc depletion following experimental fluorosis in mice, Sci. Total Environ. 22, 79–83 (1981).

    Article  PubMed  CAS  Google Scholar 

  35. R. Lappalainen, M. Knuuttila, S. Lammi, and E. M. Alhava, Fluoride content related to the elemental composition, mineral density and strenght of bone in healthy and chronically diseased persons, J. Chronic Dis. 36, 707–713 (1983).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dołęgowska, B., Machoy, Z. & Chlubek, D. Changes in the content of zinc and fluoride during growth of the femur in chicken. Biol Trace Elem Res 91, 67–76 (2003). https://doi.org/10.1385/BTER:91:1:67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:91:1:67

Index Entries

Navigation