Skip to main content
Log in

Stimulation effect of lithium on the metabolic activity of liver tissue mitochondria measured by microcalorimetry

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effect of Li(I) on the metabolism of mitochondria isolated from Carassius auratus liver tissue was investigated by microcalorimetric method to provide evidence for mitochondria hypothesis of biporlar disorder (BPD) and to explore therapeutic mechanism of drug for treatment of BPD. Obvious stimulation induced by Li(I) on mitochondria metabolism was reflected by power-time (P-t) curves. The power-time curves of hepatic mitochondria metabolism without Li(I) could be divided into four parts: lag phase, active recovery phase, stationary phase, and decline phase. When Li(I) was added, the second heat peak occurred in a concentration-dependent sequence. Considering the first heat peak on the p-t curves, Li(I) in the range of therapeutic and lower concentration induced slight alterations in comparison with the characteristic heat peak observed in the control. However, Li(I) above the therapeutic concentration resulted in significant changes. Heat output increased with the concentration of Li(I), but the rate constant (k 2) and the maximum heat power (P max2) for the second heat peak reached maximum value in the range of therapeutic concentration. Mechanism of activation of mitoKatp was suggested and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ramprasad, Magnetic resonance spectroscopic imaging studies of lithium, Prog. Nucl. Magn. Reson. Spectrosc. 47, 111–121 (2005).

    Article  Google Scholar 

  2. G. N. Schrauzer, Occurrence, dietary intakes, nutritional essentiality, J. Am. Coll. Nutr. 21, 14–21 (2002).

    PubMed  CAS  Google Scholar 

  3. M. Schou, in Lithium and the Cell: Pharmacology and Biochemistry, N. J. Birch, ed., Academic, London, pp. 1–6 (1991).

    Google Scholar 

  4. G. J. Moore, J. M. Bebchuk, I. B. Wilds, G. Chen, and H. K. Manji, Lithium-induced increase in human brain grey matter, Lancet 356, 1241–1242 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. C. J. Hough and D. M. Chuang, The mitochondrial hypothesis of bipolardisorder, Bipolar Disord. 2, 145–147 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. T. D. King, G. N. Bijur, and R. S. Jope, Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3 beta and attenuated by lithium, Brain Res. 919, 106–114 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. R. S. Jope and L. Song, K. Kolasa, Inositol trisphosphate, cyclic AMP, and cyclic GMP in rat brain regions after lithium and seizures, Biol. Psychiatry 31, 505–514 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. J. Nordenberg, C. Panet, L. Wasserman, et al., The anti-proliferative effect of lithium chloride on melanoma cells and its reversion by myoinositol, Br. J. Cancer 55, 41–46 (1987).

    PubMed  CAS  Google Scholar 

  9. S. Washizuka, A. Ikeda, and N. Kato, Possible relationship between mitochondrial DNA polymorphisms and lithium response in bipolar disorder, Int. J. Neuropsychopharmacol. 6, 421–424 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. K. Iwamoto, M. Bundo, and T. Kato, Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis, Hum. Mol. Genet. 14, 241–253 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. J. Murashita, T. Kato, T. Shioiri, T. Inubushi, and N. Kato, Altered brain energy metabolism in lithium-resistant bipolar disorder detected by photic stimulated P-31-MR spectroscopy. Psychol. Med. 30, 107–115 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. A. Yildiz, C. M. Moore, G. S. Sachs, et al., Lithium-induced alterations in nucleoside triphosphate levels in human brain: a proton-decoupled (31)P magnetic resonance spectroscopy study, Psychiatry Res. Neuroimag. 138, 51–59 (2005).

    Article  CAS  Google Scholar 

  13. A. Moretti, A. Gorini, and R. F. Villa, Affective disorders, antidepressant drugs and brain Metabolism, Mol. Psychiatry 8, 773–785 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. R. B. Kemp, The application of heat conduction microcalorimetry to study the metabolism and pharmaceutical modulation of cultured mammalian cells, Thermochim. Acta 380, 229–244 (2001).

    Article  CAS  Google Scholar 

  15. J. Nedergaard, B. Canno, and O. Lindberg, Microcalorietry of isolated mammalian cells, Nature 267, 518–520 (1977).

    Article  PubMed  CAS  Google Scholar 

  16. X. Q. Wang, C. L. Xie, and S. S. Qu, Microcalorimetric study of mitochondrial metabolism, Thermochim. Acta 176, 69–74 (1991).

    Article  Google Scholar 

  17. X. Li, Y. Liu, F. J. Deng, C. X. Wang, and S. S. Qu, Microcalorimetric studies of the toxic effect of sodium selenite on the mitochondria metabolism of Carassius auratus liver, Biol. Trace Element Res. 77, 261–270 (2000).

    Article  CAS  Google Scholar 

  18. K. Detlef, S. Marion, and D. Jurgen, Oxidative phosphorylation in myocardial mitochondria in situ: a calorimetric study on permeabilized cardiac muscle preparations Mol. Cell. Biochem. 74, 101–113 (1997).

    Google Scholar 

  19. P. J. Zhou, H. T. Zhou, Y. Liu, S. S. Qu, and Y. G. Zhu, Calorimetric and DSC study of mitochondria isolated from cytoplasmic male sterileline of rice, J. Therm. Anal. Calorim. 76, 1003–1013 (2004).

    Article  CAS  Google Scholar 

  20. L. Wadsö, A multi channel isothermal heat conduction calorimeter for cement hydration studies, International Congress of the Chemistry of Cement, Durban, South Africa (2003).

  21. L. Wadso, F. Gomez, I. Sjoholm, and P. Rocculic, Effect of tissue wounding on the results from calorimetric measurements of vegetable respiration, Thermochim. Acta 422, 89–93 (2004).

    Article  Google Scholar 

  22. P. J. Zhou, H. T. Zhou, Y. Liu, S. S. Qu, and Y. G. Zhu, Study on the energy release of rice mitochondria under different conditions by means of microcalorimetry, J. Biochem. Biophys. Methods 48, 1–11 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. S. J. Richard, Li(I) and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes, Trends Pharmacol. Sci. 24, 441–443 (2003).

    Article  Google Scholar 

  24. R. P. Helen, Reports the ups and downs of Li(I), Nature 425, 118–120 (2003).

    Article  Google Scholar 

  25. S. J. H. Ashcroft and F. M. Ashcroft, Properties and functions of ATP-sensitive K-channels, Cell. Signal. 2, 197–214 (1990).

    Article  PubMed  CAS  Google Scholar 

  26. I. Inoue, ATP-sensitive K+ channel in the mitochondrial inner membrane, Nature 352, 244–247 (1991).

    Article  PubMed  CAS  Google Scholar 

  27. O. Jilkina, B. Kuzio, J. Gary, G. Clifford, D. L. Folmes, and H. J. Kong Sarcolemmal and mitochondrial effects of a KATP opener, P-1075, in “polarized” and “depolarized” Langendorff-perfused rat hearts, Biochim. Biophys. Acta 1617, 39–50 (2003).

    Article  Google Scholar 

  28. G. N. Bijur and R. S. Jope, Glycogen synthase kinase-3 beta is highly activated in nuclei and mitochondria, Neuroreport 14, 2415–2419 (2003).

    Article  PubMed  CAS  Google Scholar 

  29. G. Agam and G. Shaltiel, Possible role of 3′(2′)-phosphoadenosine-5′-phosphate phosphatase in the etiology and therapy of bipolar disorder, Prog. Neuro-Psychopharmacol. Biol. Psychiatry 27, 723–727 (2003).

    Article  CAS  Google Scholar 

  30. W. P. Tseng and S. Y. Lin-Shiau, Long-term lithium treatment prevents neurotoxic effects of beta-bungarotoxin in primary cultured neurons, J. Neurosci. Res. 69, 633–641 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. K. C. Thompson, Pharmaceutical application of calorimetric measurements in the new millennium, Thermochim. Acta 355, 83–87 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, HR., Qin, CQ., Zhang, ZH. et al. Stimulation effect of lithium on the metabolic activity of liver tissue mitochondria measured by microcalorimetry. Biol Trace Elem Res 114, 163–173 (2006). https://doi.org/10.1385/BTER:114:1:163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:114:1:163

Index Entries

Navigation