Skip to main content
Log in

Selenium treatment protects diabetes-induced biochemical and ultrastructural alterations in liver tissue

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We have shown that a single dose of streptozotocin (STZ) (50 mg/kg body weight) injected into rats caused significant changes in some antioxidant enzyme activities, such as glutathione peroxidase, glutathione reductase, glutathione-s-transferase, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase activities, and acid-soluble sulfhydryl levels of the liver tissue with respect to the control rats. Furthermore, these alterations in the activities of the antioxidant enzymes were accompanied by significant changes in the ultrastructure of the liver tissue; mainly intercellular biliary canaliculi were distended and contained stagnant bile, swollen mitochondria in hepatocytes and disoriented and disintegrating cristae, dilatation of the rough endoplasmic reticulum (rER) with detachment of ribosomes, and dissociation of polysomes. Both diabetic and normal rats were treated with sodium selenite (5 μmol/kg/d, intraperitoneally) for 4 wk following 1 wk of diabetes induction. This treatment of diabetic rats improved significantly diabetes-induced alterations in liver antioxidant enzymes. Moreover, treating of diabetic rats with sodium selenite prevented primarily the variation in staining quality of hepatocytes nuclei, increased density and eosinophilia of the cytoplasm, focal sinusoidal dilatation and congestion, and increased numbers of mitochondria with different size and shape. In summary, treatment of diabetic rats with sodium selenite has beneficial effects on both antioxidant system and the ultrastructure of the liver tissue. These findings suggest that diabetes-induced oxidative stress can be responsible for the development of diabetic complications and antioxidant treatment can protect the target organs against diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Hebden, S. M. Gardiner, T. Bennett, and I. A. MacDonald, The influence of streptozotocin-induced diabetes mellitus on fluid and electrolyte handling in rats, Clin. Sci. 70, 111–117 (1986).

    PubMed  CAS  Google Scholar 

  2. D. R. Tomlinson, Polyols and myo-inositol in diabetic neuropathy: of mice and men, Mayo Clin. Proc. 64, 1030–1033 (1989).

    PubMed  CAS  Google Scholar 

  3. B. Mukherjee, S. Anbszhagan, A. Roy, R. Ghosh, and M. Chatterjee, Novel implications of the potential role of selenium on antioxidant status in streptozotocin-induced diabetic mice, Biomed. Pharmacother. 52, 89–95 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. J. W. Baynes, Perspective in diabetes. Role of oxidative stress in development of complications in diabetes, Diabetes 40, 405–412 (1991).

    Article  PubMed  CAS  Google Scholar 

  5. J. W. Baynes, Role of oxidative stress in development of complications in diabetes, Diabetes 40, 405–412 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. J. V. Hunt, C. C. T. Smith, and S. P. Wolf, Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose, Diabetes 39, 1420–1424 (1990).

    Article  PubMed  CAS  Google Scholar 

  7. R. P. Mason, B. Kalyanaraman, B. E. Tainer, and T. E. Eling, A carbon-centered free radical intermediate in the prostaglandin snynthase oxidation of arachidonic acid, J. Biol. Chem. 255, 5019–5022 (1980).

    PubMed  CAS  Google Scholar 

  8. A. Boveris, Mitochondrial production of superoxide and hydrogen peroxide, Adv. Exp. Med. Biol. 78, 67–82 (1977).

    PubMed  CAS  Google Scholar 

  9. Y. Sagara, R. Dargusch, D. Chambers, J. Davis, D. Schubert, and P. Maher, Cellular mechanisms of resistance to chronic oxidative stress, Free Radical Biol. Med. 24, 1375–1389 (1988).

    Article  Google Scholar 

  10. L. W. Oberley, Free radicals and diabetes, Free Radical Biol. Med. 5, 113–124 (1988).

    Article  CAS  Google Scholar 

  11. C. Costagliola, G. Iuliano, A. Menzione, A. Nesti, F. Simonelli, and E. Rinaldi, Systemic human diseases as oxidative risk factor in cataractogenesis, Ophthal. Res. 20, 308–316 (1988).

    Article  CAS  Google Scholar 

  12. J. H. McNeill, H. L. M. Delgatty, and M. L. Battell, Insulinlike effects of sodium selenate in streptozotocin-induced diabetic rats, Diabetes 40, 1675–1678 (1991).

    Article  PubMed  CAS  Google Scholar 

  13. C. Furnsinn, R. Englischh, K. Ebner, P. Nowotny, C. Vogle, and W. Waldhausl, Insulinlike vs non-insulin like stimulation of glucose metabolism by vanadium, tungsten and selenium compounds in rat muscle, Life Sci. 59, 1989–2000 (1996).

    Article  PubMed  CAS  Google Scholar 

  14. M. L. Battell, H. L. M. Delgatty, and J. H. McNeill, Sodium selenate corrects glucose tolerance and heart function in STZ diabetic rats, Mol. Cell. Biochem. 179, 27–34 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. C. Gocmen, A. Secilmis, E. K. Kumcu, et al., Effects of vitamin E and sodium selenate on neurogenic and endothelial relaxation of corpus cavernosum in the diabetic mouse, Eur. J. Pharmacol. 398, 93–98 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. O. Ezaki, The insulin-like effects of selenate in rat adipocytes, J. Biol. Chem. 265, 1124–1130 (1990).

    PubMed  CAS  Google Scholar 

  17. Y. Shechter, Insulin-mimetic effects on vanadate. Possible implications for future treatment of diabetes, Diabetes 1, 1–5 (1990).

    Article  Google Scholar 

  18. E. A. Berg, J. Y. Wu, L. Campbell, M. Kagey, and S. R. Stapleton, Insulin-like effects of vanadate and selenate on the expression of glucose-6-phosphate dehydrogenase and fatty acid synthase in diabetic rats, Biochimie 77, 919–924 (1995).

    Article  PubMed  CAS  Google Scholar 

  19. A. M. Kordowiak, A. Nikiforuk, and W. Dabros, Biochemical and morphological study on liver Golgi complex in streptozotocin-diabetic and control rats treated with bis(kojato)oxovanadium (IV) [VO(ka)2]×2H2O. Part I. One week treatment with vanadium compound, Pol. J. Pathol. 51(1), 9–16 (2000).

    PubMed  CAS  Google Scholar 

  20. W. Dabros, R. Grybos, A. Miarka, and A. M. Kordowiak, Biochemical and morphological study on liver Golgi complex in streptozotocin-diabetic and control rats treated with bis(kojato)oxovanadium(IV) [VO(ka)2]×2H2O. Part II. Prolonged treatment with vanadium compound, Pol. J. Pathol. 51(1), 17–24 (2000).

    PubMed  CAS  Google Scholar 

  21. B. K. Saha, R. Bhattacharya, and M. Chatterjee, 1-Alpha, 25-dihydroxyvitamin D(3) inhibits rat liver ultrastructural changes and the development of gamma-glutamyl-transpeptidase-positive foci in diethylnitrosam ine-initiated and streptozotocin-induced diabetes-promoted hepatocarcinogenesis, Cell. Biochem. Function 20(3), 195–204 (2002).

    Article  CAS  Google Scholar 

  22. M. Ayaz, B. Can, S. Ozdemir, and B. Turan, Protective effect of selenium treatment on diabetes-induced myocardial structural alterations, Biol. Trace Element Res. 89(3), 215–226 (2002).

    Article  CAS  Google Scholar 

  23. C. Delilbasi, S. Demiralp, and B. Turan, Effects of selenium on the structure of the mandible in experimental diabetics, J. Oral Sci. 44(2), 85–90 (2002).

    PubMed  CAS  Google Scholar 

  24. N. L. Acan and E. F. Tezcan, Sheep brain glutathione reductase: purification and general properties, FEBS Lett. 250, 72–74 (1989).

    Article  PubMed  CAS  Google Scholar 

  25. R. A. Lawrence and R. F. Burk, Glutathione peroxidase activity in selenium-deficient rat liver, Biochem. Biophys. Res. Commun. 71, 952–958 (1976).

    Article  PubMed  CAS  Google Scholar 

  26. K. Betke, H. N. Brewer, L. Kirkman, et al., Standardized method for G-6-PD assay of haemolysates, WHO Tech. Rep. Ser. 366, 30–32 (1967).

    Google Scholar 

  27. B. M. F. Pearse and M. A. Rosemeyer, 6-Phosphogluconate dehydrogenase from human erythrocytes, in Methods in Enzymology, Volume 41, S.R. Colowich and N. O. Kaplan, eds., Academic, London, 220 (1975).

    Google Scholar 

  28. W. H. Habig and W. B. Jakott, Glutathione transferase (rat and human), Methods Enzymol. 77, 218–231 (1981).

    Article  PubMed  CAS  Google Scholar 

  29. A. B. Burtis and E. R. Ashwood, eds., Tietz Textbook of Clinical Chemistry, 2nd ed., W. B. Saunders, Philadelphia, pp. 1990–1992 (1994).

    Google Scholar 

  30. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding, Anal. Biochem. 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  31. E. J. Berly and L. Gillian, Direct determination of selenium of graphite furnace atomic absorption spectrometry with deuterium back ground correction and a reduced palladium modifier: age specific reference ranges, Clin. Chem. 34(4), 709–714 (1988).

    Google Scholar 

  32. S. A. Garfield, S. A. Mohamed, and R. R. Cardell, Jr., The effects of insulin replacement and withdraw al on hepatic ultrastructure and biochemistry, Am. J. Anat. 70(2), 127–142 (1984).

    Article  Google Scholar 

  33. D. J. Becker, B. Reul, A. T. Ozcelikay, J. P. Buchet, J. C. Henquin, and S. M. Brichard, Oral selenate improves glucose homeostasis and partly reverses abnormal expression of liver glycogenic and gluconeogenic enzymes in diabetic rats, Diabetologia 39, 3–11 (1996).

    Article  PubMed  CAS  Google Scholar 

  34. L. H. Foster and S. Sumar, Selenium in health and disease: a review, Crit. Rev. Food. Sci. Nutr. 37, 211–228 (1997).

    Article  PubMed  CAS  Google Scholar 

  35. M. Kashimata, M. Hiramatsu, and N. Mimami, Effect of streptozotocin-induced diabetes on epidermal growth factor receptors in rat liver plasma membrane, Biochim. Biophys. Acta 923(3), 496–500 (1987).

    PubMed  CAS  Google Scholar 

  36. S. E. Lenk, D. Bhat, W. Blakeney, and W. A. Dunn, Jr., Effects of streptozotocin-induced diabetes on rough endoplasmic reticulum and lysosomes of rat liver, Am. J. Physiol. 263(5 Pt. 1), E856-E862 (1992).

    PubMed  CAS  Google Scholar 

  37. M. E. De Paepe, B. Keymeulen, D. Pipeleers, and G. Kloppel, Proliferation and hypertrophy of liver cells surrounding islet grafts in diabetic recipient rats, Hepatology 21(4), 1144–1153 (1995).

    Article  PubMed  Google Scholar 

  38. T. S. Pillay and M. W. Makgoba, Enhancement of EFG and insulin-stimulated tyrosine phosphorylation of endogenous substrates by sodium selenate, FEBS Lett. 308, 38–42 (1992).

    Article  PubMed  CAS  Google Scholar 

  39. S. R. Stapleton, G. Garlock, L. Foellmi-Adam, and R. F. Kletzien, Selenium: potent stimulator of tyrosyl phosphorylation and activator of MAP kinase, Biochem. Biophys. Acta 1355, 259–269 (1997).

    Article  PubMed  CAS  Google Scholar 

  40. Y. J. Hei, S. Farahbakhshian, X. Chen, M. L. Battell, and J. H. McNeill, Stimulation of MAP kinase and S6 kinase by vanadium and selenium in rat adipocytes, Mol. Cell. Biochem. 178, 367–375 (1998).

    Article  PubMed  CAS  Google Scholar 

  41. G. Wu, Y. Z. Fang, S. Yang, J. R. Lupton, and N. D. Turner, Glutathione metabolism and its implications for health, J. Nutr. 134(3), 489–492 (2004).

    PubMed  CAS  Google Scholar 

  42. H. Sies, Glutathione and its role in cellular functions, Free Radical Biol. Med. 27(9–10), 16–26 (1999).

    Google Scholar 

  43. A. E. Salinas and M. G. Wong, Glutathione S-transferase—a review, Curr. Med. Chem. 6(4), 279–309 (1999).

    PubMed  CAS  Google Scholar 

  44. Y. Fang, S. Yang, and G. Wu, Free radicals, antioxidants, and nutrition, Nutrition 18, 872–879 (2002).

    Article  PubMed  CAS  Google Scholar 

  45. J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafemen, and W. G. Hoekstra, Selenium: biochemical role as a component of glutathione peroxidase, Science 149, 588–590 (1973).

    Article  Google Scholar 

  46. I. C. West, Radicals and oxidative stress in diabetes, Diabet. Med. 17, 171–180 (2000).

    Article  PubMed  CAS  Google Scholar 

  47. G. Fitzl, R. Martin, D. Dettmer, V. Hermsdorf, H. Drews, and K. Welt, Protective effects of Ginkgo biloba extract EGb 761 on the myocardium of experimentally diabetic rats. I. Ultrastructural and biochemical investigation on cardiomyocytes, Exp. Toxicol. Pathol. 51(3), 189–198 (1999).

    PubMed  CAS  Google Scholar 

  48. L. J. Coppey, J. S. Gellett, E. P. Davidson, J. A. Dunlap, D. D. Lund, and M. A. Yorek, Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciafic nerve, Diabetes 50, 1927–1937 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Can, B., Ulusu, N.N., Kilinç, K. et al. Selenium treatment protects diabetes-induced biochemical and ultrastructural alterations in liver tissue. Biol Trace Elem Res 105, 135–150 (2005). https://doi.org/10.1385/BTER:105:1-3:135

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:105:1-3:135

Index Entries

Navigation