Skip to main content
Log in

Stem cell and precursor cell therapy

  • Review Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Strategies for cell replacement therapy have been guided by the success in the hematopoietic stem cell field. In this review, we discuss the basis of this success and examine whether this stem cell transplant model can be replicated in other systems where stem cell therapy is being evaluated. We conclude that identifying the most primitive stem cell and using it for transplant therapy may not be appropriate in all systems. We suggest alternative strategies such as progenitor cell replacement, inductive factors, bioengineering organs, in utero transplants, or any approach that takes advantage of the unique properties of the tissue and the stem cell type which, are more likely to provide effective functional replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cronkite E. P. and Feinendegen L. E. (1976). Notions about human stem cells. Nouv. Rev. Fr. Hematol. Blood Cells 17, 269–284.

    PubMed  CAS  Google Scholar 

  2. Weissman I., Spangrude G., Heimfeld S., Smith L., and Uchida N. (1991). Stem cells. Nature 353, 26.

    Article  PubMed  CAS  Google Scholar 

  3. Kalyani A. J. and Rao M. S. (1998). Cell lineage in the developing neural tube. Biochem. Cell Biol. 76, 1051–1068.

    Article  PubMed  CAS  Google Scholar 

  4. Rao M. S. (1999). Multipotent and restricted precursors in the central nervous system. Anat. Rec. 257, 137–148.

    Article  PubMed  CAS  Google Scholar 

  5. Gage F. H. (2000). Mammalian neural stem cells. Science 287, 1433–1438.

    Article  PubMed  CAS  Google Scholar 

  6. Anderson D. J. (2001). Stem cells and pattern formation in the nevous system: the possible versus the actual. Neuron 30, 19–35.

    Article  PubMed  CAS  Google Scholar 

  7. Weissman I. L., Anderson D. J., and Gage F. (2001). Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu. Rev. Cell Dev. Biol. 17, 387–403.

    Article  PubMed  CAS  Google Scholar 

  8. Gage F. H. (2002). Neurogenesis in the adult brain. J. Neurosci. 22, 612–613.

    PubMed  CAS  Google Scholar 

  9. Kohn D. B. (1999). Gene therapy using hematopoietic stem cells. Curr. Opin. Mol. Ther. 1, 437–442.

    PubMed  CAS  Google Scholar 

  10. Craddock C. (2000). Haemopoietic stem cell transplantation: recent progress and future promise. Lancet Oncol. 1, 227–234.

    Article  PubMed  CAS  Google Scholar 

  11. Bordignon C. and Roncarolo M. G. (2002). Therapeutic applications for hematopoietic stem cell gene transfer. Nat. Immunol. 3, 318–321.

    Article  PubMed  CAS  Google Scholar 

  12. Emery D. W., Nishino T., Murata K., Fragkos M., and Stamatoyannopoulos G. (2002). Hematopoietic stem cell gene therapy. Int. J. Hematol. 75, 228–236.

    Article  PubMed  Google Scholar 

  13. Myers L. W. (2001). Immunologic therapy for secondary and primary progressive multiple sclerosis. Curr. Neurol. Neurosci. Rep. 1, 286–293.

    Article  PubMed  CAS  Google Scholar 

  14. Jansen J., Thompson J. M., Dugan M. J., et al. (2002). Peripheral blood progenitor cell transplantation. Ther. Apher. 6, 5–14.

    Article  PubMed  Google Scholar 

  15. Bhatia V. and Porter D. L. (2001). Novel approaches to allogeneic stem cell therapy. Expert Opin. Biol. Ther. 1, 3–15.

    Article  PubMed  CAS  Google Scholar 

  16. Horak D. A. and Forman S. J. (2001). Critical care of the hematopoietic stem cell patient. Crit. Care Clin. 17, 671–695.

    Article  PubMed  CAS  Google Scholar 

  17. Lagasse E., Shizuru, J. A., Uchida N., Tsukamoto A., and Weissman I. L. (2001). Toward regenerative medicine. Immunity 14, 425–436.

    Article  PubMed  CAS  Google Scholar 

  18. Hintzen R. Q. (2002). Stem cell transplantation in multiple sclerosis: multiple choices and multiple challenges. Mult. Scler. 8, 155–160.

    Article  PubMed  CAS  Google Scholar 

  19. Kozak T. and Rychlik I. (2002). Developments in hematopoietic stem cell transplantation in the treatment of autoimmune diseases. Isr. Med. Assoc. J. 4, 268–271.

    PubMed  Google Scholar 

  20. Kondziolka D., Wechsler L., Goldstein S., et al. (2000). Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55, 565–569.

    PubMed  CAS  Google Scholar 

  21. Freed C. R., Greene P. E., Breeze R. E., Tsai W. Y., DuMouchel W., Kao R., et al. (2001). Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 344, 710–719.

    Article  PubMed  CAS  Google Scholar 

  22. Lindvall O. (2001). Parkinson disease. Stem cell transplantation. Lancet 358 Suppl, S48.

  23. Check E. (2002). Parkinson’s patients show positive response to implants. Nature 416, 666.

    Article  PubMed  CAS  Google Scholar 

  24. Shapiro A. M., Lakey J. R., Ryan E. A., Korbutt G. S., Toth E., Warnock G. L., et al. (2000). Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238.

    Article  PubMed  CAS  Google Scholar 

  25. Soria B., Skoudy A., and Martin F. (2001). From stem cells to beta cells: new strategies in cell therapy of diabetes mellitus. Diabetologia. 44, 407–415.

    Article  PubMed  CAS  Google Scholar 

  26. Yang T. Y., Oh S. H., Jeong I. K., Seo I. A., Oh E. Y., Kim S. J., et al. (2002). First human trial of pancreatic islet allo-transplantation in Korea—focus on re-transplantation. Diabetes Res. Clin. Pract. 56, 107–113.

    Article  PubMed  Google Scholar 

  27. Thivolet C. (2001). New therapeutic approaches to type 1 diabetes: from prevention to cellular or gene therapies. Clin. Endocrinol. (Oxf) 55, 565–574.

    Article  CAS  Google Scholar 

  28. Horwitz E. M., Prockop D. J., Gordon P. L., et al. (2001). Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97, 1227–1231.

    Article  PubMed  CAS  Google Scholar 

  29. Boyan B. D., Lohmann C. H., Romero J., and Schwartz Z. (1999). Bone and cartilage tissue engineering. Clin. Plast. Surg. 26, 629–645, ix.

    PubMed  CAS  Google Scholar 

  30. Freed L. E., Martin I., and Vunjak-Novakovic G. (1999). Frontiers in tissue engineering. In vitro modulation of chondrogenesis. Clin. Orthop. S46–58.

  31. Bello Y. M., Falabella A. F., and Eaglstein W. H. (2001). Tissue-engineered skin. Current status in wound healing. Am. J. Clin. Dermatol. 2, 305–313.

    Article  PubMed  CAS  Google Scholar 

  32. Hardy C. L. and Tavassoli M. (1988). Homing of hemopoietic stem cells to hemopoietic stroma. Adv. Exp. Med. Biol. 241, 129–133.

    PubMed  CAS  Google Scholar 

  33. Tavassoli M. and Hardy C. L. (1990). Molecular basis of homing of intravenously transplanted stem cells to the marrow. Blood 76, 1059–1070.

    PubMed  CAS  Google Scholar 

  34. Whetton A. D. and Graham G. J. (1999). Homing and mobilization in the stem cell niche. Trends Cell Biol. 9, 233–238.

    Article  PubMed  CAS  Google Scholar 

  35. Steindler D. A. and Pincus D. W. (2002). Stem cells and neuropoiesis in the adult human brain. Lancet 359, 1047–1054.

    Article  PubMed  CAS  Google Scholar 

  36. Taylor R. M. and Snyder E. Y. (1997). Widespread engraftment of neural progenitor and stem-like cells throughout the mouse brain. Transplant. Proc. 29, 845–847.

    Article  PubMed  CAS  Google Scholar 

  37. Ourednik V., Ourednik J., Flax J. D., Zawada W. M., Hutt C., Yang C., et al. (2001). Segregation of human neural stem cells in the developing primate forebrain. Science 293, 1820–1824.

    Article  PubMed  CAS  Google Scholar 

  38. Snyder E. Y. and Wolfe J. H. (1996). Central nervous system cell transplantation: a novel therapy for storage diseases? Curr. Opin. Neurol. 9, 126–136.

    Article  PubMed  CAS  Google Scholar 

  39. Aboody K. S., Brown A., Rainov N. G., et al. (2000). From the cover: neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc. Natl. Acad. Sci. USA 97, 12,846–12,851.

    Article  CAS  Google Scholar 

  40. Nishino H., Hida H., Takei N., Kumazaki M., Nakajima K., and Baba H. (2000). Mesencephalic neural stem (progenitor) cells develop to dopaminergic neurons more strongly in dopamine-depleted striatum than in intact striatum. Exp. Neurol. 164, 209–214.

    Article  PubMed  CAS  Google Scholar 

  41. Cao Q. L., Zhang Y. P., Howard R. M., Walters W. M., Tsoulfas P., and Whittemore S. R. (2001). Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp. Neurol. 167, 48–58.

    Article  PubMed  CAS  Google Scholar 

  42. Magnuson D. S., Zhang Y. P., Cao Q. L., Han Y., Burke D. A., and Whittemore S. R. (2001). Embryonic brain precursors transplanted into kainate lesioned rat spinal cord. Neuroreport 12, 1015–1019.

    Article  PubMed  CAS  Google Scholar 

  43. Fricker R. A., Carpenter M. K., Winkler C., Greco C., Gates M. A., and Bjorklund A. (1999). Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J. Neurosci. 19, 5990–6005.

    PubMed  CAS  Google Scholar 

  44. Englund U., Fricker-Gates R. A., Lundberg C., Bjorklund A., and Wictorin K. (2002). Transplantation of human neural progenitor cells into the neonatal rat brain: extensive migration and differentation with long-distance axonal projections. Exp. Neurol. 173, 1–21.

    Article  PubMed  CAS  Google Scholar 

  45. Svendsen C. N., Clarke D. J., Rosser A. E., and Dunnett S. B. (1996). Survival and differentiation of rat and human epidermal growth factor-responsive precursor cells following grafting into the lesioned adult central nervous system. Exp. Neurol. 137, 376–388.

    Article  PubMed  CAS  Google Scholar 

  46. Svendsen C. N. and Rosser A. E. (1995). Neurones from stem cells? Trends Neurosci. 18, 465–467.

    Article  PubMed  CAS  Google Scholar 

  47. Wichterle H., Garcia-Verdugo J. M., Herrera D. G., and Alvarez-Buylla A. (1999). Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat. Neurosci. 2, 461–466.

    Article  PubMed  CAS  Google Scholar 

  48. Briscoe J., Pierani A., Jessell T. M., and Ericson J. (2000). A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435–445.

    Article  PubMed  CAS  Google Scholar 

  49. McCarthy M., Turnbull D. H., Walsh C. A., and Fishell G. (2001). Telencephalic neural progenitors appear to be restricted to regional and glial fates before the onset of neurogenesis. J. Neurosci. 21, 6772–6781.

    PubMed  CAS  Google Scholar 

  50. Na E., McCarthy M., Neyt C., Lai E., and Fishell G. (1998). Telencephalic progenitors maintain anteroposterior identities cell autonomously. Curr. Biol. 8, 987–990.

    Article  PubMed  CAS  Google Scholar 

  51. Rubenstein J. L. (2000). Intrinsic and extrinsic control of cortical development. Novartis Found Symp. 228, 67–75; discussion 75–82, 109–113.

    PubMed  CAS  Google Scholar 

  52. Young M. J., Ray J., Whiteley S. J., Klassen H., and Gage F. H. (2000). Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol. Cell. Neurosci. 16, 197–205.

    Article  PubMed  CAS  Google Scholar 

  53. Durbec P. and Rougon G. (2001). Transplantation of mammalian olfactory progenitors into chick hosts reveals migration and differentiation potentials dependent on cell commitment. Mol. Cell Neurosci. 17, 561–576.

    Article  PubMed  CAS  Google Scholar 

  54. Alison M., Golding M., Lalaniel N., and Sarraf C. (1998). Wound healing in the liver with particular reference to stem cells. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 353, 877–894.

    Article  PubMed  CAS  Google Scholar 

  55. Caterson E. J., Nesti L. J., Albert T., Danielson K., and Tuan R. (2001). Application of mesenchymal stem cells in the regeneration of musculoskeletal tissues. Med. Gen. Med. E1.

  56. Muschler G. F. and Midura R. J. (2002). Connective tissue progenitors: practical concepts for clinical applications. Clin. Orthop. 66–80.

  57. Sheen V. L., Arnold M. W., Wang Y., and Macklis J. D. (1999). Neural precursor differentiation following transplantation into neocortex is dependent on intrinsic developmental state and receptor competence. Exp. Neurol. 158, 47–62.

    Article  PubMed  CAS  Google Scholar 

  58. Han S. S. and Fischer I. (2000). Neural stem cells and gene therapy: prospects for repairing the injured spinal cord. JAMA 283, 2300–2301.

    Article  PubMed  CAS  Google Scholar 

  59. Guha C., Deb N. J., Sappal B. S., Ghosh S. S., Roy-Chowdhury N., and Roy-Chowdhury J. (2001). Amplification of engrafted hepatocytes by preparative manipulation of the host liver. Artif. Organs 25, 522–528.

    Article  PubMed  CAS  Google Scholar 

  60. Laconi S., Pillai S., Porcu P. P., Shafritz D. A., Pani P., and Laconi E. (2001). Massive liver replacement by transplanted hepatocytes in the absence of exogenous growth stimuli in rats treated with retrorsine. Am. J. Pathol. 158, 771–777.

    PubMed  CAS  Google Scholar 

  61. Gordon G. J., Butz G. M., Grisham J. W., and Coleman W. B. (2002). Isolation, short-term culture, and transplantation of small hepatocyte-like progenitor cells from retrorsine-exposed rats. Transplantation 73, 1236–1243.

    Article  PubMed  Google Scholar 

  62. Sommer L. and Rao M. (2002). Neural stem cells and regulation of cell number. Prog Neurobiol. 66, 1–18.

    Article  PubMed  CAS  Google Scholar 

  63. Chen J., Li Y., and Chopp M. (2000). Intracerebral transplantation of bone marrow with BDNF after MCAo in rat. Neuropharmacology 39, 711–716.

    Article  PubMed  CAS  Google Scholar 

  64. Li Y., Chen J., Wang L., Lu M., and Chopp M. (2001). Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 56, 1666–1672.

    PubMed  CAS  Google Scholar 

  65. Zhao L. R., Duan W. M., Reyes M., Keene C. D., Verfaillie C. M., and Low W. C. (2002). Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp. Neurol. 174, 11–20.

    Article  PubMed  Google Scholar 

  66. Flax J. D., Aurora S., Yang C., Simonin C., Wills A. M., Billinghurst L. L., et al. (1998). Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat. Biotechnol. 16, 1033–1039.

    Article  PubMed  CAS  Google Scholar 

  67. Ramon-Cueto A., Cordero M. I., Santos-Benito F. F., and Avila J. (2000). Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 25, 425–435.

    Article  PubMed  CAS  Google Scholar 

  68. Boruch A. V., Conners J. J., Pipitone M., et al. (2001). Neurotrophic and migratory properties of an olfactory ensheathing cell line. Glia. 33, 225–229.

    Article  PubMed  CAS  Google Scholar 

  69. Lu J. and Ashwell K. (2002). Olfactory ensheathing cells: their potential use for repairing the injured spinal cord. Spine 27, 887–892.

    Article  PubMed  Google Scholar 

  70. McDonald J. W., Liu X. Z., Qu Y., Liu S., Mickey S. K., Turetsky D., et al. (1999). Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 5, 1410–1412.

    Article  PubMed  CAS  Google Scholar 

  71. Akerud P., Canals J. M., Snyder E. Y., and Arenas E. (2001). Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson’s disease. J. Neurosci. 21, 8108–8118.

    PubMed  CAS  Google Scholar 

  72. Blakemore W. F., Crang A. J., and Curtis R. (1986). The interaction of Schwann cells with CNS axons in regions containing normal astrocytes. Acta. Neuropathol. (Berl) 71, 295–300.

    Article  CAS  Google Scholar 

  73. Harvey A. R. and Plant G. W. (1995). Schwann cells and fetal tectal tissue cografted to the midbrain of newborn rats: fate of Schwann cells and their influence on host retinal innervation of grafts. Exp. Neurol. 134, 179–191.

    Article  PubMed  CAS  Google Scholar 

  74. Guest J. D., Rao A., Olson L., Bunge M. B., and Bunge R. P. (1997). The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord. Exp. Neurol. 148, 502–522.

    Article  PubMed  CAS  Google Scholar 

  75. Hayashi S. and Flake A. W. (2001). In utero hematopoietic stem cell therapy. Yonsei Med. J. 42, 615–629.

    PubMed  CAS  Google Scholar 

  76. Hill L. M., Guzick D., Fries J., Hixson J., and Rivello D. (1990). The transverse cerebellar diameter in estimating gestational age in the large for gestational age fetus. Obstet. Gynecol. 75, 981–985.

    PubMed  CAS  Google Scholar 

  77. Harrington K. and Campbell S. (1993). Fetal size and growth. Curr. Opin. Obstet. Gynecol. 5, 186–194.

    PubMed  CAS  Google Scholar 

  78. Lysikiewicz A., Bracero L. A., and Tejani N. (2001). Sonographically estimated fetal weight percentile as a predictor of preterm delivery. J. Matern. Fetal. Med. 10, 44–47.

    PubMed  CAS  Google Scholar 

  79. Agarwal S. K. and Fisk N. M. (2001). In utero therapy for lower urinary tract obstruction. Prenat. Diagn. 21, 970–976.

    Article  PubMed  CAS  Google Scholar 

  80. Stevens G. H., Schoot B. C., Smets M. J., et al. (2002). The ex utero intrapartum treatment (EXIT) procedure in fetal neck masses: a case report and review of the literature. Eur. J. Obstet. Gynecol. Reprod. Biol. 100, 246–250.

    Article  PubMed  CAS  Google Scholar 

  81. Teng Y. D., Lavik E. B., Qu X., Park K. I., Ourednik J., Zurakowski D., et al. (2002). Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc. Natl. Acad. Sci. USA 99, 3024–3029.

    Article  PubMed  CAS  Google Scholar 

  82. Park K. D., Kwon I. K., and Kim Y. H. (2000). Tissue engineering of urinary organs. Yonsei Med. J. 41, 780–788.

    PubMed  CAS  Google Scholar 

  83. Fuchs J. R., Nasseri B. A., and Vacanti J. P. (2001). Tissue engineering: a 21st century solution to surgical reconstruction. Ann. Thorac. Surg. 72, 577–591.

    Article  PubMed  CAS  Google Scholar 

  84. Zandstra P. W. and Nagy A. (2001). Stem cell bioengineering. Annu. Rev. Biomed. Eng. 3, 275–305.

    Article  PubMed  CAS  Google Scholar 

  85. Yang E. K., Seo Y. K., Youn H. H., Lee D. H., Park S. N., and Park J. K. (2000). Tissue engineered artificial skin composed of dermis and epidermis. Artif. Organs 24, 7–17.

    Article  PubMed  CAS  Google Scholar 

  86. Kuroyanagi Y., Yamada N., Yamashita R., and Uchinuma E. (2001). Tissue-engineered product: allogeneic cultured dermal substitute composed of spongy collagen with fibroblasts. Artif. Organs 25, 180–186.

    Article  PubMed  CAS  Google Scholar 

  87. Goble E. M., Kohn D., Verdonk R., and Kane S. M. (1999). Meniscal substitutes—human experience. Scand. J. Med. Sci. Sports 9, 146–157.

    Article  PubMed  CAS  Google Scholar 

  88. Pittenger M. F., Mosca J. D., and McIntosh K. R. (2000). Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr. Top. Microbiol. Immunol. 251, 3–11.

    PubMed  CAS  Google Scholar 

  89. LeGeros R. Z. (2002). Properties of osteoconductive biomaterials: calcium phosphates. Clin. Orthop. 81–98.

  90. Buckley M. J., Agarwal S., and Gassner R. (1999). Tissue engineering and dentistry. Clin. Plast. Surg. 26, 657–662, x.

    PubMed  CAS  Google Scholar 

  91. Malament K. A. (2000). Prosthodontics: achieving quality esthetic dentistry and integrated comprehensive care. J. Am. Dent. Assoc. 131, 1742–1749.

    PubMed  CAS  Google Scholar 

  92. Alessandri G., Girelli M., Taccagni G., Colombo A., Nicosia R., Caruso A., et al. (2001). Human vasculogenesis ex vivo: embryonal aorta as a tool for isolation of endothelial cell progenitors. Lab. Invest. 81, 875–885.

    PubMed  CAS  Google Scholar 

  93. Nerem R. M. and Seliktar D. (2001). Vascular tissue engineering. Annu Rev. Biomed. Eng. 3, 225–243.

    Article  PubMed  CAS  Google Scholar 

  94. Tiwari A., Salacinski H. J., Hamilton G., and Seifalian A. M. (2001). Tissue engineering of vascular bypass grafts: role of endothelial cell extraction. Eur. J. Vasc. Endovasc. Surg. 21, 193–201.

    Article  PubMed  CAS  Google Scholar 

  95. Ferber D. (1999). Tissue engineering. Growing human corneas in the lab. Science 286, 2051, 2053.

    Article  PubMed  CAS  Google Scholar 

  96. Griffith M., Osborne R., Munger R., Xiong X., Doillon C. J., Laycock N. L., et al. (1999). Functional human corneal equivalents constructed from cell lines. Science 286, 2169–2172.

    Article  PubMed  CAS  Google Scholar 

  97. Germain L., Carrier P., Auger F. A., Salesse C., and Guerin S. L. (2000). Can we produce a human corneal equivalent by tissue engineering? Prog. Retin. Eye Res. 19, 497–527.

    Article  PubMed  CAS  Google Scholar 

  98. Humayun M. S. (2001). Intraocular retinal prosthesis. Trans. Am. Ophthalmol. Soc. 99, 271–300.

    PubMed  CAS  Google Scholar 

  99. Raine C. H. and Martin J. (2001). Cochlear and middle ear implants: advances for the hearing impaired. Hosp. Med. 62, 664–668.

    PubMed  CAS  Google Scholar 

  100. Kerdraon Y. A., Downie J. A., Suaning G. J., et al. (2002). Development and surgical implantation of a vision prosthesis model into the ovine eye. Clin. Experiment. Ophthalmol. 30, 36–40.

    Article  PubMed  Google Scholar 

  101. Rauschecker J. P. and Shannon R. V. (2002). Sending sound to the brain. Science 295, 1025–1029.

    Article  PubMed  CAS  Google Scholar 

  102. Tuch B. E. and Beretov J. (1994). Interaction between xenografted human fetal pancreas and liver. Transplant. Proc. 26, 3333.

    PubMed  CAS  Google Scholar 

  103. Angioi K., Hatier R., Merle M., and Duprez A. (2002). Xenografted human whole embryonic and fetal entoblastic organs develop and become functional adult-like micro-organs. J. Surg. Res. 102, 85–94.

    Article  PubMed  Google Scholar 

  104. Macchiarini P., Candelier J. J., Coullin P., et al. (2000). Use of embryonic human trachea grown in nude mice to patch-repair congenital tracheal stenosis. Transplantation 70, 1555–1559.

    Article  PubMed  CAS  Google Scholar 

  105. Zeltinger J., Landeen L. K., Alexander H. G., Kidd I. D., and Sibanda B. (2001). Development and characterization of tissue-engineered aortic valves. Tissue Eng. 7, 9–22.

    Article  PubMed  CAS  Google Scholar 

  106. Lou H. (1982). Developmental Neurology. Raven Press, p. 291.

  107. Kambe N., Kambe M., Kochan J. P., and Schwartz L. B. (2001). Human skin-derived mast cells can proliferate while retaining their characteristic functional and protease phenotypes. Blood 97, 2045–2052.

    Article  PubMed  CAS  Google Scholar 

  108. Jessen K. R., Brennan A., Morgan L., Mirsky R., Kent A., Hashimoto Y., et al. (1994). The Schwann cell precursor and its fate: a study of cell death and differentiation during gliogenesis in rat embryonic nerves. Neuron 12, 509–527.

    Article  PubMed  CAS  Google Scholar 

  109. Lehrer M. S., Sun T. T., and Lavker R. M. (1998). Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. J. Cell Sci. 111 (Pt 19), 2867–2875.

    PubMed  CAS  Google Scholar 

  110. Silver A. F., Chase H. B., and Potten C. S. (1969). Melanocyte precursor cells in the hair follicle germ during the dormat stage (telogen). Experientia. 25, 299–301.

    Article  PubMed  CAS  Google Scholar 

  111. Sell S. (2001). The role of progenitor cells in repair of liver injury and in liver transplantation. Wound Repair Regen. 9, 467–482.

    Article  PubMed  CAS  Google Scholar 

  112. Metcalf D. (1998). Pre-progenitor cells: a proposed new category of hematopoietic precursor cells. Leukemia 12, 1–3.

    Article  PubMed  CAS  Google Scholar 

  113. Al-Awqati Q. and Oliver J. A. (2002). Stem cells in the kidney. Kidney Int. 61, 387–395.

    Article  PubMed  Google Scholar 

  114. Van R. L. and Roncari D. A. (1982). Complete differentiation in vivo of implanted cultured adipocyte precursors from adult rats. Cell Tissue Res. 225, 557–566.

    PubMed  CAS  Google Scholar 

  115. Yiou R., Dreyfus P., Chopin D. K., Abbou C. C., and Lefaucheur J. P. (2002). Muscle precursor cell autografting in a murine model of urethral sphincter injury. BJU Int. 89, 298–302.

    Article  PubMed  CAS  Google Scholar 

  116. Fang J. and Hall B. K. (1997). Chondrogenic cell differentiation from membrane bone periostea. Anat. Embryol. (Berl) 196, 349–362.

    Article  CAS  Google Scholar 

  117. Long M. W., Robinson J. A., Ashcraft E. A., and Mann K. G. (1995). Regulation of human bone marrow-derived osteoprogenitor cells by osteogenic growth factors. J. Clin. Invest. 95, 881–887.

    Article  PubMed  CAS  Google Scholar 

  118. Akeson A. L., Wetzel B., Thompson F. Y., et al. (2000). Embryonic vasculogenesis by endothelial precursor cells derived from lung mesenchyme. Dev. Dyn. 217, 11–23.

    Article  PubMed  CAS  Google Scholar 

  119. Oka T., Hayashi K., Nakaoka Y., Ohtsuki Y., and Akagi T. (2000). Differentiation of rat thymic myoid progenitor cell line established by coculture with human T-lymphotropic virus type-I producing human T cells. Cell Tissue Res. 300, 119–127.

    Article  PubMed  CAS  Google Scholar 

  120. Alpert S., Hanahan D., and Teitelman G. (1988). Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell 53, 295–308.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra S. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, J., Rao, M.S. Stem cell and precursor cell therapy. Neuromol Med 2, 233–249 (2002). https://doi.org/10.1385/NMM:2:3:233

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:2:3:233

Index Entries

Navigation