Skip to main content
Log in

Signaling from cAMP/PKA to MAPK and synaptic plasticity

Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The facilitation of hippocampus-based, long-lasting synaptic plasticity, which is frequently investigated in model systems such as long-term potentiation (LTP) and in learning paradigms such as the Morris water maze, is associated with several cellular key events: Ca2+ influx through the n-methyl-d-aspartate (NMDA) receptor, generation of cyclic AMP (cAMP) and activation of protein kinase A (PKA), phosphorylation of mitogen-associated protein kinase (MAPK) and cAMP-response element-binding protein (CREB), and subsequent transcription of plasticity-associated genes.

Recently, a signal-transduction cascade from cAMP/PKA to MAPK was discovered, which seems to be neuron-specific and comprises the critical events of hippocampus-based long-term plasticity described here into one single cascade. A major alternative to cAMP/PKA-MAPK signaling are the cascades from Ca2+ to MAPK via Ras. However, Ras is inhibited by PKA. This article reviews the studies that argue for the existence of two competing pathways, and discusses their implication for the molecular mechanisms underlying synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Milner B., Squire L. R., and Kandel E. R. (1998) Cognitive neuroscience and the study of memory. Neuron 20, 445–468.

    Article  PubMed  CAS  Google Scholar 

  2. Silva A. J. and Giese K. P. (1994) Plastic genes are in! Curr. Opin. Neurobiol. 4, 413–420.

    Article  PubMed  CAS  Google Scholar 

  3. Bliss T. V. and Lomo T. (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356.

    PubMed  CAS  Google Scholar 

  4. Bliss T. V. and Collingridge G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39.

    Article  PubMed  CAS  Google Scholar 

  5. Morris R. G., Garrud P., Rawlins J. N., and O’Keefe J. (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683.

    Article  PubMed  CAS  Google Scholar 

  6. Lynch G., Larson J., Kelso S., Barrionuevo G., and Schottler F. (1983) Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305, 719–721.

    Article  PubMed  CAS  Google Scholar 

  7. Davis S., Butcher S. P., and Morris R. G. (1992) The NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro. J. Neurosci. 12, 21–34.

    PubMed  CAS  Google Scholar 

  8. Abel T., Nguyen P. V., Barad M., Deuel T. A., Kandel E. R., and Bourtchouladze R. (1997) Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88, 615–626.

    Article  PubMed  CAS  Google Scholar 

  9. Huang Y. Y., Li X. C., and Kandel E. R. (1994) cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell 79, 69–79.

    Article  PubMed  CAS  Google Scholar 

  10. Frey U., Huang Y. Y., and Kandel E. R. (1993) Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 260, 1661–1664.

    Article  PubMed  CAS  Google Scholar 

  11. Bartsch D., Ghirardi M., Skehel P. A., Karl K. A., Herder S. P., Chen M., et al. (1995) Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Cell 83, 979–992.

    Article  PubMed  CAS  Google Scholar 

  12. Yin J. C., Del Vecchio M., Zhou H., and Tully T. (1995) CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107–115.

    Article  PubMed  CAS  Google Scholar 

  13. Yin J. C., Wallach J. S., Del Vecchio M., Wilder E. L., Zhou H., Quinn W. G., et al. (1994) Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49–58.

    Article  PubMed  CAS  Google Scholar 

  14. Dash P. K., Hochner B., and Kandel E. R. (1990) Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 345, 718–721.

    Article  PubMed  CAS  Google Scholar 

  15. Bourtchuladze R., Frenguelli B., Blendy J., Cioffi D., Schutz G., and Silva A. J. (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68.

    Article  PubMed  CAS  Google Scholar 

  16. Pittenger C., Huang Y. Y., Paletzki R. F., Bourtchouladze R., Scanlin H., Vronskaya S., et al. (2002) Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory. Neuron 34, 447–462.

    Article  PubMed  CAS  Google Scholar 

  17. English J. D. and Sweatt J. D. (1996) Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J. Biol. Chem. 271, 24,329–24,332.

    CAS  Google Scholar 

  18. English J. D. and Sweatt J. D. (1997) A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J. Biol. Chem. 272, 19,103–19,106.

    Article  CAS  Google Scholar 

  19. Atkins C. M., Selcher J. C., Petraitis J. J., Trzaskos J. M., and Sweatt J. D. (1998) The MAPK cascade is required for mammalian associative learning. Nat. Neurosci. 1, 602–609.

    Article  PubMed  CAS  Google Scholar 

  20. Selcher J. C., Atkins C. M., Trzaskos J. M., Paylor R., and Sweatt J. D. (1999) A necessity for MAP kinase activation in mammalian spatial learning. Learn. Mem. 6, 478–490.

    Article  PubMed  CAS  Google Scholar 

  21. Blum S., Moore A. N., Adams F., and Dash P. K. (1999) A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. J. Neurosci. 19, 3535–3544.

    PubMed  CAS  Google Scholar 

  22. Impey S., Obrietan K., Wong S. T., Poser S., Yano S., Wayman G., et al. (1998) Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21, 869–883.

    Article  PubMed  CAS  Google Scholar 

  23. Sweatt J. D. (2001) Protooncogenes subserve memory formation in the adult CNS. Neuron 31, 671–674.

    Article  PubMed  CAS  Google Scholar 

  24. Vossler M. R., Yao H., York R. D., Pan M. G., Rim C. S., and Stork P. J. (1997) cAMP activates MAP kinase and Elk-1 through a B-Raf-and Rap1-dependent pathway. Cell 89, 73–82.

    Article  PubMed  CAS  Google Scholar 

  25. Grewal S. S., Fass D. M., Yao H., Ellig C. L., Goodman R. H., Stork P. J., et al. (2000) Calcium and cAMP signals differentially regulate cAMP-responsive element-binding protein function via a Rap1-extracellular signal-regulated kinase pathway. J. Biol. Chem. 275, 34,433–34,441.

    CAS  Google Scholar 

  26. Grewal S. S., Horgan A. M., York R. D., Withers G. S., Banker G. A., and Stork P. J. (2000) Neuronal calcium activates a Rap1 and B-Raf signaling pathway via the cyclic adenosine monophosphate-dependent protein kinase. J. Biol. Chem. 275, 3722–3728.

    Article  PubMed  CAS  Google Scholar 

  27. Kim S., Mizoguchi A., Kikuchi A., and Takai Y. (1990) Tissue and subcellular distributions of the smg-21/rap1/Krev-1 proteins which are partly distinct from those of c-ras p21s. Mol. Cell. Biol. 10, 2645–2652.

    PubMed  CAS  Google Scholar 

  28. Beranger F., Goud B., Tavitian A., and de Gunzburg J. (1991) Association of the Ras-antagonistic Rap1/Krev-1 proteins with the Golgi complex. Proc. Natl. Acad. Sci. USA 88, 1606–1610.

    Article  PubMed  CAS  Google Scholar 

  29. Barnier J. V., Papin C., Eychene A., Lecoq O., and Calothy G. (1995) The mouse B-raf gene encodes multiple protein isoforms with tissue-specific expression. J. Biol. Chem. 270, 23,381–23,389.

    CAS  Google Scholar 

  30. Morice C., Nothias F., Konig S., Vernier P., Baccarini M., Vincent J. D., et al. (1999) Raf-1 and B-Raf proteins have similar regional distributions but differential subcellular localization in adult rat brain. Eur. J. Neurosci. 11, 1995–2006.

    Article  PubMed  CAS  Google Scholar 

  31. Thomas K. L., Laroche S., Errington M. L., Bliss T. V., and Hunt S. P. (1994) Spatial and temporal changes in signal transduction pathways during LTP. Neuron 13, 737–745.

    Article  PubMed  CAS  Google Scholar 

  32. Morozov A., Bourtchuladze R., Lapidus K., Gordon R., van Strien N., and Kandel E. R. (1999) Rap1, a possible coupling signal between the cAMP/PKA and MAPK cascade, is required for spatial learning in mice. Soc. Neurosci. Abstr. 25, 255.1.

    Google Scholar 

  33. Muzzio I. A., Morozov A., Winder D. G., and Kandel E. R. (2000) The cAMP-activated small GTPase Rap1 provides dual regulation of the MAP kinase cascade and is critical for plasticity in the hippocampal area CA1. Soc. Neurosci. Abstr. 26, 133.3.

    Google Scholar 

  34. Chen A. P., Giese K. P., Ono M., and Silva A. J. (1999) B-Raf plays a role in learning and memory. Soc. Neurosci. Abstr. 25, 256.10.

    Google Scholar 

  35. Chen A. P., Ohno M., and Silva A. J. (2000) B-Raf knock-out mice show deficits in hippocampal-dependent learning & LTP and decreased MAPK phosphorylation. Soc. Neurosci. Abstr. 26, 564.9.

    Google Scholar 

  36. Brambilla R., Gnesutta N., Minichiello L., White G., Roylance A. J., Herron C. E., et al. (1997) A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature 390, 281–286.

    Article  PubMed  CAS  Google Scholar 

  37. Roberson E. D., English J. D., Adams J. P., Selcher J. C., Kondratick C., and Sweatt J. D. (1999) The mitogen-activated protein kinase cascade couples PKA and PKC to cAMP response element binding protein phosphorylation in area CA1 of hippocampus. J. Neurosci. 19, 4337–4348.

    PubMed  CAS  Google Scholar 

  38. Abeliovich A., Paylor R., Chen C., Kim J. J., Wehner J. M., and Tonegawa S. (1993) PKC gamma mutant mice exhibit mild deficits in spatial and contextual learning. Cell 75, 1263–1271.

    Article  PubMed  CAS  Google Scholar 

  39. Abeliovich A., Chen C., Goda Y., Silva A. J., Stevens C. F., and Tonegawa S. (1993) Modified hippocampal long-term potentiation in PKC gamma-mutant mice. Cell 75, 1253–1262.

    Article  PubMed  CAS  Google Scholar 

  40. Malinow R., Schulman H., and Tsien R. W. (1989) Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245, 862–866.

    Article  PubMed  CAS  Google Scholar 

  41. Frankland P. W., O’Brien C., Ohno M., Kirkwood A., and Silva A. J. (2001) Alpha-CaMKII-dependent plasticity in the cortex is required for permanent memory. Nature 411, 309–313.

    Article  PubMed  CAS  Google Scholar 

  42. Chen H. J., Rojas-Soto M., Oguni A., and Kennedy M. B. (1998) A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron 20, 895–904.

    Article  PubMed  CAS  Google Scholar 

  43. Kim J. H., Liao D., Lau L. F., and Huganir R. L. (1998) SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20, 683–691.

    Article  PubMed  CAS  Google Scholar 

  44. Costa R. M., Federov N. B., Kogan J. H., Murphy G. G., Stern J., Ohno M., et al. (2002) Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415, 526–530.

    Article  PubMed  CAS  Google Scholar 

  45. Silva A. J., Frankland P. W., Marowitz Z., Friedman E., Lazlo G., Cioffi D., et al. (1997) A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nat. Genet. 15, 281–284.

    Article  PubMed  CAS  Google Scholar 

  46. Deisseroth K., Bito H., and Tsien R. W. (1996) Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16, 89–101.

    Article  PubMed  CAS  Google Scholar 

  47. Davis S., Vanhoutte P., Pages C., Caboche J., and Laroche S. (2000) The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J. Neurosci. 20, 4563–4572.

    PubMed  CAS  Google Scholar 

  48. Kang H., Sun L. D., Atkins C. M., Soderling T. R., Wilson M. A., and Tonegawa S. (2001) An important role of neural activity-dependent CaMKIV signaling in the consolidation of long-term memory. Cell 106, 771–783.

    Article  PubMed  CAS  Google Scholar 

  49. Dragunow M., Abraham W. C., Goulding M., Mason S. E., Robertson H. A., and Faull R. L. (1989) Long-term potentiation and the induction of c-fos mRNA and proteins in the dentate gyrus of unanesthetized rats. Neurosci. Lett. 101, 274–280.

    Article  PubMed  CAS  Google Scholar 

  50. Waltereit R., Dammermann B., Wulff P., Scafidi J., Staubli U., Kauselmann G., et al. (2001) Arg3.1/Arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J. Neurosci. 21, 5484–5493.

    PubMed  CAS  Google Scholar 

  51. Worley P. F., Bhat R. V., Baraban J. M., Erickson C. A., McNaughton B. L., Barnes C. A., et al. (1993) Thresholds for synaptic activation of transcription factors in hippocampus: correlation with long-term enhancement. J. Neurosci. 13, 4776–4786.

    PubMed  CAS  Google Scholar 

  52. Link W., Konietzko U., Kauselmann G., Krug M., Schwanke B., Frey U., et al. (1995) Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc. Natl. Acad. Sci. USA 92, 5734–5738.

    Article  PubMed  CAS  Google Scholar 

  53. Lyford G. L., Yamagata K., Kaufmann W. E., Barnes C. A., Sanders L. K., Copeland N. G., et al. (1995) Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14, 433–445.

    Article  PubMed  CAS  Google Scholar 

  54. Brakeman P. R., Lanahan A. A., O’Brien R., Roche K., Barnes C. A., Huganir R. L., et al. (1997) Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386, 284–288.

    Article  PubMed  CAS  Google Scholar 

  55. Morgan J. I., Cohen D. R., Hempstead J. L., and Curran T. (1987) Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237, 192–197.

    Article  PubMed  CAS  Google Scholar 

  56. Gass P., Herdegen T., Bravo R., and Kiessling M. (1992) Induction of immediate early gene encoded proteins in the rat hippocampus after bicuculline-induced seizures: differential expression of KROX-24, FOS and JUN proteins. Neuroscience 48, 315–324.

    Article  PubMed  CAS  Google Scholar 

  57. Xiao B., Tu J. C., Petralia R. S., Yuan J. P., Doan A., Breder C. D., et al. (1998) Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron 21, 707–716.

    Article  PubMed  CAS  Google Scholar 

  58. Ginty D. D., Glowacka D., Bader D. S., Hidaka H., and Wagner J. A. (1991) Induction of immediate early genes by Ca2+ influx requires cAMP-dependent protein kinase in PC12 cells. J. Biol. Chem. 266, 17,454–17,458.

    CAS  Google Scholar 

  59. Rusanescu G., Qi H., Thomas S. M., Brugge J. S., and Halegoua S. (1995) Calcium influx induces neurite growth through a Src-Ras signaling cassette. Neuron 15, 1415–1425.

    Article  PubMed  CAS  Google Scholar 

  60. Sato M., Suzuki K., and Nakanishi S. (2001) NMDA receptor stimulation and brain-derived neurotrophic factor upregulate homer 1a mRNA via the mitogen-activated protein kinase cascade in cultured cerebellar granule cells. J. Neurosci. 21, 3797–3805.

    PubMed  CAS  Google Scholar 

  61. Jones M. W., Errington M. L., French P. J., Fine A., Bliss T. V., Garel S., et al. (2001) A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat. Neurosci. 4, 289–296.

    Article  PubMed  CAS  Google Scholar 

  62. Plath N., Ohana O., Dammermann B., Waltereit R., Husi H., Blanquet V., et al. (2001) Aberrant LTP in arg3.1/arc knockout animals. Soc. Neurosci. Abstr. 27, 611.12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Waltereit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waltereit, R., Weller, M. Signaling from cAMP/PKA to MAPK and synaptic plasticity. Mol Neurobiol 27, 99–106 (2003). https://doi.org/10.1385/MN:27:1:99

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:27:1:99

Index Entries

Navigation