Skip to main content
Log in

Mechanisms of GABAA receptor assembly and trafficking

Implications for the modulation of inhibitory neurotransmission

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Fast synaptic inhibition in the brain is largely mediated by ionotropic GABA receptors, which can be subdivided into GABAA and GABAC receptors based on pharmacological and molecular criteria. GABAA receptors are important therapeutic targets for a range of sedative, anxiolytic, and hypnotic agents and are implicated in several diseases including epilepsy, anxiety, depression, and substance abuse. In addition, modulating the efficacy of GABAergic neurotransmission may play a key role in neuronal plasticity. Recent studies have begun to reveal that the accumulation of ionotropic GABAA receptors at synapses is a highly regulated process that is facilitated by receptor-associated proteins and other cell-signaling molecules. This review focuses on recent experimental evidence detailing the mechanisms that control the assembly and transport of functional ionotropic GABAA receptors to cell surface sites, in addition to their stability at synaptic sites. These regulatory processes will be discussed within the context of the dynamic modulation of synaptic inhibition in the central nervous system (CNS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Couve, A., Moss, S. J., and Pangalos, M. N. (2000) GABAB receptors: a new paradigm in G protein signaling. Mol. Cell Neurosci. 16(4), 296–312.

    Article  PubMed  CAS  Google Scholar 

  2. Moss, S. J. and Smart, T. G. (2001) Constructing inhibitory synapses. Nat. Rev. Neurosci. 2(4), 240–250.

    Article  PubMed  CAS  Google Scholar 

  3. Macdonald, R. L. and Olsen, R. W. (1994) GABAA receptor channels. Annu. Rev. Neurosci. 17, 569–602.

    PubMed  CAS  Google Scholar 

  4. Rabow, L. E., Russek, S. J., and Farb, D. H. (1995) From ion currents to genomic analysis: recent advances in GABAA receptor research. Synapse 21(3), 189–274.

    Article  PubMed  CAS  Google Scholar 

  5. Chandler, L. J., Harris, R. A., and Crews, F. T. (1998) Ethanol tolerance and synaptic plasticity. Trends Pharmacol. Sci. 19(12), 491–495.

    Article  PubMed  CAS  Google Scholar 

  6. Wallace, R. H., Marini, C., Petrou, S., et al. (2001) Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat. Genet. 28(1), 49–52.

    Article  PubMed  CAS  Google Scholar 

  7. Baulac, S., Huberfeld, G., Gourfinkel-An, I., et al. (2001) First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat. Genet. 28(1), 46–48.

    Article  PubMed  CAS  Google Scholar 

  8. Bateson, A. N. (2002) Basic pharmacologic mechanisms involved in benzodiazepine tolerance and withdrawal. Curr. Pharm. Des. 8(1), 5–21.

    Article  PubMed  CAS  Google Scholar 

  9. Ortells, M. O. and Lunt, G. G. (1995) Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci. 18(3), 121–127.

    Article  PubMed  CAS  Google Scholar 

  10. Davies, P.A., Hanna, M. C., Hales, T. G., and Kirkness, E. F. (1997) Insensitivity to anaesthetic agents conferred by a class of GABA(A) receptor subunit. Nature 385(6619), 820–823.

    Article  PubMed  CAS  Google Scholar 

  11. Hedblom, E. and Kirkness, E. F. (1997) A novel class of GABAA receptor subunit in tissues of the reproductive system. J. Biol. Chem. 272(24), 15,346–15,350.

    Article  CAS  Google Scholar 

  12. Bormann, J. (2000) The ‘ABC’ of GABA receptors. Trends Pharmacol. Sci. 21(1), 16–19.

    Article  PubMed  CAS  Google Scholar 

  13. Wisden, W., Laurie, D. J., Monyer, H., and Seeburg, P. H. (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J. Neurosci. 12(3), 1040–1062.

    PubMed  CAS  Google Scholar 

  14. Laurie, D. J., Wisden, W., and Seeburg, P. H. (1992) The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J. Neurosci. 12(11), 4151–4172

    PubMed  CAS  Google Scholar 

  15. Fritschy, J. M. and Mohler, H. (1995) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J. Comp. Neurol. 359(1), 154–194.

    Article  PubMed  CAS  Google Scholar 

  16. Pirker, S., Schwarzer, C., Wieselthaler, A., Sieghart, W., and Sperk, G. (2000) GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101(4), 815–850.

    Article  PubMed  CAS  Google Scholar 

  17. Krishek, B. J., Moss, S. J., and Smart, T. G. (1996) Homomeric beta 1 gamma-aminobutyric acid A receptor-ion channels: evaluation of pharmacological and physiological properties. Mol. Pharmacol. 49(3), 494–504.

    PubMed  CAS  Google Scholar 

  18. Davies, P. A., Kirkness, E. F., and Hales, T. G. (1997) Modulation by general anaesthetics of rat GABAA receptors comprised of alpha 1 beta 3 and beta 3 subunits expressed in human embryonic kidney 293 cells. Br. J. Pharmacol. 120(5), 899–909.

    Article  PubMed  CAS  Google Scholar 

  19. Connolly, C. N., Wooltorton, J. R., Smart, T. G., and Moss, S. J. (1996) Subcellular localization of gamma-aminobutyric acid type A receptors is determined by receptor beta subunits. Proc. Natl. Acad. Sci. USA 93(18), 9899–9904.

    Article  PubMed  CAS  Google Scholar 

  20. Wooltorton, J. R., Moss, S. J., and Smart, T. G. (1997) Pharmacological and physiological characterization of murine homomeric beta3 GABA(A) receptors. Eur. J. Neurosci. 9(11), 2225–2235.

    Article  PubMed  CAS  Google Scholar 

  21. Pritchett, D. B., Sontheimer, H., Shivers, B. D., et al. (1989) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338(6216), 582–585.

    Article  PubMed  CAS  Google Scholar 

  22. Shivers, B. D., Killisch, I., Sprengel, R., et al. (1989) Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron 3(3), 327–337.

    Article  PubMed  CAS  Google Scholar 

  23. Connolly, C. N., Krishek, B. J., McDonald, B. J., Smart, T. G., and Moss, S. J. (1996) Assembly and cell surface expression of heteromeric and homomeric gamma- aminobutyric acid type A receptors. J. Biol. Chem. 271(1), 89–96.

    Article  PubMed  CAS  Google Scholar 

  24. Levitan, E. S., Schofield, P. R., Burt, D. R., et al. (1988) Structural and functional basis for GABAA receptor heterogeneity. Nature 335(6185), 76–79.

    Article  PubMed  CAS  Google Scholar 

  25. Levitan, E. S., Blair, L. A., Dionne, V. E., and Barnard, E. A. (1988) Biophysical and pharmacological properties of cloned GABAA receptor subunits expressed in Xenopus oocytes. Neuron 1(9), 773–781.

    Article  PubMed  CAS  Google Scholar 

  26. Schofield, P. R., Darlison, M. G., Fujita, N., et al. (1987) Sequence and functional expression of the GABA A receptor shows a ligandgated receptor super-family. Nature 328(6127), 221–227.

    Article  PubMed  CAS  Google Scholar 

  27. Draguhn, A., Verdorn, T. A., Ewert, M., Seeburg, P. H., and Sakmann, B. (1990) Functional and molecular distinction between recombinant rat GABAA receptor subtypes by Zn2+. Neuron 5(6), 781–788.

    Article  PubMed  CAS  Google Scholar 

  28. Pritchett, D. B., Luddens, H., and Seeburg, P. H. (1989) Type I and type II GABAA-benzodiazepine receptors produced in transfected cells. Science 245(4924), 1389–1392.

    Article  PubMed  CAS  Google Scholar 

  29. Tretter, V., Ehya, N., Fuchs, K., and Sieghart, W. (1997) Stoichiometry and assembly of a recombinant GABAA receptor subtype. J. Neurosci. 17(8), 2728–2737

    PubMed  CAS  Google Scholar 

  30. Vicini, S., Ferguson, C., Prybylowski, K., Kralic, J., Morrow, A. L., and Homanics, G. E. (2001) GABA(A) receptor alpha1 subunit deletion prevents developmental changes of inhibitory synaptic currents in cerebellar neurons. J. Neurosci. 21(9), 3009–3016.

    PubMed  CAS  Google Scholar 

  31. Sur, C., Wafford, K. A., Reynolds, D. S., et al. (2000) Loss of the major GABA(A) receptor subtype in the brain is not lethal in mice. J. Neurosci. 21(10), 3409–3418.

    Google Scholar 

  32. Brickley, S. G., Revilla, V., Cull-Candy, S. G., Wisden, W., and Farrant, M. (2001) Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 409(6816), 88–92.

    Article  PubMed  CAS  Google Scholar 

  33. Tretter, V., Hauer, B., Nusser, Z., et al. (2001) Targeted disruption of the GABA(A) receptor delta subunit gene leads to an up-regulation of gamma 2 subunit-containing receptors in cerebellar granule cells. J. Biol. Chem. 276(13), 10,532–10,538.

    Article  CAS  Google Scholar 

  34. Homanics, G.E., DeLorey, T.M., Firestone, L. L., et al. (1997) Mice devoid of gamma-aminobutyrate type A receptor beta3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc. Natl. Acad. Sci. USA 94(8), 4143–4148.

    Article  PubMed  CAS  Google Scholar 

  35. DeLorey, T.M., Handforth, A., Anagnostaras, S. G., et al. (1998) Mice lacking the beta3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome. J. Neurosci. 18(20), 8505–8514.

    PubMed  CAS  Google Scholar 

  36. Gunther, U., Benson, J., Benke, D., et al. (1995) Benzodiazepine-insensitive mice generated by targeted disruption of the gamma 2 subunit gene of gamma-aminobutyric acid type A receptors. Synaptic control of glycine and GABA(A) receptors and gephyrin expression in cultured motoneurons. Proc. Natl. Acad. Sci. USA 92(17), 7749–7753.

    Article  PubMed  CAS  Google Scholar 

  37. Saxena, N. C. and Macdonald, R. L. (1996) Properties of putative cerebellar gammaaminobutyric acid A receptor isoforms. Mol. Pharmacol. 49(3), 567–579.

    PubMed  CAS  Google Scholar 

  38. Saxena, N. C. and Macdonald, R. L. (1994) Assembly of GABAA receptor subunits: role of the delta subunit. J. Neurosci. 14(11 Pt 2), 7077–7086.

    PubMed  CAS  Google Scholar 

  39. Margeta-Mitrovic, M., Jan, Y. N., and Jan, L. Y. (2000) A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron 27(1), 97–106.

    Article  PubMed  CAS  Google Scholar 

  40. Green, W. N. and Millar, N. S. (1995) Ion-channel assembly. Trends Neurosci. 18(6), 280–287.

    Article  PubMed  CAS  Google Scholar 

  41. Couve, A., Filippov, A. K., Connolly, C. N., Bettler, B., Brown, D. A., and Moss, S. J. (1998) Intracellular retention of recombinant GABAB receptors. J. Biol. Chem. 273(41), 26,361–26,367.

    Article  CAS  Google Scholar 

  42. Standley, S., Roche, K. W., McCallum, J., Sans, N., and Wenthold, R. J. (2000) PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 28(3), 887–898.

    Article  PubMed  CAS  Google Scholar 

  43. Angelotti, T. P. and Macdonald, R. L. (1993) Assembly of GABAA receptor subunits: alpha 1 beta 1 and alpha 1 beta 1 gamma 2S subunits produce unique ion channels with dissimilar single- channel properties. J. Neurosci. 13(4), 1429–1440.

    PubMed  CAS  Google Scholar 

  44. Taylor, P. M., Connolly, C. N., Kittler, J. T., et al. (2000) Identification of residues within GABA(A) receptor alpha subunits that mediate specific assembly with receptor beta subunits. J. Neurosci. 20(4), 1297–1306.

    PubMed  CAS  Google Scholar 

  45. Connolly, C. N., Uren, J. M., Thomas, P., et al. (1999) Subcellular localization and endocytosis of homomeric gamma2 subunit splice variants of gamma-aminobutyric acid type A receptors. Mol. Cell Neurosci. 13(4), 259–271.

    Article  PubMed  CAS  Google Scholar 

  46. Gorrie, G. H., Vallis, Y., Stephenson, A., et al. (1997) Assembly of GABAA receptors composed of alpha1 and beta2 subunits in both cultured neurons and fibroblasts. J. Neurosci. 17(17), 6587–6596.

    PubMed  CAS  Google Scholar 

  47. Hammond, C. and Helenius, A. (1994) Folding of VSV G protein: sequential interaction with BiP and calnexin. Science 266(5184), 456–458.

    Article  PubMed  CAS  Google Scholar 

  48. Whiting, P., McKernan, R. M., and Iversen, L. L. (1990) Another mechanism for creating diversity in gamma-aminobutyrate type A receptors: RNA splicing directs expression of two forms of gamma 2 phosphorylation site. Proc. Natl. Acad. Sci. USA 87(24), 9966–9970.

    Article  PubMed  CAS  Google Scholar 

  49. Kofuji, P., Wang, J. B., Moss, S. J., Huganir, R. L., and Burt, D. R. (1991) Generation of two forms of the gamma-aminobutyric acidA receptor gamma 2-subunit in mice by alternative splicing. J. Neurochem. 56(2), 713–715.

    Article  PubMed  CAS  Google Scholar 

  50. Connolly, C. N., Kittler, J. T., Thomas, P., et al. (1999) Cell surface stability of gamma-aminobutyric acid type A receptors. Dependence on protein kinase C activity and subunit composition. J. Biol. Chem. 274(51), 36,565–13,572.

    Article  CAS  Google Scholar 

  51. Kittler, J. T., Wang, J., Connolly, C. N., Vicini, S., Smart, T. G., and Moss, S. J. (2000) Analysis of GABAA receptor assembly in mammalian cell lines and hippocampal neurons using gamma 2 subunit green fluorescent protein chimeras. Mol. Cell Neurosci. 16(4), 440–452.

    Article  PubMed  CAS  Google Scholar 

  52. Taylor, P. M., Thomas, P., Gorrie, G. H., et al. (1999) Identification of amino acid residues within GABA(A) receptor beta subunits that mediate both homomeric and heteromeric receptor expression. J. Neurosci. 19(15), 6360–6371.

    PubMed  CAS  Google Scholar 

  53. Gardiol, A., Racca, C., and Triller, A. (1999) Dendritic and postsynaptic protein synthetic machinery. J. Neurosci. 19(1), 168–179.

    PubMed  CAS  Google Scholar 

  54. Racca, C., Gardiol, A., and Triller, A. (1997) Dendritic and postsynaptic localizations of glycine receptor alpha subunit mRNAs. J. Neurosci. 17(5), 1691–1700.

    PubMed  CAS  Google Scholar 

  55. Klausberger, T., Fuchs, K., Mayer, B., Ehya, N., and Sieghart, W. (2000) GABA(A) receptor assembly. Identification and structure of gamma(2) sequences forming the intersubunit contacts with alpha(1) and beta(3) subunits. J. Biol. Chem. 275(12), 8921–8928.

    Article  PubMed  CAS  Google Scholar 

  56. Klausberger, T., Ehya, N., Fuchs, K., Fuchs, T., Ebert, V., Sarto, I., and sieghart, W. (2001) Detection and binding properties of GABA(A) receptor assembly intermediates. J. Biol. Chem. 276(19), 16,024–16,032.

    Article  CAS  Google Scholar 

  57. Klausberger, T., Sarto, I., Ehya, N., et al. (2001) Alternate use of distinct intersubunit contacts controls GABAA receptor assembly and stoichiometry. J. Neurosci. 21(23), 9124–9133.

    PubMed  CAS  Google Scholar 

  58. Srinivasan, S., Nichols, C. J., Lawless, G. M., Olsen, R. W., and Tobin, A. J. (1999) Two invariant tryptophans on the alphal subunit define domains necessary for GABA(A) receptor assembly. J. Biol. Chem. 274(38), 26,633–26,638.

    Article  CAS  Google Scholar 

  59. Smith, G. B. and Olsen, R. W. (1994) Identification of a [3H]muscimol photoaffinity substrate in the bovine gamma-aminobutyric acidA receptor alpha subunit. J. Biol. Chem. 269(32), 20,380–20,387.

    CAS  Google Scholar 

  60. Rudolph, U., Crestani, F., Benke, D., et al. (1999) Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature 401(6755), 796–800.

    Article  PubMed  CAS  Google Scholar 

  61. Rudolph, U., Crestani, F., and Mohler, H. (2001) GABA(A) receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol. Sci. 22(4), 188–194.

    Article  PubMed  CAS  Google Scholar 

  62. Nusser, Z., Sieghart, W., Benke, D., Fritschy, J. M., and Somogyi, P. (1996) Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells. Proc. Natl. Acad. Sci. USA 93(21), 11,939–11,944.

    Article  CAS  Google Scholar 

  63. Fritschy, J. M., Johnson, D. K., Mohler, H., and Rudolph, U. (1998) Independent assembly and subcellular targeting of GABA(A)-receptor subtypes demonstrated in mouse hippocampal and olfactory neurons in vivo. Neurosci. Lett. 249(2–3), 99–102.

    Article  PubMed  CAS  Google Scholar 

  64. Koulen, P., Sassoe-Pognetto, M., Grunert, U., and Wassle, H. (1996) Selective clustering of GABA(A) and glycine receptors in the mammalian retina. J. Neurosci. 16(6), 2127–2140.

    PubMed  CAS  Google Scholar 

  65. Nusser, Z., Sieghart, W., Stephenson, F. A., and Somogyi, P. (1996) The alpha 6 subunit of the GABAA receptor is concentrated in both inhibitory and excitatory synapses on cerebellar granule cells. J. Neurosci. 16(1), 103–114.

    PubMed  CAS  Google Scholar 

  66. Nusser, Z., Sieghart, W., and Somogyi, P. (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. 18(5), 1693–1703.

    PubMed  CAS  Google Scholar 

  67. Brickley, S. G., Cull-Candy, S. G., and Farrant, M. (1999) Single-channel properties of synaptic and extrasynaptic GABAA receptors suggest differential targeting of receptor subtypes. J. Neurosci. 19(8), 2960–2973.

    PubMed  CAS  Google Scholar 

  68. Banks, M. I. and Pearce, R. A. (2000) Kinetic differences between synaptic and extrasynaptic GABA(A) receptors in CA1 pyramidal cells. J. Neurosci. 20(3), 937–948.

    PubMed  CAS  Google Scholar 

  69. Brickley, S. G., Cull-Candy, S. G., and Farrant, M. (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J. Physiol. (Lond.) 497(Pt 3), 753–759.

    CAS  Google Scholar 

  70. Wall, M. J. and Usowicz, M. M. (1997) Development of action potential-dependent and independent spontaneous GABAA receptor-mediated currents in granule cells of postnatal rat cerebellum. Eur. J. Neurosci. 9(3), 533–548.

    Article  PubMed  CAS  Google Scholar 

  71. Rossi, D. J. and Hamann, M. (1998) Spillover-mediated transmission at inhibitory synapses promoted by high affinity alpha6 subunit GABA(A) receptors and glomerular geometry [published erratum appears in Neuron 1998 July, 21(1), 527].

  72. Jones, A., Korpi, E. R., McKernan, R. M., et al. (1997) Ligand-gated ion channel subunit partnerships: GABAA receptor alpha6 subunit gene inactivation inhibits delta subunit expression. J. Neurosci. 17(4), 1350–1362.

    PubMed  CAS  Google Scholar 

  73. Hamann, M., Rossi, D. J., and Attwell, D. (2002) Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Neuron 33(4), 625–633.

    Article  PubMed  CAS  Google Scholar 

  74. Jessell, T. M. and Kandel, E. R. (1993) Synaptic transmission: a bidirectional and self-modifiable form of cell- cell communication. Cell 72(Suppl), 1–30.

    Article  PubMed  Google Scholar 

  75. Bliss, T. V. and Collingridge, G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407), 31–39.

    Article  PubMed  CAS  Google Scholar 

  76. Busch, C. and Sakmann, B. (1990) Synaptic transmission in hippocampal neurons: numerical reconstruction of quantal IPSCs. Cold Spring Harb. Symp. Quant. Biol. 55, 69–80.

    PubMed  CAS  Google Scholar 

  77. Redman, S. (1990) Quantal analysis of synaptic potentials in neurons of the central nervous system. Physiol. Rev. 70(1), 165–198.

    PubMed  CAS  Google Scholar 

  78. Tong, G. and Jahr, C. E. (1994) Multivesicular release from excitatory synapses of cultured hippocampal neurons. Neuron 12(1), 51–59.

    Article  PubMed  CAS  Google Scholar 

  79. Edwards, F. A. (1995) Anatomy and electrophysiology of fast central synapses lead to a structural model for long-term potentiation. Physiol. Rev. 75(4), 759–787.

    PubMed  CAS  Google Scholar 

  80. Mody, I., De Koninck, Y., Otis, T. S., and Soltesz, I. (1994) Bridging the cleft at GABA synapses in the brain. Trends Neurosci. 17(12), 517–525.

    Article  PubMed  CAS  Google Scholar 

  81. Nusser, Z., Cull-Candy, S., and Farrant, M. (1997) Differences in synaptic GABA(A) receptor number underlie variation in GABA mini amplitude. Neuron 19(3), 697–709.

    Article  PubMed  CAS  Google Scholar 

  82. Nusser, Z., Hajos, N., Somogyi, P., and Mody, I. (1998) Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature 395(6698), 172–177.

    Article  PubMed  CAS  Google Scholar 

  83. Otis, T. S., De Koninck, Y., and Mody, I. (1994) Lasting potentiation of inhibition is associated with an increased number of gamma-aminobutyric acid type A receptors activated during miniature inhibitory postsynaptic currents. Proc. Natl. Acad. Sci. USA 91(16), 7698–7702.

    Article  PubMed  CAS  Google Scholar 

  84. Wan, Q., Xiong, Z. C., Man, H. Y., et al. (1997) Recruitment of functional GABA(A) receptors to postsynaptic domains by insulin. Nature 388(6643), 686–690.

    Article  PubMed  CAS  Google Scholar 

  85. Brunig, I., Penschuck, S., Berninger, B., Benson, J., and Fritschy, J. M. (2001) BDNF reduces miniature inhibitory postsynaptic currents by rapid downregulation of GABA(A) receptor surface expression. Eur. J. Neurosci. 13(7), 1320–1328.

    Article  PubMed  CAS  Google Scholar 

  86. Kittler, J. T., Delmas, P., Jovanovic, J. N., Brown, D. A., Smart, T. G., and Moss, S. J. (2000) Constitutive endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. J. Neurosci. 20(21), 7972–7977.

    PubMed  CAS  Google Scholar 

  87. Chu, P., Murray, S., Lissin, D., and von Zastrow, M. (1997) Delta and kappa opioid receptors are differentially regulated by dynamin-dependent endocytosis when activated by the same alkaloid agonist. J. Biol. Chem. 272(43), 27,124–27,130.

    Article  CAS  Google Scholar 

  88. Pitcher, J. A., Freedman, N. J., and Lefkowitz, R. J. (1998) G protein-coupled receptor kinases. Annu. Rev. Biochem. 67, 653–692.

    Article  PubMed  CAS  Google Scholar 

  89. Carroll, R. C., Beattie, E. C., Xia, H., et al. (1999) Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 96(24), 14,112–14,117.

    Article  CAS  Google Scholar 

  90. Carroll, R. C., Beattie, E. C., von Zastrow, M., and Malenka, R. C. (2001) Role of AMPA receptor endocytosis in synaptic plasticity. Nat. Rev. Neurosci. 2(5), 315–324.

    Article  PubMed  CAS  Google Scholar 

  91. Luscher, C., Xia, H., Beattie, E. C., et al. (1999) Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24(3), 649–658.

    Article  PubMed  CAS  Google Scholar 

  92. Man, H. Y., Lin, J. W., Ju, W. H., et al. (2000) Regulation of AMPA receptor-mediated synaptic transmission by clathrin- dependent receptor internalization. Neuron 25(3), 649–662.

    Article  PubMed  CAS  Google Scholar 

  93. Marsh, M. and McMahon, H. T. (1999) The structural era of endocytosis. Science 285(5425), 215–220.

    Article  PubMed  CAS  Google Scholar 

  94. Tehrani, M. H. and Barnes, E. M., Jr. (1993) Identification of GABAA/benzodiazepine receptors on clathrin-coated vesicles from rat brain. J. Neurochem. 60(5), 1755–1761.

    Article  PubMed  CAS  Google Scholar 

  95. Tehrani, M. H., Baumgartner, B. J., and Barnes, E. M., Jr. (1997) Clathrin-coated vesicles from bovine brain contain uncoupled GABAA receptors. Brain Res. 776(1–2), 195–203.

    Article  PubMed  CAS  Google Scholar 

  96. Tehrani, M. H. and Barnes, E. M., Jr. (1997) Sequestration of gamma-aminobutyric acid A receptors on clathrin-coated vesicles during chronic benzodiazepine administration in vivo. J. Pharmacol. Exp. Ther. 283(1), 384–390.

    PubMed  CAS  Google Scholar 

  97. Tehrani, M. H. and Barnes, E. M., Jr. (1991) Agonist-dependent internalization of gamma-aminobutyric acid A/benzodiazepine receptors in chick cortical neurons. J. Neurochem. 57(4), 1307–1312.

    Article  PubMed  CAS  Google Scholar 

  98. Essrich, C., Lorez, M., Benson, J. A., Fritschy, J. M., and Luscher, B. (1998) Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. Nat. Neurosci. 1(7), 563–571.

    Article  PubMed  CAS  Google Scholar 

  99. Crestani, F., Lorez, M., Baer, K., et al. (1999) Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nat. Neurosci. 2(9), 833–839.

    Article  PubMed  CAS  Google Scholar 

  100. Kneussel, M. and Betz, H. (2000) Clustering of inhibitory neurotransmitter receptors at developing postsynaptic sites: the membrane activation model. Trends Neurosci. 23(9), 429–435.

    Article  PubMed  CAS  Google Scholar 

  101. Kittler, J. T. and Moss, S. J. (2001) Neurotransmitter receptor trafficking and the regulation of synaptic strength. Traffic 2(7), 437–448.

    Article  PubMed  CAS  Google Scholar 

  102. Kneussel, M., Brandstatter, J. H., Laube, B., Stahl, S., Muller, U., and Betz, H. (1999) Loss of postsynaptic GABA(A) receptor clustering in gephyrin-deficient mice. J. Neurosci. 19(21), 9289–9297.

    PubMed  CAS  Google Scholar 

  103. Levi, S., Chesnoy-Marchais, D., Sieghart, W., and Triller, A. (1999) Synaptic control of glycine and GABA(A) receptors and gephyrin expression in cultured motoneurons. J. Neurosci. 19(17), 7434–7449.

    PubMed  CAS  Google Scholar 

  104. Campos, M. L., de Cabo, C., Wisden, W., Juiz, J. M., and Merlo, D. (2001) Expression of GABA(A) receptor subunits in rat brainstem auditory pathways: cochlear nuclei, superior olivary complex and nucleus of the lateral lemniscus. Neuroscience 102(3), 625–638.

    Article  PubMed  CAS  Google Scholar 

  105. Wang, H., Bedford, F. K., Brandon, N. J., Moss, S. J., and Olsen, R. W. (1999) GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature 397(6714), 69–72.

    Article  PubMed  CAS  Google Scholar 

  106. Hanley, J. G., Koulen, P., Bedford, F., Gordon-Weeks, P. R., and Moss, S. J. (1999) The protein MAP-1B links GABA(C) receptors to the cytoskeleton at retinal synapses. Nature 397(6714), 66–69.

    Article  PubMed  CAS  Google Scholar 

  107. Bedford, F. K., Kittler, J. T., Muller, E., et al. (2001) GABA(A) receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. Nat. Neurosci. 4(9), 908–916.

    Article  PubMed  CAS  Google Scholar 

  108. Kins, S., Betz, H., and Kirsch, J. (2000) Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nat. Neurosci. 3(1), 22–29.

    Article  PubMed  CAS  Google Scholar 

  109. Mammoto, A., Sasaki, T., Asakura, T., et al. (1998) Interactions of drebrin and gephyrin with profilin. Biochem. Biophys. Res. Commun. 243(1), 86–89.

    Article  PubMed  CAS  Google Scholar 

  110. Nymann-Andersen, J., Wang, H., Chen, L., Kittler, J. T., Moss, S. J., and Olsen, R. W. (2002) Subunit specificity and interaction domain between GABA(A) receptor- associated protein (GABARAP) and GABA(A) receptors. J. Neurochem. 80(5), 815–823.

    Article  PubMed  CAS  Google Scholar 

  111. Ohsumi, Y. (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2(3), 211–216.

    Article  PubMed  CAS  Google Scholar 

  112. Sagiv, Y., Legesse-Miller, A., Porat, A., and Elazar, Z. (2000) GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. Embo. J. 19(7), 1494–1504.

    Article  PubMed  CAS  Google Scholar 

  113. Kittler, J. T., Rostaing, P., Schiavo, G., Fritschy, J. M., Olsen, R., Triller, A., and Moss, S. J. (2001) The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABA(A) receptors. Mol. Cell Neurosci. 18(1), 13–25.

    Article  PubMed  CAS  Google Scholar 

  114. Kabeya, Y., Mizushima, N., Ueno, T., et al. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo. J. 19(21), 5720–5728.

    Article  PubMed  CAS  Google Scholar 

  115. Wang, H. and Olsen, R. W. (2000) Binding of the GABA(A) receptor-associated protein (GABARAP) to microtubules and microfilaments suggests involvement of the cytoskeleton in GABARAPGABA(A) receptor interaction. J. Neurochem. 75(2), 644–655.

    Article  PubMed  CAS  Google Scholar 

  116. Coyle, J. E., Qamar, S., Rajashankar, K. R., and Nikolov, D. B. (2002) Structure of GABARAP in two conformations: implications for GABA(A) receptor localization and tubulin binding. Neuron 33(1), 63–74.

    Article  PubMed  CAS  Google Scholar 

  117. Chen, L., Wang, H., Vicini, S., and Olsen, R. W. (2000) The gamma-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) promotes GABAA receptor clustering and modulates the channel kinetics. Proc. Natl. Acad. Sci. USA 97(21), 11,557–11,562.

    CAS  Google Scholar 

  118. Kneussel, M., Haverkamp, S., Fuhrmann, J. C., Wang, H., Wassle, H., Olsen, R. W., and Betz, H. (2000) The gamma-aminobutyric acid type A receptor (GABAAR)-associated protein GABARAP interacts with gephyrin but is not involved in receptor anchoring at the synapse. Proc. Natl. Acad. Sci. USA 97(15), 8594–8599.

    Article  PubMed  CAS  Google Scholar 

  119. Passafaro, M. and Sheng, M. (1999) Synaptogenesis: The MAP location of GABA receptors Curr. Biol. 9(7), R261-R263.

    Article  PubMed  CAS  Google Scholar 

  120. Knight, D., Harris, R., McAlister, M. S., et al. (2002) The X-ray crystal structure and putative ligand-derived peptide binding properties of gamma-aminobutyric acid receptor type A receptor-associated protein. J. Biol. Chem. 277(7), 5556–5561.

    Article  PubMed  CAS  Google Scholar 

  121. Phillips, W. D. and Froehner, S. C. (2002) GABARAP and GABA(A) receptor clustering. Neuron 33(1), 4–6.

    Article  PubMed  CAS  Google Scholar 

  122. Kanematsu, T., Jang, I. S., Yamaguchi, T., et al. (2002) Role of the PLC-related, catalytically inactive protein p130 in GABA(A) receptor function. Embo. J. 21(5), 1004–1011.

    Article  PubMed  CAS  Google Scholar 

  123. Wu, A. L., Wang, J., Zheleznyak, A., and Brown, E. J. (1999) Ubiquitin-related proteins regulate interaction of vimentin intermediate filaments with the plasma membrane. Mol. Cell. 4(4), 619–625.

    Article  PubMed  CAS  Google Scholar 

  124. Luscher, B. and Keller, C. A. (2001) Ubiquitination, proteasomes and GABA(A) receptors. Nat. Cell. Biol. 3(10), E232-E233.

    Article  PubMed  CAS  Google Scholar 

  125. Mah, A. L., Perry, G., Smith, M. A., and Monteiro, M. J. (2000) Identification of ubiquilin, a novel presenilin interactor that increases presenilin protein accumulation. J. Cell. Biol. 151(4), 847–862.

    Article  PubMed  CAS  Google Scholar 

  126. Kleijnen, M. F., Shih, A. H., Zhou, P., Kumar, S., Soccio, R. E., Kedersha, N. L., Gill, G., and Howley, P. M. (2000) The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol. Cell. 6(2), 409–419.

    Article  PubMed  CAS  Google Scholar 

  127. Caillard, O., Ben-Ari, Y., and Gaiarsa, J. L. (1999) Mechanisms of induction and expression of long-term depression at GABAergic synapses in the neonatal rat hippocampus. J. Neurosci. 19(17), 7568–7577.

    PubMed  CAS  Google Scholar 

  128. Caillard, O., Ben-Ari, Y., and Gaiarsa, J. L. (1999) Long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus. J. Physiol. (Lond.) 518(Pt 1), 109–119.

    Article  CAS  Google Scholar 

  129. Kano, M. (1995) Plasticity of inhibitory synapses in the brain: a possible memory mechanism that has been overlooked. Neurosci. Res. 21(3), 177–182.

    Article  PubMed  CAS  Google Scholar 

  130. Lu, Y. M., Mansuy, I. M., Kandel, E. R., and Roder, J. (2000) Calcineurin-mediated LTD of GABAergic inhibition underlies the increased excitability of CA1 neurons associated with LTP. Neuron 26(1), 197–205.

    Article  PubMed  CAS  Google Scholar 

  131. Luscher, C. and Frerking, M. (2001) Restless AMPA receptors: implications for synaptic transmission and plasticity. Trends Neurosci. 24(11), 665–670.

    Article  PubMed  CAS  Google Scholar 

  132. Hyman, S. E. and Malenka, R. C. (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat. Rev. Neurosci. 2(10), 695–703.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Moss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kittler, J.T., McAinsh, K. & Moss, S.J. Mechanisms of GABAA receptor assembly and trafficking. Mol Neurobiol 26, 251–268 (2002). https://doi.org/10.1385/MN:26:2-3:251

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:26:2-3:251

Index Entries

Navigation