Skip to main content
Log in

Glutamate receptor genes

Susceptibility factors in schizophrenia and depressive disorders?

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Schizophrenia, depression, and bipolar disorder are three major neuropsychiatric disorders that are among the leading causes of disability and have enormous economic impacts on our society. Although several neurotransmitter systems have been suggested to play a role in their etiology, we still have not identified any gene or molecular mechanism that might lead to genetic susceptibility for or protection against these neuropsychiatric disorders. The glutamatergic receptor system, and in particular the N-methyl-D-aspartate (NMDA) receptor complex, has long been implicated in their etiology. I review the current molecular evidence that supports a critical role for the glutamatergic receptor system in schizophrenia and the potential involvement of this receptor system in depression and bipolar disorder. It is likely that mutations in glutamate receptor genes might alter the risk of developing one of these disorders. Potential future research directions designed to identify these mutations and to elucidate their effect on mental health will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cooper B. (2001) Nature, nurture and mental disorder: old concepts in the new millennium. Br. J. Psychiatry Suppl. 40, S91–101.

    PubMed  CAS  Google Scholar 

  2. Manji H. K., Drevets W. C., and Charney D. S. (2001) The cellular neurobiology of depression. Nat. Med. 7, 541–547.

    PubMed  CAS  Google Scholar 

  3. Lewis D. A. and Lieberman J. A. (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28, 325–334.

    PubMed  CAS  Google Scholar 

  4. Olney J. W., Newcomer J. W., and Farber N. B. (1999) NMDA receptor hypofunction model of schizophrenia. J. Psychiatr. Res. 33, 523–533.

    PubMed  CAS  Google Scholar 

  5. Carlsson A., Waters N., Holm-Waters S., Tedroff J., Nilsson M., and Carlsson M. L. (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu. Rev. Pharmacol. Toxicol. 41, 237–260.

    PubMed  CAS  Google Scholar 

  6. Hollmann M. and Heinemann S. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108.

    PubMed  CAS  Google Scholar 

  7. Nakanishi S., Nakajima Y., Masu M., Ueda Y., Nakahara K., Watanabe D., et al. (1998) Glutamate receptors: brain function and signal transduction. Brain Res. Brain Res. Rev. 26, 230–235.

    PubMed  Google Scholar 

  8. Dingledine R., Borges K., Bowie D., and Traynelis S. F. (1999) The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61.

    PubMed  CAS  Google Scholar 

  9. Lerma J., Paternain A. V., Rodriguez-Moreno A., and Lopez-Garcia J. C. (2001) Molecular physiology of kainate receptors. Physiol. Rev. 81, 971–998.

    PubMed  CAS  Google Scholar 

  10. Skerry T. M. and Genever P. G. (2001) Glutamate signalling in non-neuronal tissues. Trends Pharmacol. Sci. 22, 174–181.

    PubMed  CAS  Google Scholar 

  11. Scannevin R. H. and Huganir R. L. (2000) Postsynaptic organization and regulation of excitatory synapses. Nat. Rev. Neurosci. 1, 133–141.

    PubMed  CAS  Google Scholar 

  12. Hollmann M., Maron C., and Heinemann S. (1994) N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron 13, 1331–1343.

    PubMed  CAS  Google Scholar 

  13. VanDongen H. M. and VanDongen A. M. (1999) Determination of membrane topology of glutamate receptors. Methods Mol. Biol. 128, 155–166.

    PubMed  CAS  Google Scholar 

  14. Verdoorn T. A., Burnashev N., Monyer H., Seeburg P. H., and Sakmann B. (1991) Structural determinants of ion flow through recombinant glutamate receptor channels. Science 252, 1715–1718.

    PubMed  CAS  Google Scholar 

  15. Hume R. I., Dingledine R., and Heinemann S. F. (1991) Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253, 1028–1031.

    PubMed  CAS  Google Scholar 

  16. Stern-Bach Y., Bettler B., Hartley M., Sheppard P. O., O’Hara P. J., and Heinemann S. F. (1994) Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13, 1345–1357.

    PubMed  CAS  Google Scholar 

  17. Ferrer-Montiel A. V. and Montal M. (1996) Pentameric subunit stoichiometry of a neuronal glutamate receptor. Proc. Natl. Acad. Sci. USA 93, 2741–2744.

    PubMed  CAS  Google Scholar 

  18. Rosenmund C., Stern-Bach Y., and Stevens C. F. (1998) The tetrameric structure of a glutamate receptor channel. Science 280, 1596–1599.

    PubMed  CAS  Google Scholar 

  19. Kennedy M. B. (1997) The postsynaptic density at glutamatergic synapses. Trends Neurosci. 20, 264–268.

    PubMed  CAS  Google Scholar 

  20. Sheng M. (2001) Molecular organization of the postsynaptic specialization. Proc. Natl. Acad. Sci. USA 98, 7058–7061.

    PubMed  CAS  Google Scholar 

  21. Tomita S., Nicoll R. A., and Bredt D. S. (2001) PDZ protein interactions regulating glutamate receptor function and plasticity. J. Cell Biol. 153, F19–24.

    PubMed  CAS  Google Scholar 

  22. Sattler R. and Tymianski M. (2000) Molecular mechanisms of calcium-dependent excitotoxicity. J. Mol. Med. 78, 3–13.

    PubMed  CAS  Google Scholar 

  23. McNamara J. O. (1993) Excitatory amino acid receptors and epilepsy. Curr. Opin. Neurol. Neurosurg. 6, 583–587.

    PubMed  CAS  Google Scholar 

  24. Lee J. M., Zipfel G. J., and Choi D. W. (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399, A7–14.

    PubMed  CAS  Google Scholar 

  25. Weiss J. H. and Sensi S. L. (2000) Ca2+-Zn2+permeable AMPA or kainate receptors: possible key factors in selective neurodegeneration. Trends Neurosci. 23, 365–371.

    PubMed  CAS  Google Scholar 

  26. Zipfel G. J., Babcock D. J., Lee J. M., and Choi D. W. (2000) Neuronal apoptosis after CNS injury: the roles of glutamate and calcium. J. Neurotrauma 17, 857–869.

    PubMed  CAS  Google Scholar 

  27. Seeburg P. H. (1996) The role of RNA editing in controlling glutamate receptor channel properties. J. Neurochem. 66, 1–5.

    PubMed  CAS  Google Scholar 

  28. Maas S., Melcher T., and Seeburg P. H. (1997) Mammalian RNA-dependent deaminases and edited mRNAs. Curr. Opin. Cell Biol. 9, 343–349.

    PubMed  CAS  Google Scholar 

  29. Higuchi M., Single F. N., Kohler M., Sommer B., Sprengel R., and Seeburg P. H. (1993) RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75, 1361–1370.

    PubMed  CAS  Google Scholar 

  30. Sommer B., Kohler M., Sprengel R., and Seeburg P. H. (1991) RNA editing in brain controls a determinant of ion flow in glutamate- gated channels. Cell 67, 11–19.

    PubMed  CAS  Google Scholar 

  31. Pellicciari R., Costantino G., and Macchiarulo A. (2000) Metabotropic glutamate receptors: a structural view point. Pharm. Acta. Helv. 74, 231–237.

    PubMed  CAS  Google Scholar 

  32. Alagarsamy S., Sorensen S. D., and Conn P. J. (2001) Coordinate regulation of metabotropic glutamate receptors. Curr. Opin. Neurobiol. 11, 357–362.

    PubMed  CAS  Google Scholar 

  33. Spooren W. P. J. M., Gasparini F., Salt T. E., and Kuhn R. (2001) Novel allosteric antagonists shed light on mGluR5 receptors and CNS disorders. Trends Pharmacol. Sci. 22, 331–337.

    PubMed  CAS  Google Scholar 

  34. Seal R. P. and Amara S. G. (1999) Excitatory amino acid transporters: a family in flux. Annu. Rev. Pharmacol. Toxicol. 39, 431–456.

    PubMed  CAS  Google Scholar 

  35. DeFelice L. J. and Blakely R. D. (1996) Pore models for transporters? Biophys. J. 70, 579–580.

    PubMed  CAS  Google Scholar 

  36. Gaal L., Roska B., Picaud S. A., Wu S. M., Marc R., and Werblin F. S. (1998) Postsynaptic response kinetics are controlled by a glutamate transporter at cone photoreceptors. J. Neurophysiol. 79, 190–196.

    PubMed  CAS  Google Scholar 

  37. Masliah E., Alford M., DeTeresa R., Mallory M., and Hansen L. (1996) Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann. Neurol. 40, 759–766.

    PubMed  CAS  Google Scholar 

  38. Shaw P. J. (1999) Calcium, glutamate, and amyotrophic lateral sclerosis: more evidence but no certainties. Ann. Neurol. 46, 803–805.

    PubMed  CAS  Google Scholar 

  39. Kim J. S., Kornhuber H. H., Schmid-Burgk W., and Holzmuller B. (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci. Lett. 20, 379–382.

    PubMed  CAS  Google Scholar 

  40. Sharp F. R., Tomitaka M., Bernaudin M., and Tomitaka S. (2001) Psychosis: pathological activation of limbic thalamocortical circuits by psychomimetics and schizophrenia? Trends Neurosci. 24, 330–334.

    PubMed  CAS  Google Scholar 

  41. Krystal J. H., D’Souza D. C., Petrakis I. L., Belger A., Berman R. M., Charney D. S., et al. (1999) NMDA agonists and antagonists as probes of glutamatergic dysfunction and pharmacotherapies in neuropsychiatric disorders. Harv. Rev. Psychiatry 7, 125–143.

    PubMed  CAS  Google Scholar 

  42. Krystal J. H., Karper L. P., Seibyl J. P., Freeman G. K., Delaney R., Bremner J. D., et al. (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51, 199–214.

    PubMed  CAS  Google Scholar 

  43. Corssen G. and Domino E. F. (1966) Dissociative anesthesia: further pharmacologic studies and first clinical experience with the phencyclidine derivative CI-581. Anesth. Analg. 45, 29–40.

    PubMed  CAS  Google Scholar 

  44. Domino E. F., Chodoff P., and Corssen G. (1965) Pharmacological effects of CI-581, a new dissociative anesthetic in man. Clin. Pharmacol. Ther. 6, 279–291.

    PubMed  CAS  Google Scholar 

  45. Cohen B. D., Rosenbaum G., Luby E. D., and Gottlieb J. S. (1962) Comparison of phencyclidine hydrochloride (sernyl) with other drugs: simulation of schizophrenic performance with phencyclidine hydrochloride (sernyl)lysergic acid diethylamide (LSD-25), and amobarbital (Amytal)sodium: II. Symbolic and sequential thinking. Arch. Gen. Psychiatry 6, 79–85.

    Google Scholar 

  46. Bakker C. B. and Amini F. B. (1961) Observations on the psychomimetic effects of sernyl. Compr. Psychiatry 2, 269–280.

    PubMed  CAS  Google Scholar 

  47. Davies B. M. and Beech H. R. (1960) The effect of 1-arylcyclohexylamine (sernyl) on twelve normal volunteers. J. Ment. Sci. 106, 912–924.

    PubMed  CAS  Google Scholar 

  48. Luby E. D., Cohen B. D., Rosenbaum G., Gottlieb J. S., and Kelley R. (1959) Study of a new schizophrenomimetic drug: Sernyl. Arch. Neurol. Psychiatry 81, 363–369.

    CAS  Google Scholar 

  49. Malhotra A. K., Pinals D. A., Adler C. M., Elman I., Clifton A., Pickar D., and Breier A. (1997) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17, 141–150.

    PubMed  CAS  Google Scholar 

  50. Javitt D. C. and Zukin S. R. (1991) Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry, 148, 1301–1308.

    PubMed  CAS  Google Scholar 

  51. Cull-Candy S., Brickley S., and Farrant M. (2001) NMDA receptor subunits: diversity, development and disease. Curr. Opin. Neurobiol. 11, 327–335.

    PubMed  CAS  Google Scholar 

  52. Brauner-Osborne H., Egebjerg J., Nielsen E. O., Madsen U., and Krogsgaard-Larsen P. (2000) Ligands for glutamate receptors: design and therapeutic prospects. J. Med. Chem. 43, 2609–2645.

    PubMed  CAS  Google Scholar 

  53. Noda A., Noda Y., Kamei H., Ichihara K., Mamiya T., Nagai T., et al. (2001) Phencyclidine impairs latent learning in mice: interaction between glutamatergic systems and sigma(1) receptors. Neuropsychopharmacology 24, 451–460.

    PubMed  CAS  Google Scholar 

  54. Miyamoto Y., Yamada K., Noda Y., Mori H., Mishina M., and Nabeshima T. (2001) Hyperfunction of dopaminergic and serotonergic neuronal systems in mice lacking the NMDA receptor epsilon1 subunit. J. Neurosci. 21, 750–757.

    PubMed  CAS  Google Scholar 

  55. Mohn A. R., Gainetdinov R. R., Caron M. G., and Koller B. H. (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98, 427–436.

    PubMed  CAS  Google Scholar 

  56. Sams-Dodd F. F. (1996) Phencyclidine-induced stereotyped behaviour and social isolation in rats: a possible animal model of schizophrenia. Behav. Pharmacol. 7, 3–23.

    PubMed  CAS  Google Scholar 

  57. Handelmann G. E., Contreras P. C., and O’Donohue T. L. (1987) Selective memory impairment by phencyclidine in rats. Eur. J. Pharmacol. 140, 69–73.

    PubMed  CAS  Google Scholar 

  58. Sturgeon R. D., Fessler R. G., and Meltzer H. Y. (1979) Behavioral rating scales for assessing phencyclidine-induced locomotor activity, stereotyped behavior and ataxia in rats. Eur. J. Pharmacol. 59, 169–179.

    PubMed  CAS  Google Scholar 

  59. Schlemmer R. F., Jr., Jackson J. A., Preston K. L., Bederka J. P., Jr., Garver D. L., and Davis J. M. (1978) Phencyclidine-induced stereotyped behavior in monkeys: antagonism by pimozide. Eur. J. Pharmacol. 52, 379–384.

    PubMed  CAS  Google Scholar 

  60. Moghaddam B. and Adams B. W. (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281, 1349–1352.

    PubMed  CAS  Google Scholar 

  61. Corbett R., Camacho F., Woods A. T., Kerman L. L., Fishkin R. J., Brooks K., and Dunn R. W. (1995) Antipsychotic agents antagonize non-competitive N-methyl-D-aspartate antagonist-induced behaviors. Psychopharmacology (Berl) 120, 67–74.

    CAS  Google Scholar 

  62. Carlsson M. and Carlsson A. (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia—implications for schizophrenia and Parkinson’s disease. Trends Neurosci. 13, 272–276.

    PubMed  CAS  Google Scholar 

  63. Moghaddam B., Adams B., Verma A., and Daly D. (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J. Neurosci. 17, 2921–2927.

    PubMed  CAS  Google Scholar 

  64. Willins D. L., Narayanan S., Wallace L. J., and Uretsky N. J. (1993) The role of dopamine and AMPA/kainate receptors in the nucleus accumbens in the hypermotility response to MK801. Pharmacol. Biochem. Behav. 46, 881–887.

    PubMed  CAS  Google Scholar 

  65. Angrist B. M. and Gershon S. (1970) The phenomenology of experimentally induced amphetamine psychosis: preliminary observations. Biol. Psychiatry 2, 95–107.

    PubMed  CAS  Google Scholar 

  66. Bell D. (1965) Comparison of amphetamine psychosis and schizophrenia. Am. J. Psychiatry 111, 701–707.

    CAS  Google Scholar 

  67. White F. J. and Kalivas P. W. (1998) Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend. 51, 141–153.

    PubMed  CAS  Google Scholar 

  68. Giros B., Jaber M., Jones S. R., Wightman R. M., and Caron M. G. (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379, 606–612.

    PubMed  CAS  Google Scholar 

  69. Heikkila R. E., Orlansky H., and Cohen G. (1975) Studies on the distinction between uptake inhibition and release of (3H)dopamine in rat brain tissue slices. Biochem. Pharmacol. 24, 847–852.

    PubMed  CAS  Google Scholar 

  70. Zhuang X., Oosting R. S., Jones S. R., Gainetdinov R. R., Miller G. W., Caron M. G., and Hen R. (2001) Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc. Natl. Acad. Sci. USA 98, 1982–1987.

    PubMed  CAS  Google Scholar 

  71. Uhl G. R., Vandenbergh D. J., and Miner L. L. (1996) Knockout mice and dirty drugs. Drug addiction. Curr. Biol. 6, 935–936.

    PubMed  CAS  Google Scholar 

  72. Creese I. and Iversen S. D. (1973) Blockage of amphetamine induced motor stimulation and stereotypy in the adult rat following neonatal treatment with 6-hydroxydopamine. Brain Res. 55, 369–382.

    PubMed  CAS  Google Scholar 

  73. Creese I. and Iversen S. D. (1972) Amphetamine response in rat after dopamine neurone destruction. Nat. New Biol. 238, 247–248.

    PubMed  CAS  Google Scholar 

  74. Laruelle M., Abi-Dargham A., Gil R., Kegeles L., and Innis R. (1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol. Psychiatry 46, 56–72.

    PubMed  CAS  Google Scholar 

  75. Abi-Dargham A., Gil R., Krystal J., Baldwin R. M., Seibyl J. P., Bowers M., et al. (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am. J. Psychiatry 155, 761–767.

    PubMed  CAS  Google Scholar 

  76. Breier A., Su T. P., Saunders R., Carson R. E., Kolachana B. S., de Bartolomeis A., et al. (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc. Natl. Acad. Sci. USA 94, 2569–2574.

    PubMed  CAS  Google Scholar 

  77. Duncan G. E., Sheitman B. B., and Lieberman J. A. (1999) An integrated view of pathophysiological models of schizophrenia. Brain Res. Brain Res. Rev. 29, 250–264.

    PubMed  CAS  Google Scholar 

  78. Creese I., Burt D. R., and Synder S. H. (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192, 481–483.

    PubMed  CAS  Google Scholar 

  79. Rowley M., Bristow L. J., and Hutson P. H. (2001) Current and novel approaches to the drug treatment of schizophrenia. J. Med. Chem. 44, 477–501.

    PubMed  CAS  Google Scholar 

  80. Jackson D. M., Johansson C., Lindgren L. M., and Bengtsson A. (1994) Dopamine receptor antagonists block amphetamine and phencyclidine-induced motor stimulation in rats. Pharmacol. Biochem. Behav. 48, 465–471.

    PubMed  CAS  Google Scholar 

  81. Ogren S. O. and Goldstein M. (1994) Phencyclidine- and dizocilpine-induced hyperlocomotion are differentially mediated. Neuropsychopharmacology 11, 167–177.

    PubMed  CAS  Google Scholar 

  82. Castellani S. and Adams P. M. (1981) Effects of dopaminergic drugs on phencyclidine-induced behavior in the rat. Neuropharmacology 20, 371–374.

    PubMed  CAS  Google Scholar 

  83. Farber N. B., Foster J., Duhan N. L., and Olney J. W. (1996) Olanzapine and fluperlapine mimic clozapine in preventing MK-801 neurotoxicity. Schizophr. Res. 21, 33–37.

    PubMed  CAS  Google Scholar 

  84. Walaas S. I. and Greengard P. (1984) DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Regional and cellular distribution in the rat brain. J. Neurosci. 4, 84–98.

    PubMed  CAS  Google Scholar 

  85. Langley K. C., Bergson C., Greengard P., and Ouimet C. C. (1997) Co-localization of the D1 dopamine receptor in a subset of DARPP-32-containing neurons in rat caudate-putamen. Neuroscience 78, 977–983.

    PubMed  CAS  Google Scholar 

  86. Ouimet C. C., Langley-Gullion K. C., and Greengard P. (1998) Quantitative immunocytochemistry of DARPP-32-expressing neurons in the rat caudatoputamen. Brain Res. 808, 8–12.

    PubMed  CAS  Google Scholar 

  87. Snyder G. L., Allen P. B., Fienberg A. A., Valle C. G., Huganir R. L., Nairn A. C., and Greengard P. (2000) Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo. J. Neurosci. 20, 4480–4488.

    PubMed  CAS  Google Scholar 

  88. Snyder G. L., Fienberg A. A., Huganir R. L., and Greengard P. (1998) A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor. J. Neurosci. 18, 10297–10303.

    PubMed  CAS  Google Scholar 

  89. Fienberg A. A. and Greengard P. (2000) The DARPP-32 knockout mouse. Brain Res. Brain Res. Rev. 31, 313–319.

    PubMed  CAS  Google Scholar 

  90. Larson J., Quach C. N., LeDuc B. Q., Nguyen A., Rogers G. A., and Lynch G. (1996) Effects of an AMPA receptor modulator on methamphetamine-induced hyperactivity in rats. Brain Res. 738, 353–356.

    PubMed  CAS  Google Scholar 

  91. Johnson S. A., Luu N. T., Herbst T. A., Knapp R., Lutz D., Arai A., et al. (1999) Synergistic interactions between ampakines and antipsychotic drugs. J. Pharmacol. Exp. Ther. 289, 392–397.

    PubMed  CAS  Google Scholar 

  92. Farber N. B., Newcomer J. W., and Olney J. W. (1999) Glycine agonists: what can they teach us about schizophrenia? Arch. Gen. Psychiatry 56, 13–17.

    PubMed  CAS  Google Scholar 

  93. Goff D. C., Tsai G., Manoach D. S., and Coyle J. T. (1995) Dose-finding trial of D-cycloserine added to neuroleptics for negative symptoms in schizophrenia. Am. J. Psychiatry 152, 1213–1215.

    PubMed  CAS  Google Scholar 

  94. van Berckel B. N., Hijman R., van der Linden J. A., Westenberg H. G., van Ree J. M., and Kahn R. S. (1996) Efficacy and tolerance of D-cycloserine in drug-free schizophrenic patients. Biol. Psychiatry 40, 1298–1300.

    PubMed  Google Scholar 

  95. Goff D. C., Tsai G., Manoach D. S., Flood J., Darby D. G., and Coyle J. T. (1996) D-cycloserine added to clozapine for patients with schizophrenia. Am. J. Psychiatry 153, 1628–1630.

    PubMed  CAS  Google Scholar 

  96. Goff D. C., Tsai G., Levitt J., Amico E., Manoach D., Schoenfeld D. A., et al. (1999) A placebo-controlled trial of D-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch. Gen. Psychiatry 56, 21–27.

    PubMed  CAS  Google Scholar 

  97. van Berckel B. N., Evenblij C. N., van Loon B. J., Maas M. F., van der Geld M. A., Wynne H. J., et al. (1999) D-cycloserine increases positive symptoms in chronic schizophrenic patients when administered in addition to antipsychotics: a double- blind, parallel, placebo-controlled study. Neuropsychopharmacology 21, 203–210.

    PubMed  Google Scholar 

  98. Petrie R. X., Reid I. C., and Stewart C. A. (2000) The N-methyl-D-aspartate receptor, synaptic plasticity, and depressive disorder. A critical review. Pharmacol. Ther. 87, 11–25.

    PubMed  CAS  Google Scholar 

  99. Sernagor E., Kuhn D., Vyklicky L., Jr., and Mayer M. L. (1989) Open channel block of NMDA receptor responses evoked by tricyclic antidepressants. Neuron 2, 1221–1227.

    PubMed  CAS  Google Scholar 

  100. Kitamura Y., Zhao X. H., Tekei M., Yonemitsu O., and Nomura Y. (1991) Effects of antidepressants on the glutamatergic system in the mouse brain. Neurochem. Int. 19, 247–253.

    CAS  Google Scholar 

  101. Lucki I. (1997) The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav. Pharmacol. 8, 523–532.

    PubMed  CAS  Google Scholar 

  102. Steru L., Chermat R., Thierry B., and Simon P. (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85, 367–370.

    PubMed  CAS  Google Scholar 

  103. Maier S. F. (1984) Learned helplessness and animal models of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 8, 435–446.

    PubMed  CAS  Google Scholar 

  104. Willner P. (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 134, 319–329.

    CAS  Google Scholar 

  105. Berman R. M., Cappiello A., Anand A., Oren D. A., Heninger G. R., Charney D. S., and Krystal J. H. (2000) Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 47, 351–354.

    PubMed  CAS  Google Scholar 

  106. Paladini C. A., Fiorillo C. D., Morikawa H., and Williams J. T. (2001) Amphetamine selectively blocks inhibitory glutamate transmission in dopamine neurons. Nat. Neurosci. 4, 275–281.

    PubMed  CAS  Google Scholar 

  107. Linden A., Yu H., Zarrinmay eh H., Wheeler W. J., and Skolnick P. (2001) Binding of an AMPA receptor potentiator. Neuropharmacology 40, 1010–1018.

    PubMed  CAS  Google Scholar 

  108. Legutko B., Li X., and Skolnick P. (2001) Regulation of BDNF expression in primary neuron culture by LY392098, a novel AMPA receptor potentiator. Neuropharmacology 40, 1019–1027.

    PubMed  CAS  Google Scholar 

  109. Siuciak J. A., Lewis D. R., Wiegand S. J., and Lindsay R. M. (1997) Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol. Biochem. Behav. 56, 131–137.

    PubMed  CAS  Google Scholar 

  110. Altar C. A. (1999) Neurotrophins and depression. Trends Pharmacol. Sci. 20, 59–61.

    PubMed  CAS  Google Scholar 

  111. Tatarczynska E., Klodzinska A., Chojnacka-Wojcik E., Palucha A., Gasparini F., Kuhn R., and Pilc A. (2001) Potential anxiolytic- and antidepressant-like effects of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist. Br. J. Pharmacol. 132, 1423–1430.

    PubMed  CAS  Google Scholar 

  112. Gasparini F., Lingenhohl K., Stoehr N., Flor P. J., Heinrich M., Vranesic I., et al. (1999) 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 38, 1493–1503.

    PubMed  CAS  Google Scholar 

  113. Soares J. C. and Gershon S. (1998) The lithium ion: a foundation for psychopharmacological specificity. Neuropsychopharmacology 19, 167–182.

    PubMed  CAS  Google Scholar 

  114. Karkanias N. B. and Papke R. L. (1999) Lithium modulates desensitization of the glutamate receptor subtype gluR3 in Xenopus occytes. Neurosci. Lett. 277, 153–156.

    PubMed  CAS  Google Scholar 

  115. Karkanias N. B. and Papke R. L. (1999) Subtype-specific effects of lithium on glutamate receptor function. J. Neurophysiol. 81, 1506–1512.

    PubMed  CAS  Google Scholar 

  116. Phiel C. J. and Klein P. S. (2001) Molecular targets of lithium action. Annu. Rev. Pharmacol. Toxicol. 41, 789–813.

    PubMed  CAS  Google Scholar 

  117. Detera-Wadleigh S. D. (2001) Lithium-related genetics of bipolar disorder. Ann. Med. 33, 272–285.

    PubMed  CAS  Google Scholar 

  118. Dixon A. K., Huber C., and Lowe D. A. (1994) Clozapine promotes approach-oriented behavior in male mice. J. Clin. Psychiatry 55(Suppl B), 4–7.

    PubMed  Google Scholar 

  119. Sakimura K., Kutsuwada T., Ito I., Manabe T., Takayama C., Kushiya E., et al. (1995) Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 373, 151–155.

    PubMed  CAS  Google Scholar 

  120. Forrest D., Yuzaki M., Soares H. D., Ng L., Luk D. C., Sheng M., et al. (1994) Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron 13, 325–338.

    PubMed  CAS  Google Scholar 

  121. Li Y., Erzurumlu R. S., Chen C., Jhaveri S., and Tonegawa S. (1994) Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDAR1 knockout mice. Cell 76, 427–437.

    PubMed  CAS  Google Scholar 

  122. Ebralidze A. K., Rossi D. J., Tonegawa S., and Slater N. T. (1996) Modification of NMDA receptor channels and synaptic transmission by targeted disruption of the NR2C gene. J. Neurosci. 16, 5014–5025.

    PubMed  CAS  Google Scholar 

  123. Kutsuwada T., Sakimura K., Manabe T., Takayama C., Katakura N., Kushiya E., et al. (1996) Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron 16, 333–344.

    PubMed  CAS  Google Scholar 

  124. Das S., Sasaki Y. F., Rothe T., Premkumar L. S., Takasu M., Crandall J. E., et al. (1998) Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393, 377–381.

    PubMed  CAS  Google Scholar 

  125. Sprengel R. and Single F. N. (1999) Mice with genetically modified NMDA and AMPA receptors. Ann. NY Acad. Sci. 868, 494–501.

    PubMed  CAS  Google Scholar 

  126. Aiba A., Kano M., Chen C., Stanton M. E., Fox G. D., Herrup K., et al. (1994) Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 79, 377–388.

    PubMed  CAS  Google Scholar 

  127. Masu M., Iwakabe H., Tagawa Y., Miyoshi T., Yamashita M., Fukuda Y., et al. (1995) Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80, 757–765.

    PubMed  CAS  Google Scholar 

  128. Pekhletski R., Gerlai R., Overstreet L. S., Huang X. P., Agopyan N., Slater N. T., et al. (1996) Impaired cerebellar synaptic plasticity and motor performance in mice lacking the mGluR4 subtype of metabotropic glutamate receptor. J. Neurosci. 16, 6364–6373.

    PubMed  CAS  Google Scholar 

  129. Jia Z., Agopyan N., Miu P., Xiong Z., Henderson J., Gerlai R., et al. (1996) Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 17, 945–956.

    PubMed  CAS  Google Scholar 

  130. Lu Y. M., Jia Z., Janus C., Henderson J. T., Gerlai R., Wojtowicz J. M., and Roder J. C. (1997) Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J. Neurosci. 17, 5196–5205.

    PubMed  CAS  Google Scholar 

  131. Mulle C., Sailer A., Perez-Otano I., Dickinson-Anson H., Castillo P. E., Bureau I., et al. (1998) Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 392, 601–605.

    PubMed  CAS  Google Scholar 

  132. Zamanillo D., Sprengel R., Hvalby O., Jensen V., Burnashev N., Rozov A., et al. (1999) Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284, 1805–1811.

    PubMed  CAS  Google Scholar 

  133. Contractor A., Swanson G. T., Sailer A., O’Gorman S., and Heinemann S. F. (2000) Identification of the kainate receptor subunits underlying modulation of excitatory synaptic transmission in the CA3 region of the hippocampus. J. Neurosci. 20, 8269–8278.

    PubMed  CAS  Google Scholar 

  134. Huettner J. E. (2001) Kainate receptors: knocking out plasticity. Trends Neurosci. 24, 365–366.

    PubMed  CAS  Google Scholar 

  135. Paarmann I., Frermann D., Keller B. U., and Hollmann M. (2000) Expression of 15 glutamate receptor subunits and various splice variants in tissue slices and single neurons of brainstem nuclei and potential functional implications. J. Neurochem. 74, 1335–1345.

    PubMed  CAS  Google Scholar 

  136. Meador-Woodruff J. H. and Healy D. J. (2000) Glutamate receptor expression in schizophrenic brain. Brain Res. Brain Res. Rev. 31, 288–294.

    PubMed  CAS  Google Scholar 

  137. Ibrahim H. M., Healy D. J., Hogg A. J., Jr., and Meador-Woodruff J. H. (2000) Nucleus-specific expression of ionotropic glutamate receptor subunit mRNAs and binding sites in primate thalamus. Brain Res. Mol. Brain Res. 79, 1–17.

    PubMed  CAS  Google Scholar 

  138. Porter R. H., Eastwood S. L., and Harrison P. J. (1997) Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia. Brain Res. 751, 217–231.

    PubMed  CAS  Google Scholar 

  139. Sokolov B. P. (1998) Expression of NMDAR1, GluR1, GluR7, and KA1 glutamate receptor mRNAs is decreased in frontal cortex of “neuroleptic-free” schizophrenics: evidence on reversible up-regulation by typical neuroleptics. J. Neurochem. 71, 2454–2464.

    PubMed  CAS  Google Scholar 

  140. Ibrahim H. M., Hogg A. J., Jr., Healy D. J., Haroutunian V., Davis K. L., and Meador-Woodruff J. H. (2000) Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia. Am. J. Psychiatry 157, 1811–1823.

    PubMed  CAS  Google Scholar 

  141. Akbarian S., Sucher N. J., Bradley D., Tafazzoli A., Trinh D., Hetrick W. P., et al. (1996) Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J. Neurosci. 16, 19–30.

    PubMed  CAS  Google Scholar 

  142. Ohnuma T., Augood S. J., Arai H., McKenna P. J., and Emson P. C. (1998) Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Brain Res. Mol. Brain Res. 56, 207–217.

    PubMed  CAS  Google Scholar 

  143. Boyer P. A., Skolnick P., and Fossom L. H. (1998) Chronic administration of imipramine and citalopram alters the expression of NMDA receptor subunit mRNAs in mouse brain. A quantitative in situ hybridization study. J. Mol. Neurosci. 10, 219–233.

    PubMed  CAS  Google Scholar 

  144. Nowak G., Ordway G. A., and Paul I. A. (1995) Alterations in the N-methyl-D-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims. Brain Res. 675, 157–164.

    PubMed  CAS  Google Scholar 

  145. Palmer A. M., Burns M. A., Arango V., and Mann J. J. (1994) Similar effects of glycine, zinc and an oxidizing agent on [3H]dizocilpine binding to the N-methyl-D-aspartate receptor in neocortical tissue from suicide victims and controls. J. Neural. Transm. Gen. Sect. 96, 1–8.

    PubMed  CAS  Google Scholar 

  146. Karlsson H., Bachmann S., Schroder J., McArthur J., Torrey E. F., and Yolken R. H. (2001) Retroviral RNA identified in the cere-brosprnal fluids and brains of individuals with schizophrenia. Proc. Natl. Acad. Sci. USA 98, 4634–4639.

    PubMed  CAS  Google Scholar 

  147. Coyle J. T. (1996) The glutamatergic dysfunction hypothesis for schizophrenia. Harv. Rev. Psychiatry 3, 241–253.

    PubMed  CAS  Google Scholar 

  148. Ohtsuki T., Sakurai K., Dou H., Toru M., Yamakawa-Kobayashi K., and Arinami T. (2001) Mutation analysis of the NMDAR2B (GRIN2B) gene in schizophrenia. Mol. Psychiatry 6, 211–216.

    PubMed  CAS  Google Scholar 

  149. Rice S. R., Niu N., Berman D. B., Heston L. L., and Sobell J. L. (2001) Identification of single nucleotide polymorphisms (SNPs) and other sequence changes and estimation of nucleotide diversity in coding and flanking regions of the NMDAR1 receptor gene in schizophrenic patients. Mol. Psychiatry 6, 274–284.

    PubMed  CAS  Google Scholar 

  150. Nishiguchi N., Shirakawa O., Ono H., Hashimoto T., and Maeda K. (2000) Novel polymorphism in the gene region encoding the carboxyl-terminal intracellular domain of the NMDA receptor 2B subunit: analysis of association with schizophrenia. Am. J. Psychiatry 157, 1329–1331.

    PubMed  CAS  Google Scholar 

  151. Sakurai K., Toru M., Yamakawa-Kobayashi K., and Arinami T. (2000) Mutation analysis of the N-methyl-D-aspartate receptor NR1 subunit gene (GRIN1) in schizophrenia. Neurosci. Lett. 296, 168–170.

    PubMed  CAS  Google Scholar 

  152. Fitzjohn S. M., Irving A. J., Palmer M. J., Harvey J., Lodge D., and Collingridge G. L. (1996) Activation of group I mGluRs potentiates NMDA responses in rat hippocampal slices. Neurosci. Lett. 203, 211–213.

    PubMed  CAS  Google Scholar 

  153. Bolonna A. A., Kerwin R. W., Munro J., Arranz M. J., and Makoff A. J. (2001) Polymorphisms in the genes for mGluR types 7 and 8: association studies with schizophrenia. Schizophr. Res. 47, 99–103.

    PubMed  CAS  Google Scholar 

  154. Devon R. S., Anderson S., Teague P. W., Muir W. J., Murray V., Pelosi A. J., et al. (2001) The genomic organisation of the metabotropic glutamate receptor subtype 5 gene, and its association with schizophrenia. Mol. Psychiatry 6, 311–314.

    PubMed  CAS  Google Scholar 

  155. Joo A., Shibata H., Ninomiya H., Kawasaki H., Tashiro N., and Fukumaki Y. (2001) Structure and polymorphisms of the human metabotropic glutamate receptor type 2 gene (GRM2): analysis of association with schizophrenia. Mol. Psychiatry, 6, 186–192.

    PubMed  CAS  Google Scholar 

  156. Muir W. J., Gosden C. M., Brookes A. J., Fantes J., Evans K. L., Maguire S. M., et al. (1995) Direct microdissection and microcloning of a translocation breakpoint region, t(1;11)(q42.2;q21), associated with schizophrenia. Cytogenet. Cell Genet. 70, 35–40.

    PubMed  CAS  Google Scholar 

  157. Fletcher J. M., Evans K., Baillie D., Byrd P., Hanratty D., Leach S., et al. (1993) Schizophrenia-associated chromosome 11q21 translocation: identification of flanking markers and development of chromosome 11q fragment hybrids as cloning and mapping resources. Am. J. Hum. Genet. 52, 478–490.

    PubMed  CAS  Google Scholar 

  158. Semple C. A., Devon R. S., Le Hellard S., and Porteous D. J. (2001) Identification of genes from a schizophrenia-linked translocation breakpoint region. Genomics 73, 123–126.

    PubMed  CAS  Google Scholar 

  159. Alagarsamy S., Marino M. J., Rouse S. T., Gereau R. W. T., Heinemann S. F., and Conn P. J. (1999) Activation of NMDA receptors reverses desensitization of mGluR5 in native and recombinant systems. Nat. Neurosci. 2, 234–240.

    PubMed  CAS  Google Scholar 

  160. Neale J. H., Bzdega T., and Wroblewska B. (2000) N-Acetylaspartylglutamate: the most abundant peptide neurotransmitter in the mammalian central nervous system. J. Neurochem. 75, 443–452.

    PubMed  CAS  Google Scholar 

  161. Tsai G., Passani L. A., Slusher B. S., Carter R., Baer L., Kleinman J. E., and Coyle J. T. (1995) Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Arch. Gen. Psychiatry 52, 829–836.

    PubMed  CAS  Google Scholar 

  162. Chen A. C., Kalsi G., Brynjolfsson J., Sigmundsson T., Curtis D., Butler R., et al. (1997) Exclusion of linkage of schizophrenia to the gene for the glutamate GluR5 receptor. Biol. Psychiatry 41, 243–245.

    PubMed  CAS  Google Scholar 

  163. Chen A. C., Kalsi G., Brynjolfsson J., Sigmundsson T., Curtis D., Butler R., et al. (1996) Lack of evidence for close linkage of the glutamate GluR6 receptor gene with schizophrenia. Am. J. Psychiatry 153, 1634–1636.

    PubMed  CAS  Google Scholar 

  164. Noga J. T., Hyde T. M., Herman M. M., Spurney C. F., Bigelow L. B., Weinberger D. R., and Kleinman J. E. (1997) Glutamate receptors in the postmortem striatum of schizophrenic, suicide, and control brains. Synapse 27, 168–176.

    PubMed  CAS  Google Scholar 

  165. Freed W. J., Dillon-Carter O., and Kleinman J. E. (1993) Properties of [3H]AMPA binding in postmortem human brain from psychotic subjects and controls: increases in caudate nucleus associated with suicide. Exp. Neurol. 121, 48–56.

    PubMed  CAS  Google Scholar 

  166. Gecz J., Barnett S., Liu J., Hollway G., Donnelly A., Eyre H., et al. (1999) Characterization of the human glutamate receptor subunit 3 gene (GRIA3), a candidate for bipolar disorder and nonspecific X-linked mental retardation. Genomics 62, 356–368.

    PubMed  CAS  Google Scholar 

  167. Rice J. P., Saccone N. L., and Rasmussen E. (2001) Definition of the phenotype. Adv. Genet. 42, 69–76.

    PubMed  CAS  Google Scholar 

  168. Sachidanandam R., Weissman D., Schmidt S. C., Kakol J. M., Stein L. D., Marth G., et al. (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933.

    PubMed  CAS  Google Scholar 

  169. Baron M. (2001) Genetics of schizophrenia and the new millennium: progress and pitfalls. Am. J. Hum. Genet. 68, 299–312.

    PubMed  CAS  Google Scholar 

  170. Thaker G. K. and Carpenter W. T., Jr. (2001) Advances in schizophrenia. Nat. Med. 7, 667–671.

    PubMed  CAS  Google Scholar 

  171. Kato T. (2001) Molecular genetics of bipolar disorder. Neurosci. Res. 40, 105–113.

    PubMed  CAS  Google Scholar 

  172. Todd R. D. and Botteron K. N. (2001) Family, genetic, and imaging studies of early-onset depression. Child. Adolesc. Psychiatr Clin. North Am. 10, 375–390.

    CAS  Google Scholar 

  173. Kornberg J. R., Brown J. L., Sadovnick A. D., Remick R. A., Keck P. E., Jr., McElroy S. L., et al. (2000) Evaluating the parent-of-origin effect in bipolar affective disorder. Is a more penetrant subtype transmitted paternally? J. Affect. Disord. 59, 183–192.

    PubMed  CAS  Google Scholar 

  174. Ohara K. (2001) Anticipation, imprinting, trinucleotide repeat expansions and psychoses. Prog. Neuropsychopharmacol. Biol. Psychiatry 25, 167–192.

    PubMed  CAS  Google Scholar 

  175. Keverne E. B. (1997) Genomic imprinting in the brain. Curr. Opin. Neurobiol. 7, 463–468.

    PubMed  CAS  Google Scholar 

  176. Reik W. and Walter J. (2001) Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2, 21–32.

    PubMed  CAS  Google Scholar 

  177. Latham K. E. (1999) Epigenetic modification and imprinting of the mammalian genome during development. Curr. Top. Dev. Biol. 43, 1–49.

    PubMed  CAS  Google Scholar 

  178. Nadeau J. H. (2001) Modifier genes in mice and humans. Nat. Rev. Genet. 2, 165–174.

    PubMed  CAS  Google Scholar 

  179. Falls J. G., Pulford D. J., Wylie A. A., and Jirtle R. L. (1999) Genomic imprinting: implications for human disease. Am. J. Pathol. 154, 635–647.

    PubMed  CAS  Google Scholar 

  180. Morison I. M., Paton C. J., and Cleverley S. D. (2001) The imprinted gene and parent-of-origin effect database. Nucleic Acids Res. 29, 275–276.

    PubMed  CAS  Google Scholar 

  181. Constancia M., Pickard B., Kelsey G., and Reik W. (1998) Imprinting mechanisms. Genome Res. 8, 881–900.

    PubMed  CAS  Google Scholar 

  182. Mowry B. J. and Nancarrow D. J. (2001) Molecular genetics of schizophrenia. Clin. Exp. Pharmacol. Physiol. 28, 66–69.

    PubMed  CAS  Google Scholar 

  183. Warrington J. A., Bailey S. K., Armstrong E., Aprelikova O., Alitalo K., Dolganov G. M., et al. (1992) A radiation hybrid map of 18 growth factor, growth factor receptor, hormone receptor, or neurotransmitter receptor genes on the distal region of the long arm of chromosome 5. Genomics 13, 803–808.

    PubMed  CAS  Google Scholar 

  184. Puckett C., Gomez C. M., Korenberg J. R., Tung H., Meier T. J., Chen X. N., and Hood L. (1991) Molecular cloning and chromosomal localization of one of the human glutamate receptor genes. Proc. Natl. Acad. Sci. USA 88, 7557–7561.

    PubMed  CAS  Google Scholar 

  185. Sun W., Ferrer-Montiel A. V., Schinder A. F., McPherson J. P., Evans G. A., and Montal M. (1992) Molecular cloning, chromosomal mapping, and functional expression of human brain glutamate receptors. Proc. Natl. Acad. Sci. USA 89, 1443–1447.

    PubMed  CAS  Google Scholar 

  186. McNamara J. O., Eubanks J. H., McPherson J. D., Wasmuth J. J., Evans G. A., and Heinemann S. F. (1992) Chromosomal localization of human glutamate receptor genes. J. Neurosci. 12, 2552–2562.

    Google Scholar 

  187. Hu W., Zuo J., De Jager P. L., and Heintz N. (1998) The human glutamate receptor delta 2 gene (GRID2) maps to chromosome 4q22. Genomics 47, 143–145.

    PubMed  CAS  Google Scholar 

  188. Gregor P., Gaston S. M., Yang X., O’Regan J. P., Rosen D. R., Tanzi R. E., et al. (1994) Genetic and physical mapping of the GLUR5 glutamate receptor gene on human chromosome 21. Hum. Genet. 94, 565–570.

    PubMed  CAS  Google Scholar 

  189. Eubanks J. H., Puranam R. S., Kleckner N. W., Bettler B., Heinemann S. F., and McNamara J. O. (1993) The gene encoding the glutamate receptor subunit GluR5 is located on human chromosome 21q21.1–22.1 in the vicinity of the gene for familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 90, 178–182.

    PubMed  CAS  Google Scholar 

  190. Sander T., Janz D., Ramel C., Ross C. A., Paschen W., Hildmann T., et al. (1995) Refinement of map position of the human GluR6 kainate receptor gene (GRIK2) and lack of association and linkage with idiopathic generalized epilepsies. Neurology 45, 1713–1720.

    PubMed  CAS  Google Scholar 

  191. Paschen W., Blackstone C. D., Huganir R. L., and Ross C. A. (1994) Human GluR6 kainate receptor (GRIK2): molecular cloning, expression, polymorphism, and chromosomal assignment. Genomics 20, 435–440.

    PubMed  CAS  Google Scholar 

  192. Puranam R. S., Eubanks J. H., Heinemann S. F., and McNamara J. O. (1993) Chromosomal localization of gene for human glutamate receptor subunit-7. Somat. Cell Mol. Genet. 19, 581–588.

    PubMed  CAS  Google Scholar 

  193. Szpirer C., Molne M., Antonacci R., Jenkins N. A., Finelli P., Szpirer J., et al. (1994) The genes encoding the glutamate receptor subunits KA1 and KA2 (GRIK4 and GRIK5) are located on separate chromosomes in human, mouse, and rat. Proc. Natl. Acad. Sci. USA 91, 11849–11853.

    PubMed  CAS  Google Scholar 

  194. Brett P. M., Le Bourdelles B., See C. G., Whiting P. J., Attwood J., Woodward K., et al. (1994) Genomic cloning and localization by FISH and linkage analysis of the human gene encoding the primary subunit NMDAR1 (GRIN1) of the NMDA receptor channel. Ann. Hum. Genet. 58, 95–100.

    PubMed  CAS  Google Scholar 

  195. Karp S. J., Masu M., Eki T., Ozawa K., and Nakanishi S. (1993) Molecular cloning and chromosomal localization of the key subunit of the human N-methyl-D-aspartate receptor. J. Biol. Chem. 268, 3728–3733.

    PubMed  CAS  Google Scholar 

  196. Collins C., Duff C., Duncan A. M., Planells-Cases R., Sun W., Norremolle A., et al. (1993) Mapping of the human NMDA receptor subunit (NMDAR1) and the proposed NMDA receptor glutamate-binding subunit (NMDARA1) to chromosomes 9q34.3 and chromosome 8, respectively. Genomics 17, 237–239.

    PubMed  CAS  Google Scholar 

  197. Takano H., Onodera O., Tanaka H., Mori H., Sakimura K., Hori T., et al. (1993) Chromosomal localization of the epsilon 1, epsilon 3 and zeta 1 subunit genes of the human NMDA receptor channel. Biochem. Biophys. Res. Commun. 197, 922–926.

    PubMed  CAS  Google Scholar 

  198. Kalsi G., Whiting P., Bourdelles B. L., Callen D., Barnard E. A., and Gurling H. (1998) Localization of the human NMDAR2D receptor subunit gene (GRIN2D) to 19q13.1-qter, the NMDAR2A subunit gene to 16p13.2 (GRIN2A), and the NMDAR2C subunit gene (GRIN2C) to 17q24-q25 using somatic cell hybrid and radiation hybrid mapping panels. Genomics 47, 423–425.

    PubMed  CAS  Google Scholar 

  199. Mandich P., Schito A. M., Bellone E., Antonacci R., Finelli P., Rocchi M., and Ajmar F. (1994) Mapping of the human NMDAR2B receptor subunit gene (GRIN2B) to chromosome 12p12. Genomics 22, 216–218.

    PubMed  CAS  Google Scholar 

  200. Stephan D., Bon C., Holzwarth J. A., Galvan M., and Pruss R. M. (1996) Human metabotropic glutamate receptor 1: mRNA distribution, chromosome localization and functional expression of two splice variants. Neuropharmacology 35, 1649–1660.

    PubMed  CAS  Google Scholar 

  201. Ganesh S., Amano K., and Yamakawa K. (2000) Assignment of the gene GRM1 coding for metabotropic glutamate receptor 1 to human chromosome band 6q24 by in situ hybridization. Cytogenet. Cell Genet. 88, 314–315.

    PubMed  CAS  Google Scholar 

  202. Flor P. J., Lindauer K., Puttner I., Ruegg D., Lukic S., Knopfel T., and Kuhn R. (1995) Molecular cloning, functional expression and pharmacological characterization of the human metabotropic glutamate receptor type 2. Eur. J. Neurosci. 7, 622–629.

    PubMed  CAS  Google Scholar 

  203. Scherer S. W., Duvoisin R. M., Kuhn R., Heng H. H., Belloni E., and Tsui L. C. (1996) Localization of two metabotropic glutamate receptor genes, GRM3 and GRM8, to human chromosome 7q. Genomics 31, 230–233.

    PubMed  CAS  Google Scholar 

  204. Barbon A., Ferraboli S., and Barlati S. (2000) Assignment of the human metabotropic glutamate receptor gene GRM4 to chromosome 6 band p21.3 by radiation hybrid mapping. Cytogenet. Cell Genet. 88, 210.

    PubMed  CAS  Google Scholar 

  205. Devon R. S. and Porteous D. J. (1997) Physical mapping of a glutamate receptor gene in relation to a balanced translocation associated with schizophrenia in a large Scottish family. Psychiatr. Genet. 7, 165–169.

    PubMed  CAS  Google Scholar 

  206. Hashimoto T., Inazawa J., Okamoto N., Tagawa Y., Bessho Y., Honda Y., and Nakanishi S. (1997) The whole nucleotide sequence and chromosomal localization of the gene for human metabotropic glutamate receptor subtype 6. Eur. J. Neurosci. 9, 1226–1235.

    PubMed  CAS  Google Scholar 

  207. Barbon A., Ferraboli S., and Barlati S. (2000) Assignment of the human metabotropic glutamate receptor gene GRM7 to chromosome 3p26.1→p25.2 by radiation hybrid mapping. Cytogenet. Cell Genet. 88, 288.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans H. Schiffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiffer, H.H. Glutamate receptor genes. Mol Neurobiol 25, 191–212 (2002). https://doi.org/10.1385/MN:25:2:191

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:25:2:191

Index Entries

Navigation