Skip to main content
Log in

Reelin signaling and Cdk5 in the control of neuronal positioning

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuronal positioning is important for higher brain function because it is the architectural basis of the formation of precise synaptic circuits. Analysis of neurological mutant mice has led to dramatic progress in the identification and characterization of molecules important for neuronal positioning in the developing mammalian brain. Among these molecules, identification of signal pathways mediated by Reelin and Cdk5 kinase has provided a conceptual framework for exploring the molecular mechanisms underlying proper neuronal positioning in the developing mammalian brain. Recent evidence has implicated synergism between Reelin signaling and Cdk5 in contributing to the proper positioning of selective neuronal populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ram n y Cajal S. (1995 [1911]) Histology of the Nervous System of Man and Vertebrates. (L. Swanson, N. Swanson, Transl.) Oxford Univ. Press, Oxford, UK.

    Google Scholar 

  2. Angevine J. B. and Sidman R. L. (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192, 766–768.

    PubMed  Google Scholar 

  3. Rice D. S. and Curran T. (2001) Role of the reelin signaling pathway in central nervous system development. Annu. Rev. Neurosci. 24, 1005–1039.

    PubMed  CAS  Google Scholar 

  4. Ross M. E. and Walsh C. A. (2001) Human brain malformation and their lesson for neuronal migration. Annu. Rev. Neurosci. 24, 1041–1070.

    PubMed  CAS  Google Scholar 

  5. D’Arcangelo G., Miao G. G., Chen S. C., Soares H. D., Morgan J. I., and Curran T. (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374, 719–723.

    PubMed  CAS  Google Scholar 

  6. Hong S. E., Shugart Y. Y., Huang D. T., et al. (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat. Genet. 26, 93–96.

    PubMed  CAS  Google Scholar 

  7. Falconer D. S. (1951) Two new mutants trembler and reeler, with neurological actions in the house mouse. J. Genet. 50, 192–201.

    Google Scholar 

  8. Caviness V. S., Jr. Crandall J. E., and Edwards M. A. (1988) The reeler malformation: implications for neocortical histogenesis, in Cerebral Cortex. (A. Peters and EG Jones ed.) Vol. 17, Plenum, New York, pp. 59–89.

    Google Scholar 

  9. Caviness V. S. Jr. and Sidman R. L. (1973) Retrohippocampal, hippocampal and related structures of the forebrain in the reeler mutant mouse. J. Comp. Neurol. 147, 235–254.

    PubMed  Google Scholar 

  10. Mariani J., Crepel F., Mikoshiba K., Changeux J. P., and Sotelo C. (1977) Anatomical, physiological and biochemical studies of the cerebellum from Reeler mutant mouse. Philos. Trans. R. Soc. London 281, 1–28.

    CAS  Google Scholar 

  11. Mikoshiba K., Nagaike K., Kohsaka S., Takamatsu K., Aoki E., and Tsukada Y. (1980) Developmental study on the cerebellum from reeler mutant mouse in vivo and in vitro. Dev. Biol. 79, 64–80.

    PubMed  CAS  Google Scholar 

  12. Goffinet A. M. (1983) The embryonic development of the inferior olivary complex in normal and reeler mutant mice. J. Comp. Neurol. 219, 10–24.

    PubMed  CAS  Google Scholar 

  13. Goffinet A. M. (1984) Abnormal development of the facial nerve nucleus in reeler mutant mice. J. Anat. 138, 207–215.

    PubMed  Google Scholar 

  14. Yip J. W., Yip Y. P. L., Nakajima K., and Capriotti C. (2000) Reelin controls position of autonomic neurons in the spinal cord. Proc. Natl. Acad. Sci. USA 97, 8612–8616.

    PubMed  CAS  Google Scholar 

  15. Marin-Padilla M. (1998) Cajal-Retzius cells and the development of the neocortex. Trend. Neurosci. 21, 64–71.

    PubMed  CAS  Google Scholar 

  16. Ogawa M., Miyata T., Nakajima K., Yagyu K., Seike M., Ikenaka K., Yamamoto H., and Mikoshiba K. (1995) The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14, 899–912.

    PubMed  CAS  Google Scholar 

  17. Allendoerfer K. L. and Shatz C. J. (1994) The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu. Rev. Neurosci. 17, 185–218.

    PubMed  CAS  Google Scholar 

  18. D’Arcangelo G., Nakajima K., Miyata T., Ogawa M., Mikoshiba K., and Curran T. (1997) Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J. Neurosci. 17, 23–31.

    PubMed  CAS  Google Scholar 

  19. de Bergeyck V., Nakajima K., Lambert de Rouvroit C., Naerhuyzen B., et al. (1997) A truncated Reelin protein is produced but not secreted in the Orleans reeler mutation (Reln[rl-Orl]). Brain Res. Mol. Brain Res. 50, 85–90.

    PubMed  Google Scholar 

  20. Nakajima K., Mikoshiba K., Miyata T., Kudo C., and Ogawa M. (1997) Disruption of hippocampal development in vivo by CR-50 mAb against reelin. Proc. Natl. Acad. Sci. USA 94, 8196–8201.

    PubMed  CAS  Google Scholar 

  21. Miyata T., Nakajima K., Mikoshiba K., and Ogawa M. (1997) Regulation of Purkinje cell alignment by reelin as revealed with CR-50 antibody. J. Neurosci. 17, 3599–3609.

    PubMed  CAS  Google Scholar 

  22. Utsunomiya-Tate N., Kubo K., Tate S., et al. (2000) Reelin molecules assemble together to form a large protein complex, which is inhibited by the function-blocking CR-50 antibody. Proc. Natl. Acad. Sci. USA 97, 9729–9734.

    PubMed  CAS  Google Scholar 

  23. Quattrocchi C. C., Wannenes F., Persico A. M., et al. (2002) Reelin is a serine protease of the extracellular matrix. J. Biol. Chem. 277, 303–309.

    PubMed  CAS  Google Scholar 

  24. Sweet H. O., Bronson R. T., Johnson K. R., Cook S. A., and Davisson M. T. (1996) Scrambler, a new neurological mutation of the mouse with abnormalities of neuronal migration. Mamm. Genome 7, 798–802.

    PubMed  CAS  Google Scholar 

  25. Yoneshima H., Nagata E., Matsumoto M., et al. (1997) A novel neurological mutant mouse, yotari, which exhibits reeler-like phenotype but expresses CR-50 antigen/reelin. Neurosci. Res. 29, 217–223.

    PubMed  CAS  Google Scholar 

  26. Howell B. W., Hawkes R., Soriano P., and Cooper J. A. (1997) Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389, 733–737.

    PubMed  CAS  Google Scholar 

  27. Sheldon M., Rice D. S., D’Arcangelo G., et al. (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389, 730–733.

    PubMed  CAS  Google Scholar 

  28. Kojima T., Nakajima K., and Mikoshiba K. (2000) The disabled 1 gene is disrupted bya replacement with L1 fragment in yotari mice. Mol. Brain Res. 75, 121–127.

    PubMed  CAS  Google Scholar 

  29. Howell B. W., Gertler F. B., and Cooper J. A. (1997) Mouse disabled (mDab1): a Src binding protein implicated in neuronal development. EMBO J. 16, 121–132.

    PubMed  CAS  Google Scholar 

  30. Trommsdorff M., Gotthardt M., Hiesberger T., et al. (1999) Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97, 689–701.

    PubMed  CAS  Google Scholar 

  31. Trommsdorff M., Borg J. P., Margolis B., and Herz J. (1998) Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem. 273, 33,556–33,560.

    CAS  Google Scholar 

  32. Hiesberger T., Trommsdorff M., Howell B. W., Goffinet A., Mumby M. C., and Cooper J. A., Herz J. (1999) Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24, 481–489.

    PubMed  CAS  Google Scholar 

  33. D’Arcangelo G., Homayouni R., Keshvara L., Rice D. S., Sheldon M., and Curran T. (1999) Reelin is a ligand for lipoprotein receptors. Neuron 24, 471–479.

    PubMed  CAS  Google Scholar 

  34. Rice D. S., Sheldon M., D’Arcangelo G., Nakajima K., Goldowitz D., and Curran T. (1998) Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125, 3719–3729.

    PubMed  CAS  Google Scholar 

  35. Howell B. W., Herrick T. M., and Cooper J. A. (1999) Reelin-induced tryosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev. 13, 643–648.

    PubMed  CAS  Google Scholar 

  36. Keshvara L., Benhayon D., Magdaleno S., and Curran T. (2001) Identification of Reelin-induced sites of tyrosyl-phosphorylation of disabled 1. J. Biol. Chem. 276, 16,008–16,014.

    CAS  Google Scholar 

  37. Howell B. W., Herrick T. M., Hildebrand J. D., Zhang Y. N., and Cooper J. A. (2000) Dab1 tyrosine-phosphorylation sites relay positional signals during mouse brain development. Curr. Biol. 10, 877–885.

    PubMed  CAS  Google Scholar 

  38. Senzaki K., Ogawa M., and Yagi T. (1999) Proteins of the CNR family are multiple receptors for reelin. Cell 99, 635–647.

    PubMed  CAS  Google Scholar 

  39. Dulabon L., Olson E. C., Taglienti M. G., et al. (2000) Reelin binds alpha-3-beta-1 integrin and inhibits neuronal migration. Neuron 27, 33–44.

    PubMed  CAS  Google Scholar 

  40. Hartmann D., De Strooper B., and Saftig P. (1999) Presenilin-1 deficiency leads to loss of Cajal-Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly. Curr. Biol. 9, 719–727.

    PubMed  CAS  Google Scholar 

  41. Ringstedt T., Linnarsson S., Wagner J., et al. (1998) BDNF regulates reelin expression and Cajal-Retzius cell development in the cerebral cortex. Neuron 21, 305–315.

    PubMed  CAS  Google Scholar 

  42. Brunstrom J. E., Gray-Swain M. R., Osborne P. A., and Pearlman A. L. (1997) Neuronal heterotopias in the developing cerebral cortex produced by neurotrophin-4. Neuron 18, 505–517.

    PubMed  CAS  Google Scholar 

  43. Hsueh Y. P., Wang T. F., Yang F. C., and Sheng M. (2000) Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature 404, 298–302.

    PubMed  CAS  Google Scholar 

  44. Yang A., Walker N., Bronson R., et al. (2000) p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404, 99–103.

    PubMed  CAS  Google Scholar 

  45. Mallamaci A., Mercurio S., Muzio L., Cecchi C., Pardini C. L., Gruss P., and Boncinelli E. (2000) The lack of Emx2 causes impairment of Reelin signaling and defects of neuronal migration in the developing cerebral cortex. J. Neurosci. 20, 1109–1118.

    PubMed  CAS  Google Scholar 

  46. Bulfone A., Smiga S. M., Shimamura K., Peterson A., Puelles L., and Rubenstein J. L. (1995) T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 15, 63–78.

    PubMed  CAS  Google Scholar 

  47. Ohshima T., Ward J. M., Huh C. G., et al. (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl. Acad. Sci. USA 93, 11,173–11,178.

    CAS  Google Scholar 

  48. Chae T., Kwon Y. T., Bronson R., Dikkes P., Li E., and Tsai L. H. (1997) Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18, 29–42.

    PubMed  CAS  Google Scholar 

  49. Hellmich M. R., Pant H. C., Wada E., and Betty J. F. (1992) Neuronal cdc2like kinase: A cdc2-related protein kinase with predominantly neuronal expression. Proc. Natl. Acad. Sci. USA 89, 10,867–10,871.

    CAS  Google Scholar 

  50. Meyerson M., Enders G. H., Wu C. L., et al. (1992) A family of human cdc2-related protein kinases. EMBO J. 11, 2909–2917.

    PubMed  CAS  Google Scholar 

  51. Tsai L-H., Takahashi T., Caviness Jr. V. S., and Harlow E. (1993) Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse central nervous system. Development 119, 1029–1040.

    PubMed  CAS  Google Scholar 

  52. Tsai L-H., Delalle I., Caviness Jr. V. S., Chae T., and Harlow E. (1994) p35 is a neuronal-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371, 419–423.

    PubMed  CAS  Google Scholar 

  53. Tang D., Yeung J., Lee K-Y., et al. (1995) An isoform of the neuronal cyclin-dependent kinase 5 (cdk5) activator. J. Biol. Chem. 270, 26,897–26,903.

    CAS  Google Scholar 

  54. Ohshima T., Ogawa M., Veeranna, et al. (2001) Synergistic contribution of Cdk5/p35 and Reelin/Dab1 to the positioning of cortical neurons in the developing mouse brain. Proc. Natl. Acad. Sci. USA 98, 2764–2769.

    PubMed  CAS  Google Scholar 

  55. Ko J., Humbert S., Bronson R. T., Takahashi S., Kulkarni A. B., Li E., and Tsai L-H. (2001) p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J. Neurosci. 21, 6758–6771.

    PubMed  CAS  Google Scholar 

  56. Gilmore E. C., Ohshima T., Goffinet A. M., Kulkarni A. B., and Herrup K. (1998) Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J. Neurosci. 18, 6370–6377.

    PubMed  CAS  Google Scholar 

  57. Kwon Y. T. and Tsai L. H. (1998) A novel disruption of cortical development in p35(-/-) mice distinct from reeler. J. Comp. Neurol. 395, 510–522.

    PubMed  CAS  Google Scholar 

  58. Morest D. K. (1970) A study of neurogenesis in the forebrain of opossum pouch young. Z. Anat. Entwicklungsgesch. 130, 265–305.

    PubMed  CAS  Google Scholar 

  59. Nadarajah B., Brunstrom J. E., Grutzendler J., Wong R. O. L., and Pearlman, A. L. (2001) Two modes of radial migration in early development of the cerebral cortex. Nat. Neurosci. 4, 143–150.

    PubMed  CAS  Google Scholar 

  60. Miyata T., Kawaguchi A., Okano H., and Ogawa M. (2001) Asymmetric inheritance of radial fibers by cortical neurons. Neuron 31, 727–741.

    PubMed  CAS  Google Scholar 

  61. Ohshima T., Gilmore E. C., Longenecker G., et al. (1999) Migration defects of cdk5(−/−) neurons in the developing cerebellum is cell autonomous. J. Neurosci. 19, 6017–6026.

    PubMed  CAS  Google Scholar 

  62. Terashima T., Inoue K., Inoue Y., Yokoyama M., and Mokoshiba K. (1986) Observations on the cerebellum of normal-reeler mutant mouse chimera. J. Comp. Neurol. 252, 264–278.

    PubMed  CAS  Google Scholar 

  63. Goldowitz D., Cushing R. C., Laywell E., et al. (1997) Cerebellar disorganization characteristic of reeler in scrambler mutant mice despite presence of reelin. J. Neurosci. 17, 8767–8777.

    PubMed  CAS  Google Scholar 

  64. Goffinet A. M. (1997) Unscrambling a disabled brain. Nature 389, 668–669.

    PubMed  CAS  Google Scholar 

  65. Homayouni R. and Curran T. (2000) Cortical development: Cdk5 gets into sticky situations. Curr. Biol. 10, R331-R334.

    PubMed  CAS  Google Scholar 

  66. Ohshima T., Nagle J. W., Pant H. C., et al. (1995) Molecular cloning and chromosomal mapping of the mouse cyclin-dependent kinase 5 gene. Genomics 28, 585–588.

    PubMed  CAS  Google Scholar 

  67. Dernoncourt C., Ruelle D., and Goffinet A. M. (1991) Estimation of genetic distances between reeler and nearby loci on mouse chromosome 5. Genomics 11, 1167–1169.

    PubMed  CAS  Google Scholar 

  68. Ohshima T., Ogawa M., Takeuchi K., Takahashi S., Kulkarni A. B., and Mikoshiba K. (2002) Cdk5/p35 contributes synergistically with Reelin/Dab1 to the positioning of facial branchiomotor and inferior olive neurons in the developing mouse hindbrain. J. Neurosci. 22, 4036–4044.

    PubMed  CAS  Google Scholar 

  69. Herrick T. M. and Cooper J. A. (2002) A hypomorphic allele of dab1 reveals regional differences in reelin-Dab1 signaling during brain development. Development 129, 787–796.

    PubMed  CAS  Google Scholar 

  70. Frotscher M. (1997) Dual role of Cajal-Retzius cells and reelin in cortical development. Cell Tissue Res. 290, 315–322.

    PubMed  CAS  Google Scholar 

  71. Miyata T., Nakajima K., Aruga J., et al. (1996) Distribution of a reeler gene-related antigen in the developing cerebellum: an immunohistochemical study with an allogeneic antibody CR-50 on normal and reeler mice. J. Comp. Neurol. 372, 215–228.

    PubMed  CAS  Google Scholar 

  72. Gilmore E. C. and Herrup K. (2000) Cortical development: receiving reelin. Curr. Biol. 10, R162-R166.

    PubMed  CAS  Google Scholar 

  73. Magdaleno S., Keshvara L., and Curran T. (2002) Rescue of ataxia and preplate splitting by ectopic expression of Reelin in reeler mice. Neuron 33, 573–586.

    PubMed  CAS  Google Scholar 

  74. Nikolic M., Chou M. M., Lu W., Mayer B. J., and Tsai L-H. (1998) The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity. Nature 395, 194–198.

    PubMed  CAS  Google Scholar 

  75. Ishiguro K., Takamatsu M., Tomizawa K., et al. (1992) Tau protein kinase I converts normal Tau protein into A68-like component of paired helical filaments. J. Biol. Chem. 267, 10,897–10,901.

    CAS  Google Scholar 

  76. Pigino G., Paglini G., Ulloa L., Avila J., and Caceres A. (1997) Analysis of the expression, distribution and function of cyclin dependent kinase 5 (Cdk5) in developing cerebellar macroneurons. J. Cell Sci. 110, 257–270.

    PubMed  CAS  Google Scholar 

  77. Liu Z., Steward R., and Luo L. (2000) Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport. Nature Cell Biol. 2, 776–783.

    PubMed  CAS  Google Scholar 

  78. Francis F., Koulakoff A., Boucher D., et al. (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23, 247–256.

    PubMed  CAS  Google Scholar 

  79. Gleeson J. G., Lin P. T., Flanagan L. A., and Walsh C. A. (1999) Doublecortin is a micro-tubule-associated protein and is expressed widely by migrating neurons. Neuron 23, 257–271.

    PubMed  CAS  Google Scholar 

  80. Sasaki S., Shionoya A., Ishida M., Gambello M. J., Yingling J., Wynshaw-Boris A., and Hirotsune S. (2000) A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28, 681–696.

    PubMed  CAS  Google Scholar 

  81. Niethammer M., Smith D. S., Ayala R., Peng J., Ko J., Lee M-S., Morabito M., and Tsai L-H. (2000) NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28, 697–711.

    PubMed  CAS  Google Scholar 

  82. Kwon Y. T., Gupta A., Zhou Y., Nikolic M., and Tsai L. H. (2000) Regulation of N-cadherin-mediated adhesion by the p35-Cdk5 kinase. Curr. Biol. 10, 363–372.

    PubMed  CAS  Google Scholar 

  83. De Long G. R. and Sidman R. L. (1970) Alignment deficit of reaggregating cells in culture of developing brains of reeler mutant mice. Dev. Biol. 22, 584–600.

    Google Scholar 

  84. Hoffarth R. M., Johnston J. G., Krushel L. A., and van der Kooy D. (1995) The mouse mutation reeler causes increased adhesion within a subpopulation of early postmitotic cortical neurons. J. Neurosci. 15, 4838–4850.

    PubMed  CAS  Google Scholar 

  85. Del Rio J. A., Heimrich B., Borrell V., et al. (1997) A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385, 70–74.

    PubMed  Google Scholar 

  86. Borrell V., Del Rio J. A., Alcantara S., et al. (1999) Reelin regulates the development and synaptogenesis of the layer-specific entorhinohippocampal connections. J. Neurosci. 19, 1345–1358.

    PubMed  CAS  Google Scholar 

  87. Rice D. S., Nusinowitz S., Azimi A. M., Martinez A., Soriano E., and Curran T. (2001) The Reelin pathway modulates the structure and function of retinal synpatic circuitry. Neuron 31, 929–941.

    PubMed  CAS  Google Scholar 

  88. Connell-Crowley L., Le Gall M., Vo D. J., and Giniger E. (2000) The cyclin-dependent kinase Cdk5 controls multiple aspects of axon patterning in vivo. Curr. Biol. 10, 599–602.

    Article  PubMed  CAS  Google Scholar 

  89. Caviness V. S., Jr. (1976) Patterns of cell and fiber distribution in the neocortex of the reeler mutant mouse. J. Comp. Neurol. 170, 435–474.

    PubMed  Google Scholar 

  90. Simmons P. A., Lemmon V., and Pearlman A. L. (1982) Afferent and efferent connections of the striate and extrastriate visual cortex of the normal and reeler mouse. J. Comp. Neurol. 211, 295–308.

    PubMed  CAS  Google Scholar 

  91. Terashima T., Inoue K., Inoue Y., Mikoshiba K., and Tsukada Y. (1983) Distribution and morphology of corticospinal tract neurons in reeler mouse cortex by the retrograde HRP method. J. Comp. Neurol. 218, 314–326.

    PubMed  CAS  Google Scholar 

  92. Hardy J., Duff K., Hardy K. G., Perez-Tur J., and Hutton M. (1998) Genetic dissection of Alzheimer’s disease and related dementias: amyloid and its relationship to tau. Nat. Neurosci. 1, 355–358.

    PubMed  CAS  Google Scholar 

  93. Rubinsztein D. C. (1997) The genetics of Alzheimer’s disease. Prog. Neurobiol. 52, 447–454.

    PubMed  CAS  Google Scholar 

  94. Howell B. W., Lanier L. M., Frank R., Gertler F. B., and Cooper J. A. (1999) The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glycoproteins and to phospholipids. Mol. Cell. Biol. 19, 5179–5188.

    PubMed  CAS  Google Scholar 

  95. Homayouni R., Rice D. S., Sheldon M., and Curran T. (1999) Disabled-1 binds to the cytoplasmic domain of amyloid precursor-like protein 1. J. Neurosci. 19, 7507–7515.

    PubMed  CAS  Google Scholar 

  96. Dhavan R. and Tsai L. H. (2001) A decade of Cdk5. Nat. Rew. Mol. Cell Biol. 2, 749–759.

    CAS  Google Scholar 

  97. Patrick G. N., Zukenberg L., Nikolic M., et al. (1999) Conversion of p35 to p25 de-regulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615–622.

    PubMed  CAS  Google Scholar 

  98. Nguyen M. D., Lariviere R. C., and Julien J. P. (2001) Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron 30, 135–147.

    PubMed  CAS  Google Scholar 

  99. Yoo B. C. and Lubec G. (2001) p25 protein in neurodegeneration. Nature 411, 763–764.

    PubMed  CAS  Google Scholar 

  100. Takashima A., Murayama M., Yasutake K., Takahashi H., Yokoyama M., and Ishiguro K. (2001) Involvement of cyclin dependent kinase5 activator p25 on tau phosphorylation in mouse brain. Neurosci. Lett. 306, 37–40.

    PubMed  CAS  Google Scholar 

  101. Harada T., Morooka T., Ogawa S., and Nishida E. (2001) ERK induces p35, a neuron-specific activator of Cdk5, through induction of Egr 1. Nature Cell Bio. 3, 453–459.

    CAS  Google Scholar 

  102. Zukerberg L. R., Patrick G. N., Nikolic M., et al. (2000) Cables links Cdk5 and c-Ab1 and facilitates cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 26, 633–646.

    PubMed  CAS  Google Scholar 

  103. McEvilly R. J., de Diaz M. O., Schonemann M. D., Hooshmand F., and Rosenfeld M. G. (2002) Transcriptional regulation of cortical neuron migration by POU domain factors. Science 295, 1528–1532.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Ohshima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohshima, T., Mikoshiba, K. Reelin signaling and Cdk5 in the control of neuronal positioning. Mol Neurobiol 26, 153–166 (2002). https://doi.org/10.1385/MN:26:2-3:153

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:26:2-3:153

Index Entries

Navigation