Skip to main content
Log in

Molecular aspects of vertebrate retinal development

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The formation of retina from neural plate has been mapped extensively by anatomical and molecular methods. The major cascades of transcription factor expression have been identified, and deficits resulting from transcription factor knockouts are well characterized. There is extensive cross-regulation, both positive and negative, at the transcriptional level between transcription factors and this is vital in the formation of neural compartments. Many transcription factors are important at both early stages of optic cup formation and later stages of terminal differentiation of retinal cell types. The transcription factor cascades can be regulated by extrinsic factors, and some of the intracellular signaling pathways whereby this is achieved have been identified. Defining the quantitative interactions between regulatory molecules will be the next step in understanding this excellent model of vertebrate central nervous system (CNS) development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnstable, C. J. (1987) A molecular view of vertebrate retinal development. Mol. Neurobiol. 1, 9–46.

    Article  PubMed  CAS  Google Scholar 

  2. Morse, D. E., and P. S. McCann. (1984) Neuroectoderm of the early embryonic rat eye. Scanning electron microscopy. Invest. Ophthalmol. Vis. Sci. 25, 899–907.

    PubMed  CAS  Google Scholar 

  3. Grindley, J. C., D. R. Davidson, and R. E. Hill. (1995) The role of Pax-6 in eye and nasal development. Development 121, 1433–1442.

    PubMed  CAS  Google Scholar 

  4. Halder, G., P. Callaerts, and W. J. Gehring. (1995) New perspectives on eye evolution. Curr Opin. Genet. Dev. 5, 602–609.

    Article  PubMed  CAS  Google Scholar 

  5. Altmann, C. R., R. L. Chow, R. A. Lang, and A. Hemmati-Brivanlou. (1997) Lens induction by Pax-6 in Xenopus laevis. Dev. Biol. 185, 119–123.

    Article  PubMed  CAS  Google Scholar 

  6. Mathers, P. H., and M. Jamrich. (2000) Regulation of eye formation by the Rx and pax6 homeobox genes. Cell Mol. Life Sci. 57, 186–194.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang, L., P. H. Mathers, and M. Jamrich. (2000) Function of Rx, but not Pax6, is essential for the formation of retinal progenitor cells in mice. Genesis 28, 135–142.

    Article  PubMed  CAS  Google Scholar 

  8. Chuang, J. C., and P. A. Raymond. (2001) Zebrafish genes rx1 and rx2 help define the region of forebrain that gives rise to retina. Dev. Biol. 231, 13–30.

    Article  PubMed  CAS  Google Scholar 

  9. Bernier, G., F. Panitz, X. Zhou, T. Hollemann, P. Gruss, and T. Pieler. (2000) Expanded retina territory by midbrain transformation upon over-expression of Six6 (Optx2) in Xenopus embryos. Mech. Dev. 93, 59–69.

    Article  PubMed  CAS  Google Scholar 

  10. Lagutin, O., C. C. Zhu, Y. Furuta, D. H. Rowitch, A. P. McMahon, and G. Oliver. (2001) Six3 promotes the formation of ectopic optic vesiclelike structures in mouse embryos. Dev. Dyn. 221, 342–349.

    Article  PubMed  CAS  Google Scholar 

  11. Loosli, F., S. Winkler, and J. Wittbrodt. (1999) Six3 overexpression initiates the formation of ectopic retina. Genes Dev. 13, 649–654.

    PubMed  CAS  Google Scholar 

  12. Martinez-Morales, J. R., M. Signore, D. Acampora, A. Simeone, and P. Bovolenta. (2001) Otx genes are required for tissue specification in the developing eye. Development 128, 2019–2030.

    PubMed  CAS  Google Scholar 

  13. Bumsted, K. M., and C. J. Barnstable. (2000) Dorsal retinal pigment epithelium differentiates as neural retina in the microphthalmia (mi/mi) mouse. Invest. Ophthalmol. Vis. Sci. 41, 903–908.

    PubMed  CAS  Google Scholar 

  14. Bumsted, K. M., L. J. Rizzolo, and C. J. Barnstable. (2001) Defects in the MITF (mi/mi) apical surface are associated with a failure of outer segment elongation. Exp. Eye. Res. 73, 383–392.

    Article  PubMed  CAS  Google Scholar 

  15. Nguyen, M., and H. Arnheiter. (2000) Signaling and transcriptional regulation in early mammalian eye development, a link between FGF and MITF. Development 127, 3581–3591.

    PubMed  CAS  Google Scholar 

  16. Liu, I. S., J. D. Chen, L. Ploder, D. Vidgen, D. van der Kooy, V. I. Kalnins, and R. R. McInnes. (1994) Developmental expression of a novel murine homeobox gene (Chx10), evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron 13, 377–393.

    Article  PubMed  CAS  Google Scholar 

  17. Vogel-Hopker, A., T. Momose, H. Rohrer, K. Yasuda, L. Ishihara, and D. H. Rapaport. (2000) Multiple functions of fibroblast growth factor-8 (FGF-8) in chick eye development. Mech. Dev. 94, 25–36.

    Article  PubMed  CAS  Google Scholar 

  18. Zhao, S., S. C. Thornquist, and C. J. Barnstable. (1995) In vitro transdifferentiation of embryonic rat retinal pigment epithelium to neural retina. Brain Res. 677, 300–310.

    Article  PubMed  CAS  Google Scholar 

  19. Zhao, S., F. C. Hung, J. S. Colvin, A. White, W. Dai, F. J. Lovicu, D. M. Ornitz, and P. A. Overbeek. (2001) Patterning the optic neuroepithelium by FGF signaling and Ras activation. Development 128, 5051–5060.

    PubMed  CAS  Google Scholar 

  20. Ohkubo, Y., C. Chiang, and J. L. Rubenstein. (2002) Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles. Neuroscience 111, 1–17.

    Article  PubMed  CAS  Google Scholar 

  21. Hallonet, M., T. Hollemann, T. Pieler, and P. Gruss. (1999) Vax1, a novel homeobox-containing gene, directs development of the basal forebrain and visual system. Genes Dev. 13, 3106–3114.

    Article  PubMed  CAS  Google Scholar 

  22. Macdonald, R., K. A. Barth, Q. Xu, N. Holder, I. Mikkola, and S. W. Wilson. (1995) Midline signalling is required for Pax gene regulation and patterning of the eyes. Development 121, 3267–3278.

    PubMed  CAS  Google Scholar 

  23. Porter, F. D., J. Drago, Y. Xu, S. S. Cheema, C. Wassif, S. P. Huang, E. Lee, A. Grinberg, J. S. Massalas, D. Bodine, F. Alt, and H. Westphal. (1997) Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development 124, 2935–2944.

    PubMed  CAS  Google Scholar 

  24. Foerst-Potts, L., and T. W. Sadler. (1997) Disruption of Msx-1 and Msx-2 reveals roles for these genes in craniofacial, eye, and axial development. Dev. Dyn. 209, 70–84.

    Article  PubMed  CAS  Google Scholar 

  25. Holme, R. H., S. J. Thomson, and D. R. Davidson. (2000) Ectopic expression of Msx2 in chick retinal pigmented epithelium cultures suggests a role in patterning the optic vesicle. Mech. Dev. 91, 175–187.

    Article  PubMed  CAS  Google Scholar 

  26. Belecky-Adams, T. and R. Adler. (2001) Developmental expression patterns of bone morphogenetic proteins, receptors, and binding proteins in the chick retina. J. Comp. Neurol. 430, 562–572.

    Article  PubMed  CAS  Google Scholar 

  27. Fuhrmann, S., E. M. Levine, and T. A. Reh. (2000) Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development — Supplement. 127, 4599–4609.

    CAS  Google Scholar 

  28. Zhang, X. M., and X. J. Yang. (2001) Temporal and spatial effects of Sonic hedgehog signaling in chick eye morphogenesis. Dev. Biol. 233, 271–290.

    Article  PubMed  CAS  Google Scholar 

  29. Barbieri, A. M., G. Lupo, A. Bulfone, M. Andreazzoli, M. Mariani, F. Fougerousse, G. G. Consalez, G. Borsani, J. S. Beckmann, G. Barsacchi, A. Ballabio, and S. Banfi. (1999) A homeobox gene, vax2, controls the patterning of the eye dorsoventral axis. Proc. Natl. Acad. Sci. USA 96, 10729–10734.

    Article  PubMed  CAS  Google Scholar 

  30. Schulte, D., and C. L. Cepko. (2000) Two homeobox genes define the domain of EphA3 expression in the developing chick retina. Development 127, 5033–5045.

    PubMed  CAS  Google Scholar 

  31. Schulte, D., T. Furukawa, M. A. Peters, C. A. Kozak, and C. L. Cepko. (1999) Misexpression of the Emx-related homeobox genes cVax and mVax2 ventralizes the retina and perturbs the retinotectal map. Neuron 24, 541–553.

    Article  PubMed  CAS  Google Scholar 

  32. Cepko, C. L. (1999) The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates. Curr. Opin. Neurobiol. 9, 37–46.

    Article  PubMed  CAS  Google Scholar 

  33. Kageyama, R., M. Ishibashi, K. Takebayashi, and K. Tomita. (1997) bHLH transcription factors and mammalian neuronal differentiation. Int. J. Biochem. Cell Biol. 29, 1389–1399.

    Article  PubMed  CAS  Google Scholar 

  34. Morrow, E. M., T. Furukawa, J. E. Lee, and C. L. Cepko. (1999) NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126, 23–36.

    PubMed  CAS  Google Scholar 

  35. Yan, R. T., and S. Z. Wang. (1998) neuroD induces photoreceptor cell overproduction in vivo and de novo generation in vitro. J. Neurobiol. 36, 485–496.

    Article  PubMed  CAS  Google Scholar 

  36. Tomita, K., M. Ishibashi, K. Nakahara, S. L. Ang, S. Nakanishi, F. Guillemot, and R. Kageyama. (1996) Mammalian hairy and Enhancer of split homolog 1 regulates differentiation of retinal neurons and is essential for eye morphogenesis. Neuron 16, 723–734.

    Article  PubMed  CAS  Google Scholar 

  37. Bae, S., Y. Bessho, M. Hojo, and R. Kageyama. (2000) The bHLH gene Hes6, an inhibitor of Hes1, promotes neuronal differentiation. Development 127, 2933–2943.

    PubMed  CAS  Google Scholar 

  38. Tomita, K., S. Nakanishi, F. Guillemot, and R. Kageyama. (1996) Mash1 promotes neuronal differentiation in the retina. Genes Cells 1, 765–774.

    Article  PubMed  CAS  Google Scholar 

  39. Hicks, D., and C. J. Barnstable. (1987) Different rhodopsin monoclonal antibodies reveal different binding patterns on developing and adult rat retina. J. Histochem. Cytochem. 35, 1317–1328.

    PubMed  CAS  Google Scholar 

  40. Treisman, J. E., M. A. Morabito, and C. J. Barnstable. (1988) Opsin expression in the rat retina is developmentally regulated by transcriptional activation. Mol. Cell Biol. 8, 1570–1579.

    PubMed  CAS  Google Scholar 

  41. Morabito, M. A., X. Yu, and C. J. Barnstable. (1991) Characterization of developmentally regulated and retina-specific nuclear protein binding to a site in the upstream region of the rat opsin gene. J. Biol. Chem. 266, 9667–9672.

    PubMed  CAS  Google Scholar 

  42. Chen, S., Q. L. Wang, Z. Nie, H. Sun, G. Lennon, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, and D. J. Zack. (1997) Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 19, 1017–1030.

    Article  PubMed  CAS  Google Scholar 

  43. Furukawa, T., E. M. Morrow, and C. L. Cepko. (1997) Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91, 531–541.

    Article  PubMed  CAS  Google Scholar 

  44. Freund, C. L., C. Y. Gregory-Evans, T. Furukawa, M. Papaioannou, J. Looser, L. Ploder, J. Bellingham, D. Ng, J. A. Herbrick, A. Duncan, S. W. Scherer, L. C. Tsui, A. Loutradis-Anagnostou, S. G. Jacobson, C. L. Cepko, S. S. Bhattacharya, and R. R. Mclnnes. (1997) Conerod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. Cell 91, 543–553.

    Article  PubMed  CAS  Google Scholar 

  45. Mears, A. J., M. Kondo, P. K. Swain, Y. Takada, R. A. Bush, T. L. Saunders, P. A. Sieving, and A. Swaroop. (2001) Nrl is required for rod photoreceptor development. Nat. Genet. 29, 447–452.

    Article  PubMed  CAS  Google Scholar 

  46. Haider, N. B., S. G. Jacobson, A. V. Cideciyan, R. Swiderski, L. M. Streb, C. Searby, G. Beck, R. Hockey, D. B. Hanna, S. Gorman, D. Duhl, R. Carmi, J. Bennett, R. G. Weleber, G. A. Fishman, A. F. Wright, E. M. Stone, and V. C. Sheffield. (2000) Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate. Nat. Genet. 24, 127–131.

    Article  PubMed  CAS  Google Scholar 

  47. Milam, A. H., L. Rose, A. V. Cideciyan, M. R. Barakat, W. X. Tang, N. Gupta, T. S. Aleman, A. F. Wright, E. M. Stone, V. C. Sheffield, and S. G. Jacobson. (2002) The nuclear receptor NR2E3 plays a role in human retinal photoreceptor differentiation and degeneration. Proc. Natl. Acad. Sci. USA 99, 473–478.

    Article  PubMed  CAS  Google Scholar 

  48. Martinez, J. A., and C. J. Barnstable. (1998) Erx, a novel retina-specific homeodomain transcription factor, can interact with Ret 1/PCEI sites. Biochem. Biophys. Res. Commun. 250, 175–180.

    Article  PubMed  CAS  Google Scholar 

  49. Watanabe, T., and M. C. Raff. (1990) Rod photoreceptor development in vitro: intrinsic properties of proliferating neuroepithelial cells change as development proceeds in the rat retina. Neuron 4, 461–467.

    Article  PubMed  CAS  Google Scholar 

  50. Cepko, C. L., C. P. Austin, X. Yang, M. Alexiades, and D. Ezzeddine. (1996) Cell fate determination in the vertebrate retina. Proc. Natl. Acad. Sci. USA 93, 589–595.

    Article  PubMed  CAS  Google Scholar 

  51. Sparrow, J. R., D. Hicks, and C. J. Barnstable. (1990) Cell commitment and differentiation in explants of embryonic rat neural retina. Comparison with the developmental potential of dissociated retina. Brain. Res. Dev. Brain. Res. 51, 69–84.

    Article  PubMed  CAS  Google Scholar 

  52. Levine, E. M., S. Fuhrmann and T. A. Reh. (2000) Soluble factors and the development of rod photoreceptors. Cell. Mol. Life. Sci. 57, 224–234.

    Article  PubMed  CAS  Google Scholar 

  53. Hyatt, G. A., E. A. Schmitt, J. M. Fadool and J. E. Dowling. (1996) Retinoic acid alters photoreceptor development in vivo. Proc. Nat. Acad. Sci. (USA) 93, 13,298–13,303.

    Article  CAS  Google Scholar 

  54. Wagner, E., P. McCaffery, and U. C. Drager. (2000) Retinoic acid in the formation of the dorsoventral retina and its central projections. Dev. Biol. 222, 460–470.

    Article  PubMed  CAS  Google Scholar 

  55. Davis, A. A., M. M. Matzuk, and T. A. Reh. (2000) Activin A promotes progenitor differentiation into photoreceptors in rodent retina. Mol. Cell. Neurosci. 15, 11–21.

    Article  PubMed  CAS  Google Scholar 

  56. Levine, E. M., H. Roelink, J. Turner, and T. A. Reh. (1997) Sonic hedgehog promotes rod photoreceptor differentiation in mammalian retinal cells in vitro. J. Neurosci. 17, 6277–6288.

    PubMed  CAS  Google Scholar 

  57. Stenkamp, D. L., R. A. Frey, S. N. Prabhudesai, and P. A. Raymond. (2000) Function for Hedgehog genes in zebrafish retinal development. Dev. Biol. 220, 238–252.

    Article  PubMed  CAS  Google Scholar 

  58. Kirsch, M., S. Fuhrmann, A. Wiese, and H. D. Hofmann. (1996) CNTF exerts opposite effects on in vitro development of rat and chick photoreceptors. Neuroreport 7, 697–700.

    Article  PubMed  CAS  Google Scholar 

  59. Fuhrmann, S., S. Heller, H. Rohrer, and H. D. Hofmann. (1998) A transient role for ciliary neurotrophic factor in chick photoreceptor development. J. Neurobiol. 37, 672–683.

    Article  PubMed  CAS  Google Scholar 

  60. Xie, H. Q., and R. Adler. (2000) Green cone opsin and rhodopsin regulation by CNTF and staurosporine in cultured chick photoreceptors. Invest. Ophthalmol. Vis. Sci. 41, 4317–4323.

    PubMed  CAS  Google Scholar 

  61. Ezzeddine, Z. D., X. Yang, T. DeChiara, G. Yancopoulos, and C. L. Cepko. (1997) Postmitotic cells fated to become rod photoreceptors can be respecified by CNTF treatment of the retina. Development 124, 1055–1067.

    PubMed  CAS  Google Scholar 

  62. Neophytou, C., A. B. Vernallis, A. Smith, and M. C. Raff. (1997) Muller-cell-derived leukaemia inhibitory factor arrests rod photoreceptor differentiation at a postmitotic pre-rod stage of development. Development 124, 2345–2354.

    PubMed  CAS  Google Scholar 

  63. Baas, D., K. M. Bumsted, J. A. Martinez, F. M. Vaccarino, K. C. Wikler, and C. J. Barnstable. (2000) The subcellular localization of Otx2 is cell-type specific and developmentally regulated in the mouse retina. Brain. Res. Mol. Brain. Res. 78, 26–37.

    Article  PubMed  CAS  Google Scholar 

  64. Zhang, S.S-M., Wei, JY., Li, CJ., Barstable, CJ., Fu, XY. (2001) The Temporal and spatial expression pattern of signal transducer and activator of transcription factors in mouse eye development. IOVS 42, S354.

  65. Peterson, W. M., Q. Wang, R. Tzekova, and S. J. Wiegand. (2000) Ciliary neurotrophic factor and stress stimuli activate the Jak-STAT pathway in retinal neurons and glia. J. Neurosci. 20, 4081–4090.

    PubMed  CAS  Google Scholar 

  66. Li, H. S., J. M. Yang, R. D. Jacobson, D. Pasko, and O. Sundin. (1994) Pax-6 is first expressed in a region of ectoderm anterior to the early neural plate: implications for stepwise determination of the lens. Dev. Biol. 162, 181–194.

    Article  PubMed  CAS  Google Scholar 

  67. Jean, D., G. Bernier, and P. Gruss. (1999) Six6 (Optx2) is a novel murine Six3-related homeobox gene that demarcates the presumptive pituitary/hypothalamic axis and the ventral optic stalk. Mech. Dev. 84, 31–40.

    Article  PubMed  CAS  Google Scholar 

  68. Dattani, M. T., J. P. Martinez-Barbera, P. Q. Thomas, J. M. Brickman, R. Gupta, I. L. Martensson, H. Toresson, M. Fox, J. K. Wales, P. C. Hindmarsh, S. Krauss, R. S. Beddington, and I. C. Robinson. (1998) Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat. Genet. 19, 125–133.

    Article  PubMed  CAS  Google Scholar 

  69. Gripp, K. W., D. Wotton, M. C. Edwards, E. Roessler, L. Ades, P. Meinecke, A. Richieri-Costa, E. H. Zackai, J. Massague, M. Muenke, and S. J. Elledge. (2000) Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Nat. Genet. 25, 205–208.

    Article  PubMed  CAS  Google Scholar 

  70. Nornes, H. O., G. R. Dressler, E. W. Knapik, U. Deutsch, and P. Gruss. (1990) Spatially and temporally restricted expression of Pax2 during murine neurogenesis. Development 109, 797–809.

    PubMed  CAS  Google Scholar 

  71. Huh, S., V. Hatini, R. C. Marcus, S. C. Li, and E. Lai. (1999) Dorsal-ventral patterning defects in the eye of BF-1-deficient mice associated with a restricted loss of shh expression. Dev. Biol. 211, 53–63.

    Article  PubMed  CAS  Google Scholar 

  72. Yu, R. T., M. Y. Chiang, T. Tanabe, M. Kobayashi, K. Yasuda, R. M. Evans, and K. Umesono. (2000) The orphan nuclear receptor Tlx regulates Pax2 and is essential for vision. Proc. Natl. Acad. Sci. USA 97, 2621–2625.

    Article  PubMed  CAS  Google Scholar 

  73. Koshiba-Takeuchi, K., J. K. Takeuchi, K. Matsumoto, T. Momose, K. Uno, V. Hoepker, K. Ogura, N. Takahashi, H. Nakamura, K. Yasuda, and T. Ogura. (2000) Tbx5 and the retinotectum projection. Science 287, 134–137.

    Article  PubMed  CAS  Google Scholar 

  74. Sakuta, H., R. Suzuki, H. Takahashi, A. Kato, T. Shintani, S. Iemura, T. S. Yamamoto, N. Ueno, and M. Noda. (2001) Ventroptin a BMP-4 antagonist expressed in a double-gradient pattern in the retina. Science 293, 111–115.

    Article  PubMed  CAS  Google Scholar 

  75. Smith, R. S., A. Zabaleta, T. Kume, O. V. Savinova, S. H. Kidson, J. E. Martin, D. Y. Nishimura, W. L. Alward, B. L. Hogan, and S. W. John. (2000) Haploinsufficiency of the transcription factors FOXC1 and FOXC2 results in aberrant ocular development. Hum. Mol. Genet. 9, 1021–1032.

    Article  PubMed  CAS  Google Scholar 

  76. Cayouette, M., A. V. Whitmore, G. Jeffery, and M. Raff. (2001) Asymmetric segregation of Numb in retinal development and the influence of the pigmented epithelium. J. Neurosci. 21, 5643–5651.

    PubMed  CAS  Google Scholar 

  77. Brown, N. L., S. Patel, J. Brzezinski, and T. Glaser. (2001) Math5 is required for retinal ganglion cell and optic nerve formation. Development 128, 2497–2508.

    PubMed  CAS  Google Scholar 

  78. Inoue, T., M. Hojo, Y. Bessho, Y. Tano, J. E. Lee, and R. Kageyama. (2002) Math3 and NeuroD regulate amacrine cell fate specification in the retina. Development 129, 831–842.

    PubMed  CAS  Google Scholar 

  79. Hojo, M., T. Ohtsuka, N. Hashimoto, G. Gradwohl, F. Guillemot, and R. Kageyama. (2000) Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina. Development 127, 2515–2522.

    PubMed  CAS  Google Scholar 

  80. Satow, T., S. K. Bae, T. Inoue, C. Inoue, G. Miyoshi, K. Tomita, Y. Bessho, N. Hashimoto, and R. Kageyama. (2001) The basic helix-loop-helix gene hesr2 promotes gliogenesis in mouse retina. J. Neurosci. 21, 1265–1273.

    PubMed  CAS  Google Scholar 

  81. Ng, L., J. B. Hurley, B. Dierks, M. Srinivas, C. Salto, B. Vennstrom, T. A. Reh, and D. Forrest. (2001) A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat. Genet. 27, 94–98.

    PubMed  CAS  Google Scholar 

  82. Xiang, M., L. Zhou, Y. W. Peng, R. L. Eddy, T. B. Shows, and J. Nathans. (1993) Brn-3b: a POU domain gene expressed in a subset of retinal ganglion cells. Neuron 11, 689–701.

    Article  PubMed  CAS  Google Scholar 

  83. Liu, W., S. L. Khare, X. Liang, M. A. Peters, X. Liu, C. L. Cepko, and M. Xiang. (2000) All Brn3 genes can promote retinal ganglion cell differentiation in the chick. Development 127, 3237–3247.

    PubMed  CAS  Google Scholar 

  84. Bao, Z. Z., and C. L. Cepko. (1997) The expression and function of Notch pathway genes in the developing rat eye. J. Neurosci. 17, 1425–1434.

    PubMed  CAS  Google Scholar 

  85. Furukawa, T., C. A. Kozak, and C. L. Cepko. (1997) rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc. Natl. Acad. Sci. USA 94, 3088–3093.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin J. Barnstable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S.SM., Fu, XY. & Barnstable, C.J. Molecular aspects of vertebrate retinal development. Mol Neurobiol 26, 137–152 (2002). https://doi.org/10.1385/MN:26:2-3:137

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:26:2-3:137

Index Entries

Navigation