Skip to main content
Log in

Transgene methylation in mice reflects copy number but not expression level

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In mammals, CpG methylation is one of the mechanisms of epigenetic control over the linear sequence of bases of deoxyribonucleic acid (DNA); about 70% of CpG dinucleotides are methylated. The actual signal that triggers DNA methylation is not known, although repetitive DNA has been shown to be an attractive template for DNA methylases. To address methylation events associated with transgenic copy number, we have analyzed transgenes that are actively transcribed in a tissue-specific manner. We have compared gross transgene methylation by restriction-enzyme digestion in expressing and nonexpressing tissues. The observed pattern suggests that the DNA methylation machinery can recognize repeated genomic sequences independently of their transcriptional activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Garrick D., Fiering, S., Martin, D. I., and Whitelaw, E. (1998) Repeat-induced gene silencing in mammals. Nat. Genet. 18, 56–59.

    Article  PubMed  CAS  Google Scholar 

  2. Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21.

    Article  PubMed  CAS  Google Scholar 

  3. Walsh, C. P. and Bestor, T. H. (1999) Cytosine methylation and mammalian development. Genes Dev. 13, 26–34.

    PubMed  CAS  Google Scholar 

  4. Whitelaw, E. and Martin, D. I. (2001) Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat Genet. 27, 361–365.

    Article  PubMed  CAS  Google Scholar 

  5. Ramirez, A., Milot, E., Ponsa, I., et al. (2001) Sequence and chromosomal context effects on variegated expression of keratin 5/lacZ constructs in stratified epithelia of transgenic mice. Genetics 158, 341–350.

    PubMed  CAS  Google Scholar 

  6. Whitelaw, C. B. A., Harris, S., McClenaghan, M., Simons, J. P., and Clark, A. J. (1992) Position-independent expression of the ovine beta-lactoglobulin gene in transgenic mice, Biochem. J. 286, 31–39.

    PubMed  CAS  Google Scholar 

  7. Burdon, T. G., Maitland, K. A., Clark A. J., Wallace, R., and Watson, C. J. (1994) Regulation of the sheep beta-lactoglobulin gene by lactogenic hormones is mediated by a transcription factor that binds an interferon-gamma activation site-related element. Mol. Endocrinol. 8, 1528–1536.

    Article  PubMed  CAS  Google Scholar 

  8. Whitelaw, C. B. A., Grolli, S., Accornero, P., Donofrio, G., Farini, E., and Webster, J. (2000) Matrix attachment region regulates basal beta-lactoglobulin transgene expression. Gene 244, 73–80.

    Article  PubMed  CAS  Google Scholar 

  9. Dorer, D. R. and Henikoff, S. (1994) Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77, 993–1002.

    Article  PubMed  CAS  Google Scholar 

  10. Dobie, K. W., Lee, M., Fantes, J. A., Graham, E., Clark, A. J., and McClenaghan, M. (1996) Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus. Proc. Natl. Acad. Sci. USA 93, 6659–6664.

    Article  PubMed  CAS  Google Scholar 

  11. Michelotti, E. F., Sanford, S., and Levins, D. (1997) Marking of active genes on mitotic chromosomes. Nature 388, 895–899.

    Article  PubMed  CAS  Google Scholar 

  12. Jenuwein, T., Forrester, W. C., Fernandez-Herrero, L. A., Laible, G., Dull, M., and Grosschedl, R. (1997) Extension of chromatin accessibility by nuclear matrix attachment regions. Nature 385, 269–272.

    Article  PubMed  CAS  Google Scholar 

  13. Chevalier-Mariette, C., Henry, I., Mountford, L., et al. (2003) CpG content affects gene silencing in mice: evidence from novel transgenes. Genome Biol. 4, R52 (epub).

    Google Scholar 

  14. Sutherland, H. G., Kearns, M., Morgan, H. D., et al. (2000) Reactivation of heritably silenced gene expression in mice. Mamm. Genome 11, 347–355.

    Article  PubMed  CAS  Google Scholar 

  15. Robertson, G., Garrick, D., Wilson, M., Martin, D. I., and Whitelaw, E. (1996) Age-dependent silencing of globin transgenes in the mouse. Nucl. Acids Res. 24, 1465–1471.

    Article  PubMed  CAS  Google Scholar 

  16. Opsahl, M. L., McClenaghan, M., Springbett, A., et al. (2002) Multiple effects of genetic background on variegated transgene expression in mice. Genetics 160, 1107–1112.

    PubMed  CAS  Google Scholar 

  17. Valenza-Schaerly, P., Pickard, B., Walter, J., et al. (2001) A dominant modifier of transgene methylation is mapped by QTL analysis to mouse chromosome 13. Genome Res. 11, 382–388.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Whitelaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pena, R.N., Webster, J., Kwan, S. et al. Transgene methylation in mice reflects copy number but not expression level. Mol Biotechnol 26, 215–219 (2004). https://doi.org/10.1385/MB:26:3:215

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:26:3:215

Index Entries

Navigation