Skip to main content
Log in

Altered calmodulin response to light in the suprachiasmatic nucleus of PAC1 receptor knockout mice revealed by proteomic analysis

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In mammals circadian rhythms are generated by a light-entrainable oscillator located in the hypothalamic suprachiasmatic nucleus (SCN). Light signals reach the SCN via a monosynaptic neuronal pathway, the retinohypothalamic tract, originating in a subset of retinal ganglion cells. The nerve terminals of these cells contain the classical neurotransmitter glutamate and the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP), and there is evidence that these two transmitters interact to mediate photoentrainment of the oscillator in the SCN. To elucidate light-provoked PACAP receptor signaling we used proteomic analysis. Wild-type mice and mice lacking the PAC1 receptor (PAC −/−1 ) were light stimulated at early night, and the SCN was examined for proteins that were differentially expressed using two-dimensional gel electrophoresis and identification by tandem mass spectrometry. The most striking finding, which was subsequently confirmed by Western blotting, was a significant reduction of calmodulin (CaM) in wild-type mice as compared with PAC −/−1 mice. Analysis at the mRNA level by quantitative in situ hybridization histochemistry was inconclusive, indicating that a translational mechanism might be involved. The findings indicate that PAC1 receptor signaling in the SCN in response to light stimulation induces a down-regulation of CaM expression and that CaM is involved in the photic-entrainment mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bergström A. L., Hannibal J., Hindersson P., and Fahrenkrug J. (2003) Light-induced phase shift in the Syrian hamster (Mesocricetus auratus) is attenuated by the PACAP receptor antagonist PACAP6-38 or PACAP immunoneutralization. Eur. J. Neurosci. 18, 2552–2562.

    Article  PubMed  Google Scholar 

  • Caceres A., Bender P., Snavely L., Rebhun L. I., and Steward O. (1983) Distribution and subcellular localization of calmodulin in adult and developing brain tissue. Neuroscience 10, 449–461.

    Article  PubMed  CAS  Google Scholar 

  • Chen D., Buchanan G. F., Ding J. M., Hannibal J., and Gillette M. U. (1999) PACAP: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc. Natl. Acad. Sci. U. S. A. 96, 13,409–13,414.

    Google Scholar 

  • Ehlers M. D., Zhang S., Bernhardt J. P., and Huganir R. L. (1996) Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84, 745–755.

    Article  PubMed  CAS  Google Scholar 

  • Eldik L. and Watterson D. M. (1998) Calmodulin and Signal Transduction. Academic Press, New York.

    Google Scholar 

  • Fahrenkrug J., Nielsen H. S., and Hannibal J. (2004) Expression of melanopsin during development of the rat retina. NeuroReport 15, 781–784.

    Article  PubMed  Google Scholar 

  • Gillette M. U. and Mitchell J. W. (2002) Signaling in the suprachiasmatic nucleus: selectively responsive and integrative. Cell Tissue Res. 309, 99–107.

    Article  PubMed  CAS  Google Scholar 

  • Goldenring J. R., McGuire J. S., and DeLorenzo R. J. (1984) Identification of the major postsynaptic density protein as homologous with the major calmodulin binding subunit of a calmodulin-dependent protein kinase. J. Neurochem. 42, 1077–1084.

    Article  PubMed  CAS  Google Scholar 

  • Golombek D. A., Ferreyra G. A., Agostino P. V., Murad A. D., Rubio M. F., Pizzio G. A., et al. (2003) From light to genes: moving the hands of the circadian clock. Front. Biosci. 8, 285–293.

    Article  Google Scholar 

  • Gooley J. J., Lu J., Chou T. C., Scammell T. E., and Saper C. B. (2001) Melanopsin in cells of origin of the retinohypothalamic tract. Nat. Neurosci 12, 1165.

    Article  Google Scholar 

  • Hannibal J., Ding J. M., Chen D., Fahrenkrug J., Larsen P. J., Gillette M. U., and Mikkelsen J. D. (1997) Pituitary adenylate cyclase activating peptide (PACAP) in the retinohypothalamic tract. A daytime regulator of the biological clock. J. Neurosci. 17, 2637–2644.

    PubMed  CAS  Google Scholar 

  • Hannibal J., Hindersson P., Knudsen S. M., Georg B., and Fahrenkrug J. (2002) The photopigment melanopsin is exclusively present in PACAP containing retinal ganglion cells of the retinohypothalamic tract. J. Neurosci. 22:RC191, 1–7.

    Google Scholar 

  • Hannibal J., Jamen F., Nielsen H. S., Journot L., Brabet P., and Fahrenkrug J. (2001) Dissociation between light induced phase shift of the circadian rhythm and clock gene expression in mice lacking the PACAP type 1 receptor (PAC1). J. Neurosci. 21, 4883–4890.

    PubMed  CAS  Google Scholar 

  • Hannibal J., Moller M., Ottersen O. P., and Fahrenkrug J. (2000) PACAP and glutamate are co-stored in the retinohypothalamic tract. J. Comp. Neurol. 418, 147–155.

    Article  PubMed  CAS  Google Scholar 

  • Harmar A. J., Arimura A., Gozes I., Journot L., Laburthe M., et al. (1998) International union of pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol. Rev. 50, 265–270.

    PubMed  CAS  Google Scholar 

  • Harrington M. E., Hoque S., Hall A., Golombek D., and Biello S. (1999) Pituitary adenylate cyclase activating peptide phase shifts circadian rhythms in a manner similar to light. J. Neurosci. 19, 6637–6642.

    PubMed  CAS  Google Scholar 

  • Hattar S., Liao H. W., Takao M., Berson D. M., and Yau K. W. (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic phosensitivity. Science 295, 1065–1070.

    Article  PubMed  CAS  Google Scholar 

  • Honoré B., Østergaard M., and Vorum H. (2004a) Functional genomics studied by proteomics. Bioessays 26, 901–915.

    Article  PubMed  CAS  Google Scholar 

  • Honoré B., Vorum H., Pedersen A. E., Buus S., and Claësson M. H. (2004b) Changes in protein expression in p53 deleted spontaneous thymic lymphomas. Exp. Cell Res. 295, 91–101.

    Article  PubMed  CAS  Google Scholar 

  • Jamen F., Persson K., Bertrand G., Rodriguez-Henche N., Puech R., et al. (2000) PAC1 receptor-deficient mice display impaired insulinotropic response to glucose and reduced glucose tolerance. J. Clin. Invest. 105, 1307–1315.

    Article  PubMed  CAS  Google Scholar 

  • Klein D. C., Moore R. Y., and Reppert S. M. (1991) Suprachiasmatic nucleus. The mind’s clock. Oxford University Press, New York.

    Google Scholar 

  • Kortvely E. and Gulya K. (2004) Calmodulin, and various ways to regulate its activity. Life Sci. 74, 1065–1070.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen J. D., Hannibal J., Larsen P. J., and Fahrenkrug J. (1994) Pituitary adenylate cyclase activating peptide (PACAP) mRNA in the rat neocortex. Neurosci. Lett. 171, 121–124.

    Article  PubMed  CAS  Google Scholar 

  • Minami Y., Furuno K., Akiyama M., Moriya T., and Shibata S. (2002) Pituitary adenylate cyclase-activating polypeptide produces a phase shift associated with induction of mPer expression in the mouse suprachiasmatic nucleus. Neuroscience 113, 37–45.

    Article  PubMed  CAS  Google Scholar 

  • Moore R. Y., Speh J. C., and Card J. P. (1995) The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells. J. Comp. Neurol. 352, 351–366.

    Article  PubMed  CAS  Google Scholar 

  • Palfi A., Vizi S., and Gulya K. (1999) Differential distribution and intracellular targeting of mRNAs corresponding to the three calmodulin genes in rat brain: a quantitative in situ hybridization study. J. Histochem. Cytochem. 47, 583–600.

    PubMed  CAS  Google Scholar 

  • Piggins H. D., Marchant E. G., Goguen D., and Rusak B. (2001) Phase-shifting effects of pituitary adenylate cyclase activating polypeptide on hamster wheel-running rhythms. Neurosci. Lett. 305, 25–28.

    Article  PubMed  CAS  Google Scholar 

  • Provencio I., Rollag M. D., and Castrucci A. M. (2002) Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415, 493.

    Article  PubMed  CAS  Google Scholar 

  • Reppert S. M. and Weaver D. R. (2002) Coordination of circadian timing in mammals. Nature 418, 935–941.

    Article  PubMed  CAS  Google Scholar 

  • Roenneberg T. and Foster R. G. (1997) Twilight times: light and the circadian system. Photochem. Photobiol. 66, 549–561.

    PubMed  CAS  Google Scholar 

  • Saimi Y. and Kung C. (2002) Calmodulin as an ion channel subunit. Annu. Rev. Physiol. 64, 289–311.

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko A., Wilm M., Vorm O., and Mann M. (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu Y., Akiyama K., Kodama M., Ishihara T., Hamamura T., and Kuroda S. (1997) Alterations of calmodulin and its mRNA in rat brain after acute and chronic administration of methamphetamine. Brain Res. 765, 247–258.

    Article  PubMed  CAS  Google Scholar 

  • Solá C., Tusell J. M., and Serratosa J. (1996) Comparative study of the pattern of expression of calmodulin messenger RNAs in the mouse brain. Neuroscience 75, 245–256.

    Article  PubMed  Google Scholar 

  • Tran Q. K., Black D., and Persechini A. (2003) Intracellular coupling via limiting calmodulin. J. Biol. Chem. 278, 24,247–24,250.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Fahrenkrug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahrenkrug, J., Hannibal, J., Honoré, B. et al. Altered calmodulin response to light in the suprachiasmatic nucleus of PAC1 receptor knockout mice revealed by proteomic analysis. J Mol Neurosci 25, 251–258 (2005). https://doi.org/10.1385/JMN:25:3:251

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:25:3:251

Index Entries

Navigation