Skip to main content
Log in

Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer’s disease

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Cell-culture studies have revealed some of the fundamental features of the interaction of amyloid Aβ with cells and the mechanism of amyloid accumulation and pathogenesis in vitro. Aβ1–42, the longer isoform of amyloid that is preferentially concentrated in senile plaque (SP) amyloid deposits in Alzheimer’s disease (AD), is resistant to degradation and accumulates as insoluble aggregates in late endosomes or lysosomes. Once these aggregates have nucleated inside the cell, they grow by the addition of aberrantly folded APP and amyloidgenic fragments of APP, that would otherwise be degraded, onto the amyloid lattice in a fashion analogous to prion replication. This accumulation of heterogeneous aggregated APP fragments and Aβ appears to mimic the pathophysiology of dystrophic neurites, where the same spectrum of components has been identified by immunohistochemistry. In the brain, this residue appears to be released into the extracellular space, possibly by a partially apoptotic mechanism that is restricted to the distal compartments of the neuron. Ultimately, this insoluble residue may be further digested to the protease-resistant Aβn-42 core, perhaps by microglia, where it accumulates as senile plaques. Thus, the dystrophic neurites are likely to be the source of the immediate precursors of amyloid in the senile plaques. This is the opposite of the commonly held view that extracellular accumulation of amyloid induces dystrophic neurites.

Many of the key pathological events of AD may also be directly related to the intracellular accumulation of this insoluble amyloid. The aggregated, intracellular amyloid induces the production of reactive oxygen species (ROS) and lipid peroxidation products and ultimately results in the leakage of the lysosomal membrane. The breakdown of the lysosomal membrane may be a key pathogenic event, leading to the release of heparan sulfate and lysosomal hydrolases into the cytosol. Together, these observations provide the novel view that amyloid deposits and some of the early events of amyloid pathogenesis initiate randomly within single cells in AD. This pathogenic mechanism can explain some of the more enigmatic features of Alzheimer’s pathogenesis, like the focal nature of amyloid plaques, the relationship between amyloid, dystrophic neurites and neurofibrillary-tangle pathology, and the miscompartmentalization of extracellular and cytosolic components observed in AD brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barrow C. J. and Zagorski M. G. (1991) Solution structures of beta peptide and its constituent fragments: relation to amyloid deposition. Science 253, 179–182.

    Article  PubMed  CAS  Google Scholar 

  • Behl C., et al. (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77, 817–827.

    Article  PubMed  CAS  Google Scholar 

  • Bok D. (1993) The retinal pigment epithelium: a versatile partner in vision. J. Cell Sci. 17(Suppl.), 189–195.

    CAS  Google Scholar 

  • Borchelt D. R., et al. (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron 17(5), 1005–1013.

    Article  PubMed  CAS  Google Scholar 

  • Burdick D., et al. (1992) Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J. Biol. Chem. 267(1), 546–554.

    PubMed  CAS  Google Scholar 

  • Burdick D., et al. (1997) Preferential adsorption, internalization and resistance to degradation of the major isoform of the Alzheimer’s amyloid peptide, A beta 1-42, in differentiated PC12 cells. Brain Res. 746(1–2), 275–284.

    Article  PubMed  CAS  Google Scholar 

  • Cai X. D., Golde T. E., and Younkin S. G. (1993) Release of excess amyloid beta protein from a mutant amyloid beta protein precursor [see comments]. Science 259, 514–516.

    Article  PubMed  CAS  Google Scholar 

  • Caporaso G. L., et al. (1994) Morphologic and biochemical analysis of the intracellular trafficking of the Alzheimer beta/A4 amyloid precursor protein. J. Neurosci. 14, 3122–3138.

    PubMed  CAS  Google Scholar 

  • Cataldo A. M., et al. (1990) Lysosomal proteinase antigens are prominently localized within senile plaques of Alzheimer’s disease: evidence for a neuronal origin. Brain. Res. 513, 181–192.

    Article  PubMed  CAS  Google Scholar 

  • Chartier-Harlin M. C., et al. (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353, 844–846.

    Article  PubMed  CAS  Google Scholar 

  • Citron M., et al. (1992) Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature 360(6405), 672–674.

    Article  PubMed  CAS  Google Scholar 

  • Citron M., et al. (1994) Excessive production of amyloid beta-protein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer disease mutation. Proc Natl Acad Sci USA 91(25), 11,993–11,997.

    Article  CAS  Google Scholar 

  • Citron M., et al. (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice [see comments]. Nat. Med. 3(1), 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Cochran E., et al. (1991) Amyloid precursor protein and ubiquitin immunoreactivity in dystrophic axons is not unique to Alzheimer’s disease. Am. J. Pathol. 139, 485–489.

    PubMed  CAS  Google Scholar 

  • Cole G. M., et al. (1999) Caspase activation in dystrophic neurites in Alzheimer’s Disease and aged HuAPPsw transgenic mice, in Alzheimer’s Disease and Related Disorders (Iqbal K. et al., eds.), John Wiley and Sons, New York, NY, pp. 363–369.

    Google Scholar 

  • Cras P., et al. (1990) Neuronal and microglial involvement in beta-amyloid protein deposition in Alzheimer’s disease. Am. J. Pathol. 137, 241–246.

    PubMed  CAS  Google Scholar 

  • Cummings B. J., Su J. H., and Cotman C. W. (1993) Neuritic involvement within bFGFimmunopositive plaques of Alzheimer’s disease. Exp. Neurol. 124, 315–325.

    Article  PubMed  CAS  Google Scholar 

  • D’Andrea M. R., et al. (2001) Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer’s disease. Histopathology 38(2), 120–134.

    Article  PubMed  CAS  Google Scholar 

  • Davies P. (1988) Neurochemical studies: an update on Alzheimer’s disease. J. Clin. Psychiatry 49(Suppl.) 23–28.

    PubMed  CAS  Google Scholar 

  • Dickson D. W., et al. (1990) Ubiquitin immunoelectron microscopy of dystrophic neurites in cerebellar senile plaques of Alzheimer’s disease. Acta. Neuropathol. (Berl.) 79, 486–493.

    Article  CAS  Google Scholar 

  • Dickson D. W., et al. (1993) Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia 7, 75–83.

    Article  PubMed  CAS  Google Scholar 

  • Duff K., et al. (1996) Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383(6602), 710–713.

    Article  PubMed  CAS  Google Scholar 

  • Dyrks T., et al. (1988) Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer’s disease. EMBO J. 7, 949–957.

    PubMed  CAS  Google Scholar 

  • Eikelenboom P., et al. (1989) Complement activation in amyloid plaques in Alzheimer’s dementia. Virchows. Arch. [B] 56, 259–262.

    CAS  Google Scholar 

  • Friedlich A. L. and Butcher L. L. (1994) Involvement of free oxygen radicals in beta-amyloidosis: an hypothesis. Neurobiol. Aging 15, 443–455.

    Article  PubMed  CAS  Google Scholar 

  • Gajdusek D. C. (1988) Transmissible and non-transmissible amyloidoses: autocatalytic post-translational conversion of host precursor proteins to beta-pleated sheet configurations. J. Neuroimmunol. 20, 95–110.

    Article  PubMed  CAS  Google Scholar 

  • Glenner G. G. (1989) The pathobiology of Alzheimer’s disease. Annu. Rev. Med. 40, 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Goate A., et al. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease [see comments]. Nature 349, 704–706.

    Article  PubMed  CAS  Google Scholar 

  • Gouras G. K., et al. (2000) Intraneuronal Abeta42 accumulation in human brain. Am. J. Pathol. 156(1), 15–20.

    PubMed  CAS  Google Scholar 

  • Gregori L., Bhasin R., Goldgaber D. (1994) Ubiquitin-mediated degradative pathway degrades the extra-cellular but not the intracellular form of amyloid beta-protein precursor. Biochem. Biophys. Res. Commun. 203, 1731–1738.

    Article  PubMed  CAS  Google Scholar 

  • Haass C., et al. (1992) Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357(6378), 500–503.

    Article  PubMed  CAS  Google Scholar 

  • Henderson A. S. (1988) The risk factors for Alzheimer’s disease: a review and a hypothesis. Acta. Psychiatr. Scand. 78, 257–275.

    PubMed  CAS  Google Scholar 

  • Hendriks L., et al. (1992) Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the beta-amyloid precursor protein gene. Nat. Genet. 1(3), 218–221.

    Article  PubMed  CAS  Google Scholar 

  • Hilbich C., et al. (1991) Aggregation and secondary structure of synthetic amyloid beta A4 peptides of Alzheimer’s disease. J. Mol. Biol. 218, 149–163.

    Article  PubMed  CAS  Google Scholar 

  • Hirai S., Tanaka M., and Sotomatsu A. (1990) [Free radicals and degenerative diseases of the nervous system]. Nippon Ronen. Igakkai. Zasshi. 27, 171–176.

    PubMed  CAS  Google Scholar 

  • Hirano A. (1994) Hirano bodies and related neuronal inclusions. Neuropathol. Appl. Neurobiol. 20, 3–11.

    PubMed  CAS  Google Scholar 

  • Hung A. Y., et al. (1992) Increased expression of beta-amyloid precursor protein during neuronal differentiation is not accompanied by secretory cleavage. Proc. Natl. Acad. Sci. USA 89(20), 9439–9443.

    Article  PubMed  CAS  Google Scholar 

  • Hyman B. T., et al. (1992) Kunitz protease inhibitor-containing amyloid beta protein precursor immunore-activity in Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 51, 76–83.

    PubMed  CAS  Google Scholar 

  • Hyman B. T. (1996) Alzheimer’s disease or Alzheimer’s diseases? Clues from molecular epidemiology [editorial]. Ann. Neurol. 40(2), 135–136.

    Article  PubMed  CAS  Google Scholar 

  • Ironside J. W., et al. (1993) Ubiquitin immunocytochemistry in human spongiform encephalopathies. Neuropathol. Appl. Neurobiol. 19, 134–140.

    PubMed  CAS  Google Scholar 

  • Iwatsubo T., et al. (1994) Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 13, 45–53.

    Article  PubMed  CAS  Google Scholar 

  • Joachim C., et al. (1991) Antibodies to non-beta regions of the beta-amyloid precursor protein detect a subset of senile plaques. Am. J. Pathol. 138, 373–384.

    PubMed  CAS  Google Scholar 

  • Kalaria R. N. (1993) The immunopathology of Alzheimer’s disease and some related disorders. Brain Pathol. 3, 333–347.

    PubMed  CAS  Google Scholar 

  • Kimura T., et al. (1995) Are advanced glycation end-products associated with amyloidosis in Alzheimer’s disease? Neuroreport 6, 866–868.

    Article  PubMed  CAS  Google Scholar 

  • Knauer M. F., et al. (1992) Intracellular accumulation and resistance to degradation of the Alzheimer amyloid A4/beta protein. Proc. Natl. Acad. Sci. USA 89(16), 7437–7441.

    Article  PubMed  CAS  Google Scholar 

  • Lemere C. A., et al. (1996) The E280A presenilin 1 Alzheimer mutation produces increased A beta 42 deposition and severe cerebellar pathology. Nat. Med. 2(10), 1146–1150.

    Article  PubMed  CAS  Google Scholar 

  • Lowe J., et al. (1990) Ubiquitin conjugate immunoreactivity in the brains of scrapie infected mice. J. Pathol. 162, 61–66.

    Article  PubMed  CAS  Google Scholar 

  • Masliah E., et al. (1991) Immunoelectron microscopic study of synaptic pathology in Alzheimer’s disease. Acta. Neuropathol. (Berl.) 81, 428–433.

    Article  CAS  Google Scholar 

  • Mattson M. P. (1994) Calcium and neuronal injury in Alzheimer’s disease. Contributions of beta-amyloid precursor protein mismetabolism, free radicals, and metabolic compromise. Ann. NY Acad. Sci. 747, 50–76.

    Article  PubMed  CAS  Google Scholar 

  • Mayer R. J., et al. (1996) Endosome-lysosomes, ubiquitin and neurodegeneration. Adv. Exp. Med. Biol. 389, 261–269.

    PubMed  CAS  Google Scholar 

  • McGeer P. L., et al. (1992) Immunohistochemical localization of beta-amyloid precursor protein sequences in Alzheimer and normal brain tissue by light and electron microscopy. J. Neurosci. Res. 31, 428–442.

    Article  PubMed  CAS  Google Scholar 

  • McGeer P. L., Rogers J., and McGeer E. G. (1994) Neuroimmune mechanisms in Alzheimer disease pathogenesis [see comments]. Alzheimer Dis. Assoc. Disord. 8, 149–158.

    Article  PubMed  CAS  Google Scholar 

  • Migheli A., et al. (1991) Dystrophic neurites around amyloid plaques of human patients with Gerstmann-Straussler-Scheinker disease contain ubiquitinated inclusions. Neurosci. Lett. 121, 55–58.

    Article  PubMed  CAS  Google Scholar 

  • Miller D. L., et al. (1993) Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer’s disease. Arch. Biochem. Biophys. 301, 41–52.

    Article  PubMed  CAS  Google Scholar 

  • Mori H., et al. (1994) Racemization: its biological significance on neuropathogenesis of Alzheimer’s disease. Tohoku. J. Exp. Med. 174, 251–262.

    Article  PubMed  CAS  Google Scholar 

  • Mullan M., et al. (1992) A locus for familial early-onset Alzheimer’s disease on the long arm of chromosome 14, proximal to the alpha 1-antichymotrypsin gene. Nat. Genet. 2(4), 340–342.

    Article  PubMed  CAS  Google Scholar 

  • Murphy G. M. Jr., et al. (1992) Alzheimer’s disease. Beta-amyloid precursor protein expression in the nucleus basalis of Meynert. Am. J. Pathol. 141(2), 357–61.

    PubMed  Google Scholar 

  • Murrell J., et al. (1991) A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science 254, 97–99.

    Article  PubMed  CAS  Google Scholar 

  • Nixon R. A., et al. (1992) The lysosomal system in neurons. Involvement at multiple stages of Alzheimer’s disease pathogenesis. Ann. NY Acad. Sci. 674, 65–88.

    Article  PubMed  CAS  Google Scholar 

  • Nordstedt C., et al. (1994) The Alzheimer A beta peptide develops protease resistance in association with its polymerization into fibrils. J. Biol. Chem. 269, 30,773–30,776.

    CAS  Google Scholar 

  • Omar R., et al. (1993) Acid phosphatase activity in senile plaques and cerebrospinal fluid of patients with Alzheimer’s disease. Arch. Pathol. Lab. Med. 117, 166–169.

    PubMed  CAS  Google Scholar 

  • Perry G., et al. (1991) Association of heparan sulfate proteoglycan with the neurofibrillary tangles of Alzheimer’s disease. J. Neurosci. 11, 3679–3683.

    PubMed  CAS  Google Scholar 

  • Prusiner S. B. and DeArmond S. B. (1987) Prions causing nervous system degeneration. Lab. Invest. 56, 349–363.

    PubMed  CAS  Google Scholar 

  • Rogers J. (1995) Inflammation as a pathogenic mechanism in Alzheimer’s disease. Arzneimittelforschung 45, 439–442.

    PubMed  CAS  Google Scholar 

  • Roher A. E., et al. (1993) beta-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 10,836–10,840.

    Article  CAS  Google Scholar 

  • Roher A. E., et al. (1993) Structural alterations in the peptide backbone of beta-amyloid core protein may account for its deposition and stability in Alzheimer’s disease. J. Biol. Chem. 268, 3072–3083.

    PubMed  CAS  Google Scholar 

  • Selkoe D. J. (1986) Altered structural proteins in plaques and tangles: what do they tell us about the biology of Alzheimer’s disease? Neurobiol. Aging 7, 425–432.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. (2000) Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann. NY Acad. Sci. 924(1), 17–25.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiolog. Rev. 81(2), 741–766.

    CAS  Google Scholar 

  • Shapira R., Austin G. E., and Mirra S. S. (1988) Neuritic plaque amyloid in Alzheimer’s disease is highly racemized. J. Neurochem. 50, 69–74.

    Article  PubMed  CAS  Google Scholar 

  • Shoji M., et al. (1990) Amyloid beta-protein precursor accumulates in dystrophic neurites of senile plaques in Alzheimer-type dementia. Brain. Res. 512, 164–168.

    Article  PubMed  CAS  Google Scholar 

  • Skovronsky D. M., et al. (2000) In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 97(13), 7609–7614.

    Article  PubMed  CAS  Google Scholar 

  • Smith M. A., et al. (1994) Advanced Maillard reaction end products, free radicals, and protein oxidation in Alzheimer’s disease. Ann. NY Acad. Sci. 738, 447–454.

    Article  PubMed  CAS  Google Scholar 

  • Smith M. A., et al. (1995) Radical AGEing in Alzheimer’s disease. Trends Neurosci. 18, 172–176.

    Article  PubMed  CAS  Google Scholar 

  • Snow A. D., et al. (1988) The presence of heparan sulfate proteoglycans in the neuritic plaques and congophilic angiopathy in Alzheimer’s disease. Am. J. Pathol. 133, 456–463.

    PubMed  CAS  Google Scholar 

  • Snow A. D., et al. (1990) Early accumulation of heparan sulfate in neurons and in the beta-amyloid protein-containing lesions of Alzheimer’s disease and Down’s syndrome. Am. J. Pathol. 137, 1253–1270.

    PubMed  CAS  Google Scholar 

  • Soreghan B., Kosmoski J., and Glabe C. (1994) Surfactant properties of Alzheimer’s A beta peptides and the mechanism of amyloid aggregation. J. Biol. Chem. 269(46), 28,551–28,554.

    CAS  Google Scholar 

  • Su J. H., Cummings B. J., and Cotman C. W. (1992) Localization of heparan sulfate glycosaminoglycan and proteoglycan core protein in aged brain and Alzheimer’s disease. Neuroscience 51, 801–813.

    Article  PubMed  CAS  Google Scholar 

  • Suh Y. H. (1997) An etiological role of amyloidogenic carboxyl-terminal fragments of the beta-amyloid precursor protein in Alzheimer’s disease. J. Neurochem. 68(5), 1781–1791.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N., et al. (1994) An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science 264, 1336–1340.

    Article  PubMed  CAS  Google Scholar 

  • Tabaton M., et al. (1991) Ultrastructural localization of beta-amyloid, tau, and ubiquitin epitopes in extracellular neurofibrillary tangles. Proc. Natl. Acad. Sci. USA 88, 2098–2102.

    Article  PubMed  CAS  Google Scholar 

  • Tjernberg L. O., et al. (1997) Generation of Alzheimer amyloid beta peptide through nonspecific proteolysis. J. Biol. Chem. 272(3), 1870–5.

    Article  PubMed  CAS  Google Scholar 

  • Tomita T., et al. (1997) The presenilin 2 mutation (N141I) linked to familial Alzheimer disease (Volga German families) increases the secretion of amyloid beta protein ending at the 42nd (or 43rd) residue. Proc. Natl. Acad. Sci. USA 94(5), 2025–2030.

    Article  PubMed  CAS  Google Scholar 

  • Vitek M. P., et al. (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc. Natl. Acad. Sci. USA 91, 4766–4770.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski H. M., et al. (1989) Ultrastructural studies of the cells forming amyloid fibers in classical plaques. Can. J. Neurol. Sci. 16, 535–542.

    PubMed  CAS  Google Scholar 

  • Xia W., et al. (1997) Enhanced production and oligomerization of the 42-residue amyloid beta-protein by Chinese hamster ovary cells stably expressing mutant presenilins. J. Biol. Chem. 272(12), 7977–7982.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H., et al. (1992) Ultrastructural localization of Alzheimer amyloid beta/A4 protein precursor in the cytoplasm of neurons and senile plaque-associated astrocytes. Acta. Neuropathol. (Berl.) 85, 15–22.

    Article  CAS  Google Scholar 

  • Yamazaki T., et al. (1991) Ultrastructural localization of argyrophilic substances in diffuse plaques of Alzheimer-type dementia demonstrated by methenamine silver staining. Acta. Neuropathol. (Berl.) 81, 540–545.

    Article  CAS  Google Scholar 

  • Yang A. J., et al. (1995) Intracellular A beta 1-42 aggregates stimulate the accumulation of stable, insoluble amyloidogenic fragments of the amyloid precursor protein in transfected cells. J. Biol. Chem. 270(24), 14,786–14,792.

    CAS  Google Scholar 

  • Yang A. J., et al. (1998) Loss of endosomal/lysosmal membrane impermeability is an early event in amyloid Aβ1-42 pathogenesis. J. Neurosci. Res. 52, 691–698.

    Article  PubMed  CAS  Google Scholar 

  • Yasuhara O., et al. (1994) Two types of dystrophic neurites in senile plaques of Alzheimer disease and elderly non-demented cases. Neurosci. Lett. 171, 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Younkin S. G. (1995) Evidence that A beta 42 is the real culprit in Alzheimer’s disease [editorial; comment]. Ann. Neurol. 37, 287–288.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Glabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glabe, C. Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer’s disease. J Mol Neurosci 17, 137–145 (2001). https://doi.org/10.1385/JMN:17:2:137

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:17:2:137

Index Entries

Navigation