Skip to main content
Log in

Temporal relations among amyloid β-peptide-induced free-radical oxidative stress, neuronal toxicity, and neuronal defensive responses

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Amyloid β-peptide (Aβ), the main constituent of senile plaques in Alzheimer’s disease (AD) brain, is hypothesized to be a key factor in the neurodegeneration seen in AD. Recently it has been shown that the neurotoxicity of Aβ occurs in conjunction with free-radical oxidative stress associated with the peptide. In the present study, we investigated the temporal relations among the formation of Aβ-associated free radicals, the oxidative damage to, and the activation of antioxidant defense mechanisms in rat embryonic hippocampal neuronal culture subjected to toxic Aβ(25–35). Temporal electron paramagnetic resonance (EPR) spectroscopy results show that synthetic Aβ(25–35) forms free radicals rapidly after solubilization with a high signal intensity at initial time points. At those time points, neuronal toxicity and oxidative stress gradually increase as assessed by reduction of 3-[4,5-dimethylthiazol-2-yl)-2,5-diphenyl] tetrazolium bromide, trypan blue exclusion, formation of reactive oxygen species, and detection of protein carbonyl levels. The latter occurs before neurotoxicity. When the EPR signal intensity of Aβ solution decreases at later time points, neuronal toxicity levels off and remains the same until the end of the experiment. The oxidative-sensitive enzyme creatine kinase (CK) (brain isoform) (CK-BB) content increases at initial points of the Aβ treatment in correlation with the EPR signal to keep the CK activity constant, presumably to overcome the Aβ-induced oxidative insult. CK-BB content returns to normal levels by the end of the experiment. CK activity normalized to CK content implies the presence of inactivated CK molecules during the treatment. Both Mn SOD and Cu/Zn superoxide dismutase (SOD) mRNA levels show robust increases initially, which later return to control level with decreasing oxidative insult. These results are consistent with the notion that Aβ(25–35) promotes a rapid free-radical oxidative stress to neurons, which respond by modulating various oxidative stress-handling genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe K. and Kimura H. (1996) Amyloid β toxicity consists of a Ca2+-independent early phase and a Ca2+-dependent late phase. J. Neurochem. 67, 2074–2078.

    Article  PubMed  CAS  Google Scholar 

  • Aksenov M. Y., Aksenova M. V., Carney J. M., and Butterfield D. A. (1997) Oxidative modification of glutamine synthetase by amyloid β-peptide. Free Radical Res. 27, 267–281.

    CAS  Google Scholar 

  • Aksenov M. Y., Aksenova M. V., Markesbery W. R., and Butterfield D. A. (1998) Amyloid β-peptide (1–40)-mediated oxidative stress in cultured hippocampal neurons: protein carbonyl formation, CK BB expression and the level of Cu, Zn and Mn SOD mRNA. J. Mol. Neurosci., 10, 181–192.

    PubMed  CAS  Google Scholar 

  • Atwood C. S., Moir R. D., Huang X., Scarpa R. C., Bacarra N. M., Romano D. M., Hartshorn M. A., Tanzi R. E., and Bush A. I. (1998) Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem. 273, 12,817–12,826.

    Article  CAS  Google Scholar 

  • Banerjee A., Grosso M. A., Brown J. M., Rogers K. B., and Whitman G. J. R. (1991) Oxygen metabolite effects on creatine kinase and cardiac energetics after reperfusion. Am. J. Physiol. 261, H590-H597.

    PubMed  CAS  Google Scholar 

  • Barger S. W. and Mattson M. P. (1996) Participation of gene expression in the protection against amyloid β-peptide toxicity by the β-amyloid precursor protein. Ann. N Y Acad. Sci. 777, 303–309.

    Article  PubMed  CAS  Google Scholar 

  • Barger S. W., Horster D., Furukawa K., Goodman Y., Krieglstein J., and Mattson M. P. (1995) TNFα and TNFβ protect hippocampal neurons against amyloid β-peptide toxicity: evidence for involvement of a κB-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc. Natl. Acad. Sci. USA 92, 9328–9332.

    Article  PubMed  CAS  Google Scholar 

  • Bass D. W., Parce J. W., DeChatelet R., Szejda P., Seeds M. C., and Thomas M. (1983) Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J. Immunol. 130, 1910–1917.

    PubMed  CAS  Google Scholar 

  • Beal M. (1995) Aging, energy and oxidative stress in neurodegenerative diseases. Ann. Neurol. 38, 357–366.

    Article  PubMed  CAS  Google Scholar 

  • Beal M. F. (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann. Neurol. 31, 119–130.

    Article  PubMed  CAS  Google Scholar 

  • Behl C. and Sagara Y. (1997) Mechanism of amyloid β protein induced neuronal cell death: current concepts and future perspectives. J. Neural. Transm. Suppl. 49, 125–134.

    PubMed  CAS  Google Scholar 

  • Behl C., Davis J., Cole G. M., and Shubert D. (1992) Vitamin E protects nerve cells from amyloid β protein toxicity. Biochem. Biophys. Res. Commun. 186, 944–950.

    Article  PubMed  CAS  Google Scholar 

  • Behl C., Davis J. B., Lesley R., and Schubert D. (1994) Hydrogen peroxide mediates amyloid β protein toxicity. Cell 77, 817–827.

    Article  PubMed  CAS  Google Scholar 

  • Bruce A. J., Malfroy B., and Baudry M. (1996) β-Amyloid toxicity in organotypic hippocampal cultures: protection by EUK-8, a synthetic catalytic free radical scavenger. Proc. Natl. Acad. Sci. USA 93, 2312–2316.

    Article  PubMed  CAS  Google Scholar 

  • Burbaeva G. S., Aksenova M. V., and Makarenko I. G. (1992) Decreased level of creatine kinase BB in the frontal cortex of Alzheimer patients. Dementia 3, 91–94.

    Google Scholar 

  • Bush A. I., Huang X., Atwood C. S., Cherny R. A., Moir R. D., Goldstein L. E., O’Malley C. M., Saunders A. J., Multhaup G., Beyreuther K., Masters C. L., and Tanzi R. E. (1998) Interactions with ionic zinc, copper and iron govern Aβ redox activity and accumulation in Alzheimer’s disease. Neurobiol. Aging 19(Suppl. 40), 168.

    Google Scholar 

  • Butterfield D. A. (1982) Spin labeling in disease. Biol. Mag. Reson. 4, 1–78.

    CAS  Google Scholar 

  • Butterfield D. A. (1997) β-amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer’s disease. Chem. Res. Toxicol. 10, 495–506.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield D. A. and Stadtman E. R. (1997) Protein oxidation process in aging brain. Adv. Cell Aging Gerontol. 2, 161–191.

    Article  CAS  Google Scholar 

  • Butterfield D. A., Hensley K., Harris M., Mattson M., and Carney J. M. (1994) β-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease. Biochem. Biophys. Res. Commun. 200, 710–715.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield D. A., Hensley K., Cole P., Subramaniam R., Aksenov M., Aksenova M., Bummer P. M., Haley B. E., and Carney J. M. (1997) Oxidatively induced structural alteration of glutamine synthetase assessed by analysis of spin label incorporation kinetics: relevance to Alzheimer’s disease. J. Neurochem. 68, 2451–2457.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield D. A., Varadarajan S., LaFontaine M., Subramaniam R., Koppal T., Yatin S., Hensley K., Aksenova M., and Aksenov M. (1998) Alzheimer’s amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. Neurobiol. Aging 19(Suppl. 262), 1097.

    Google Scholar 

  • Chacon E. and Acosta D. (1991) Mitochondrial regulation of superoxide by Ca2+: an alternate mechanism for the cardiotoxicity of doxorubicin. Toxicol. Appl. Pharmacol. 107, 117–128.

    Article  PubMed  CAS  Google Scholar 

  • Chauhan A., Chauhan V. P., Brockerhoff H., and Wisniewski H. M. (1991) Action of amyloid β-protein on protein kinase C activity. Life Sci. 49, 1555–1562.

    Article  PubMed  CAS  Google Scholar 

  • Cheng B., Christakos S., and Mattson M. P. (1994) Tumor necrosis factors protect neurons against excitotoxic/metabolic insults and promote maintenance of calcium homeostasis. Neuron 12, 139–153.

    Article  PubMed  CAS  Google Scholar 

  • Chromzynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Google Scholar 

  • Davies C. A., Mann D. M. A., Sumpter P. Q., and Yates P. O. (1987) A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with AD. J. Neurol. Sci. 78, 151–164.

    Article  PubMed  CAS  Google Scholar 

  • DeKosky S. T. and Scheff S. W. (1990) Synapse loss in frontal cortex biopsies in AD: correlation with cognitive severity. Ann. Neurol. 27, 457–464.

    Article  PubMed  CAS  Google Scholar 

  • Davis J. B. (1996) Oxidative mechanisms in β-amyloid cytotoxicity. Neurodegeneration 5, 441–444.

    Article  PubMed  CAS  Google Scholar 

  • Dyrks T., Hartmann T., Masters C., and Beyreuther K. (1992) Amyloidgenicity of βA4 and βA4-bearing amyloid precursor fragments by metal-catalyzed oxidation. J. Biol. Chem. 267, 18,210–18,217.

    CAS  Google Scholar 

  • Etcheberrigaray R., Ito E., Kim C. S., and Alkon D. L. (1994) Soluble β-amyloid induction of Alzheimer’s phenotype for human fibroblast K+ channels. Science 264, 276–279.

    Article  PubMed  CAS  Google Scholar 

  • Friedlich A. L. and Butcher L. L. (1993) Involvement of free oxygen radicals in β-amyloidosis: an hypothesis. Neurobiol. Aging 15, 443–455.

    Article  Google Scholar 

  • Games D., Adams D., Alessandrini R., Barbour R., Berthelette P., Blackwell C., Carr T., Clemens J., Donaldson T., Gillespie F., et al. (1995) Alzheimertype neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373, 523–527.

    Article  PubMed  CAS  Google Scholar 

  • Glenney J. R. (1986) Antibody probing on Western blots have been stained with India ink. Anal. Biochem. 156, 315–318.

    Article  PubMed  CAS  Google Scholar 

  • Goate A., Chartier-Harlin M.-C., Mullan M., Brown J., Crawford F., Fidani L., Giuffra L., Haynes A., Irving N., James L., et al. (1991) Segregation of missense mutation in the amyloid precursor protein. Biochem. Biophys. Res. Commun. 155, 608–614.

    Google Scholar 

  • Goodman Y. and Mattson M. P. (1994) Secreted forms of β-amyloid precursor protein protect hippocampal neurons against amyloid β-peptide toxicity and oxidative injury. Exp. Neurol. 128, 175–182.

    Article  Google Scholar 

  • Green L. M., Reade J. L., and Ware C. F. (1984) Rapid colorimetric assay for cell viability: application to the quantitation of cytotoxic and growth inhibitory lymphokines J. Immunol. Methods 70, 257–268.

    Article  PubMed  CAS  Google Scholar 

  • Gridley K. E., Green P. S., and Simpkins J. W. (1997) Low concentrations of estradiol reduce Aβ(25–35)-induced toxicity, lipid peroxidation and glucose utilization in human SK-N-SH neuroblastoma. Brain Res. 778, 158–165.

    Article  PubMed  CAS  Google Scholar 

  • Guo Q., Robinson N., and Mattson M. P. (1998) Secreted-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NFkB and stabilization of calcium homeostasis. J. Biol. Chem. 273, 12,341–12,351.

    CAS  Google Scholar 

  • Haass C., Schlossmacher M. G., Hung A. Y., Vigo-Pelfrey C., Mellon A., Ostaszewski B. L., Lieberburg I., Koo E. H., Schenk D., Teplow D. B., and Selkoe D. J. (1992) Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325.

    Article  PubMed  CAS  Google Scholar 

  • Harman D. (1993) Free radical theory of aging: a hypothesis on pathogenesis of senile dementia of the Alzheimer’s type. Age 16, 23–30.

    Article  Google Scholar 

  • Harris M., Hensley K., Butterfield D. A., Leedle R. A., and Carney J. M. (1995) Direct evidence of oxidative injury produced by the Alzheimer’s β amyloid peptide (1–40) in cultured hippocampal neurons. Exp. Neurol. 131, 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Hensley K., Carney J. M., Mattson M. P., Aksenova M. V., Harris M. E., Wu J. F., Floyd R. A., and Butterfield D. A. (1994) A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: Relevance to Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 91, 3270–3274.

    Article  PubMed  CAS  Google Scholar 

  • Hensley K., Aksenova M., Carney J. M., and Butterfield D. A. (1995a) Amyloid β-peptide spin trapping I: enzyme toxicity is related to free radical spin trap reactivity. Neuroreport 6, 489–493.

    Article  PubMed  CAS  Google Scholar 

  • Hensley K., Hall N., Subramaniam R., Cole P., Harris M., Aksenova M., Aksenov M., Gabbita P., Carney J., Markesberry W., and Butterfield D. A. (1995b) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J. Neurochem. 65, 2146–2156.

    Article  PubMed  CAS  Google Scholar 

  • Kinouchi H. Epstein C. J., Mizui T., Carlson E., Chen S. F., and Chan P. H. (1991) Attenuation of focal cerebral ischemic injury in transgenic mice over-expressing CuZn superoxide dismutase. Proc. Natl. Acad. Sci. USA 88, 11,158–11,162.

    Article  CAS  Google Scholar 

  • Koppal T., Subramaniam R., Drake J., Prasad M. R., and Butterfield D. A. (1998) Vitamin E protects against Alzheimer’s amyloid peptide (25–35)-induced changes in neocortical synaptosomal membrane lipid structure and composition. Brain Res. 786, 270–273.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli U. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • LeBel C. P., Ischiropoulus H., and Bondy S. C. (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 5, 227–231.

    Article  PubMed  CAS  Google Scholar 

  • Levine R. L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A. G., Ahn B. W., Shaltiel S., and Stadtman E. R. (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186, 464–478.

    PubMed  CAS  Google Scholar 

  • Levine R. L., Williams J. A., Stadtman E. R., and Shacter E. (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 233, 346–357.

    Article  PubMed  CAS  Google Scholar 

  • Lovell M. A., Ehmann W. D., Mattson M. P., and Markesbery W. R. (1997) Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer’s disease. Neurobiol. Aging 18, 457–461.

    Article  PubMed  CAS  Google Scholar 

  • Mark R., Hensley K., Butterfield D. A., and Mattson M. P. (1995) Amyloid β-peptide impairs ion-motive ATPase activities; evidence for a role in loss of neuronal Ca-homeostasis and cell death. J. Neurosci. 15, 6239–6249.

    PubMed  CAS  Google Scholar 

  • Markesbery W. R. (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic. Biol. Med. 23, 134–147.

    Article  PubMed  CAS  Google Scholar 

  • Markesbery W. R. and Lovell M. A. (1998) Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol. Aging 19, 33–36.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Cheng B., Davis D., Bryant K., Lieberburg I., and Rydel R. E. (1992) β-amyloid peptide destabilizes calcium homeostasis and renders human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12, 376–389.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Barger S. W., Cheng B., Lieberburg I., Smith-Swintosky V. L., and Rydel R. E. (1993) β-amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis Alzheimer’s disease. Trends Neurosci. 16, 409–414.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Mark R. J., Furukawa K., and Bruce A. J. (1997a) Disruption of brain cell ion homeostasis in Alzheimer’s disease by oxyradicals, and signalling pathways that protect therefrom. Chem. Res. Toxicol. 10, 507–517.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Begley J. G., Mark R. J., and Furukawa K. (1997b) Aβ(25–35) induces rapid lysis of red blood cells: contrast with Aβ(1–42) and examination of underlying mechanisms. Brain Res. 771, 147–153.

    Article  PubMed  CAS  Google Scholar 

  • May P. C., Gitter B. D., Waters D. C., Simmons L. K., Becker G. W., and Small J. S., Robinson P. M. (1992) β-amyloid peptide in vitro toxicity: lot-to-lot variability. Neurobiol. Aging 13, 605–607.

    Article  PubMed  CAS  Google Scholar 

  • McCord J. M. (1979) Superoxide, superoxide dismutase and oxygen toxicity, in Reviews in Biochemical Toxicology, vol. 1 (Hodgson E., Bend J. R., and Philpot R. M., eds.), Elsevier, Amsterdam, pp. 109–124.

    Google Scholar 

  • McCord J. M. and Russell W. J. (1988) Inactivation of creatine phosphokinase by superoxide during reperfusion injury, in Oxygen Radicals in Biology and Medicine (Simic K. A., Word J. F., and Von Sonntag C., eds.), Plenum, New York, pp. 869–873.

    Google Scholar 

  • Mosmann T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity. J. Immunol. Methods 65, 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Murrell J., Farlow M., Ghetti B., and Benson M. (1991) A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science 254, 97–99.

    Article  PubMed  CAS  Google Scholar 

  • Oliver C. N., Starke-Reed P. E., Stadtman E. R., Liu G. J., Carney J. M., and Floyd R. A. (1990) Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc. Natl. Acad. Sci. USA 87, 5144–5147.

    Article  PubMed  CAS  Google Scholar 

  • Pearson R. C., Esiri M. M., Hiorns R. W., Wilcock G. K., and Powell T. P. (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc. Natl. Acad. Sci USA 82, 4531–4534.

    Article  PubMed  CAS  Google Scholar 

  • Perry G., Richey P. L., Siedlak S. L., Smith M. A., Mulvihill P., DeWitt D. A., Barnett J., Greenberg B. D., and Kalaria R. N. (1993) Immunocytochemical evidence that the β-protein precursor is an integral component of neurofibrillary tangles of Alzheimer’s disease. Am. J. Pathol. 143, 1586–1593.

    PubMed  CAS  Google Scholar 

  • Pettegrew J. M., Panchalingam K., Klunk W. E., McClure R. J., and Muenz L. R. (1994) Alterations of cerebral metabolism in probable Alzheimer’s disease: a preliminary study. Neurobiol. Aging 15, 117–132.

    Article  PubMed  CAS  Google Scholar 

  • Refolo L. M., Wittenberg I. S., Friedrich V. L. Jr., and Robakis N. K. (1991) The Alzheimer amyloid precursor is associated with the detergent-insoluble cytoskeleton. J. Neurosci. 11, 3888–3897.

    PubMed  CAS  Google Scholar 

  • Richardson J. S. (1994) Free radicals in the genesis of Alzheimer’s disease. Ann. NY Acad. Sci. 695, 73–76.

    Article  Google Scholar 

  • Sagara Y., Tan S., Maher P., and Schubert D. (1998) Mechanisms of resistance to oxidative stress in Alzheimer’s disease. Biofactors 8, 45–50.

    PubMed  CAS  Google Scholar 

  • Schubert D., Behl C., Lesley R., Brack A., Dargusch R., Sagara Y., and Kimura H. (1995) Amyloid peptides are toxic via a common oxidative mechanism. Proc. Natl. Acad. Sci. USA 92, 1989–1993.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. (1989) The deposition of amyloid proteins in the aging mammalian brain: implications for Alzheimer’s disease. Ann. Med. 21, 73–76.

    PubMed  CAS  Google Scholar 

  • Selkoe D. J. (1996) Amyloid β-protein and genetics of Alzheimer’s disease. J. Biol. Chem. 271, 18,295–18,298.

    CAS  Google Scholar 

  • Shearman M. S., Hawtin S. R., and Tailor V. J. (1995) The intracellular component of cellular [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl] tetrazolium bromide (MTT) reduction is specifically inhibited by beta-amyloid peptides. J. Neurochem. 68, 218–227.

    Google Scholar 

  • Sims N. R., Finegan J. M., Blass J. P., Bowen D. M., and Neary D. (1987) Mitochondrial function in brain tissue in primary degenerative dementia. Brain Res. 436, 30–38.

    Article  PubMed  CAS  Google Scholar 

  • Smith C. D., Carney J. M., Starke-Reed P. E., Oliver C. N., Stadtman E. R., and Floyd R. A. (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and Alzheimer disease. Proc. Natl. Acad. Sci. USA 88, 10,540–10,543.

    CAS  Google Scholar 

  • Smith C. D., Carney J. M., Tatsuno, T., Stadtman E. R., Floyd R. A., and Markesbery W. R. (1994) Protein oxidation in aging brain. Ann. NY Acad. Sci. 663, 110–119.

    Article  Google Scholar 

  • Smith M. A., Hirai K., Hsiao K., Pappolla M. A., Harris P. L., Siedlak S. L., Tabaton M., and Perry G. (1998) Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J. Neurochem. 70, 2212–2215.

    Article  PubMed  CAS  Google Scholar 

  • Stadtman E. R. (1992) Protein oxidation and aging. Science 257, 1120–1124.

    Article  Google Scholar 

  • Subramaniam R., Koppal T., Yatin S., Jordan B., and Butterfield D. A. (1998) The free radical antioxidant vitamin E protects cortical synaptosomal membrane proteins from amyloid β-peptide (25–35) toxicity but not from hydroxynonenal toxicity: Relevance to the free radical hypothesis of Alzheimer’s disease. Neurochem. Res. 23, 1403–1410.

    Article  PubMed  CAS  Google Scholar 

  • Tomiyama T., Shoji A., Kataoka K., Suwa Y., Asano S., Kaneko H., and Endo N. (1996) Inhibition of amyloid beta protein aggregation and neurotoxicity by rifampicin. Its possible function as a hydroxyl radical scavenger. J. Biol. Chem. 271, 6839–6844.

    Article  PubMed  CAS  Google Scholar 

  • Ueda K., Shinohara S., Yagami T., Asakura K., and Kawasaki K. (1997) Amyloid β protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels: A possible involvement of free radicals. J. Neurochem. 68, 265–271.

    Article  PubMed  CAS  Google Scholar 

  • Wallace M. A. (1994) Effects of Alzheimer’s disease-related β amyloid protein fragments on enzyme metabolizing, phosphoinositides in brain. Biochim. Biophys. Acta 1227, 183–187.

    PubMed  Google Scholar 

  • Wisniewski K., Wisniewski H., and Wen G. (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann. Neurol. 17, 278–282.

    Article  PubMed  CAS  Google Scholar 

  • Yan S. D., Chen X., Fu J., Chen M., Zhu H., Roher A., Slattery T., Zhao L., Nagashima M., Morser J., Migheli A., Nawroth P., Stern D., and Schmidt A. M. (1996) RAGE and amyloid β-peptide neurotoxicity in Alzheimer’s disease Nature 382, 685–691.

    Article  PubMed  CAS  Google Scholar 

  • Yankner B. A., Duffy L. K., and Kirschnier D. A. (1990) Neurotrophic and neurotoxic effects of amyloid β-protein: reversal by Tachykinin neuropeptides. Science 250, 279–282.

    Article  PubMed  CAS  Google Scholar 

  • Yatin S., Aksenov M., and Butterfield D. A. (1999) The antioxidant vitamin E modulates amyloid β-peptide induced creatine kinase activity inhibition and increased protein oxidation: Implications for the free radical hypothesis of Alzheimer’s disease. Neurochem. Res. 24, 427–435.

    Article  PubMed  CAS  Google Scholar 

  • Zang Z., Rydel R. E., Drzewiecki G. J., Fuson K., Wright S., Wouglis M., Audia J. E., May P. C., and Hyslop P. A. (1996) Amyloid β-mediated oxidative and metabolic stress in rat cortical neurons: no direct evidence for a role for H2O2 generation. J. Neurochem. 67, 1595–1606.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yatin, S.M., Aksenova, M., Aksenov, M. et al. Temporal relations among amyloid β-peptide-induced free-radical oxidative stress, neuronal toxicity, and neuronal defensive responses. J Mol Neurosci 11, 183–197 (1998). https://doi.org/10.1385/JMN:11:3:183

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:11:3:183

Index Entries

Navigation