Skip to main content
Log in

The TNF receptor superfamily

Role in immune inflammation and bone formation

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Tumor necrosis factor (TNF) and TNF receptor (TNFR) family proteins play important roles in many biological processes. Recently, the TNF-family molecule, RANKL (also called TRANCE, ODF, and OPGL), and its receptors, RANK and OPG, were found to be regulators of the development and activation of osteoclasts in bone remodeling. TNFα also activates osteoclasts both by themselves and in synergy with RANKL. We used structure-based design to create peptidomimetics and organic therapeutics that inhibit osteoclastogenesis by inhibiting the interaction of ligands and receptors. Here we show for the first time that blocking TNFα by these small molecules effectively inhibited osteoclast formation in vitro. These mimetics can be used as a probe to understand the molecular basis of osteoclastogenesis and also as a platform to create useful therapeutic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith CA, Farrah T, Goodwin RG: The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 1994;76:959–962.

    Article  PubMed  CAS  Google Scholar 

  2. Ashkenazi A, Dixit VM: Death receptors: signaling and modulation. Science 1998;281:1305–1308.

    Article  PubMed  CAS  Google Scholar 

  3. Locksley RM, Killeen N, Lenardo MJ: The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001;104: 487–501.

    Article  PubMed  CAS  Google Scholar 

  4. Horowitz MC, Xi Y, Wilson K, Kacena MA: Control of osteoclastogenesis and bone resorption by members of the TNF family of receptors and ligands. Cytokine Growth Factor Rev 2001; 12:9–18.

    Article  PubMed  CAS  Google Scholar 

  5. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, et al.: Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997;89:309–319.

    Article  PubMed  CAS  Google Scholar 

  6. Tsuda E, Goto M, Mochizuki S, Yano K, Kobayashi F, Morinaga T, et al.: Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 1997;234:137–142.

    Article  PubMed  CAS  Google Scholar 

  7. Anderson DM, Maraskowsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, et al.: A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997;390:175–179.

    Article  PubMed  CAS  Google Scholar 

  8. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al.: Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998;95:3597–3602.

    Article  PubMed  CAS  Google Scholar 

  9. Wong BR, Josien R, Lee SY, Sauter B, Li HL, Steinman RM, et al.: TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med 1997;186:2075–2080.

    Article  PubMed  CAS  Google Scholar 

  10. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al.: Osteoprotegerin ligand is acytokine that regulates osteoclast differentiation and activation. Cell 1998;93:165–176.

    Article  PubMed  CAS  Google Scholar 

  11. Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, et al.: Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 1999;96: 3540–3545.

    Article  PubMed  CAS  Google Scholar 

  12. Hofbauer LC, Neubauer A, Heufelder aE: Receptor activator of nuclear factor-kappaB ligand and osteoprotegerin: potential implications for the pathogenesis and treatment of malignant bone diseases. Cancer 2001;92: 460–470.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang YH, Heulsmann A, tondravi MM, Mukherjee A, Abu-Amer Y: Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J Biol Chem 2001; 276:563–568.

    Article  PubMed  CAS  Google Scholar 

  14. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, et al.: Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 2000;191: 275–286.

    Article  PubMed  CAS  Google Scholar 

  15. Teitelbaum SL: Bone resorption by osteoclasts. Science 2000;289: 1504–1508.

    Article  PubMed  CAS  Google Scholar 

  16. Fuller K, Wong B, Fox S, Choi Y, Chambers TJ: TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med 1998;188:997–1001.

    Article  PubMed  CAS  Google Scholar 

  17. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al.: OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999;397: 315–323.

    Article  PubMed  CAS  Google Scholar 

  18. Kong YY, Boyle WJ, Penninger JM: Osteoprotegerin ligand: a common link between osteoclastogenesis, lymph node formation and lymphocyte development. Immunol Cell Biol 1999;77:188–193.

    Article  PubMed  CAS  Google Scholar 

  19. Josien R, Li HL, Ingulli E, Sarma S, Wong BR, Vologodskaia M, et al.: TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J Exp Med 2000;191:495–502.

    Article  PubMed  CAS  Google Scholar 

  20. Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, et al.: Theosteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 2000;103:41–50.

    Article  PubMed  CAS  Google Scholar 

  21. Ikeda T, Kasai M, Utsuyama M, Hirokawa K: Determination of three isoforms of the receptor activator of nuclear factor-kappaB ligand and their differential expression in bone and thymus. Endocrinology 2001; 142:1419–1426.

    Article  PubMed  CAS  Google Scholar 

  22. Miyamoto A, Kunisada T, Hemmi H, Yamane T, Yasuda H, Miyake K, et al.: Establishment and characterization of an immortal macrophage-like cell line inducible to differentiate to osteoclasts. Biochem Biophys Res Commun 1998;242:703–709.

    Article  PubMed  CAS  Google Scholar 

  23. Akatsu T, Murakami T, Nishikawa M, Ono K, Shinomiya N, Tsuda E, et al.: Osteoclastogenesis inhibitory factor suppresses osteoclast survival by interfering in the interaction of stromal cells with osteoclast. Biochem Biophys Res Commun 1998;250:229–234.

    Article  PubMed  CAS  Google Scholar 

  24. Hakeda Y, Kobayashi Y, Yamaguchi K, Yasuda H, Tsuda E, Higashio K, et al.: Osteoclastogenesis inhibitory factor (OCIF) directly inhibits bone-resorbing activity of isolated mature osteoclasts. Biochem Biophys Res Commun 1998; 251:796–801.

    Article  PubMed  CAS  Google Scholar 

  25. Emery JG, Mcdonnell P, Burke MB, Deen KC, Lyn S, Silvennan C, et al.: Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 1998;273: 14,363–14,367.

    Article  CAS  Google Scholar 

  26. Arai F, Miyamoto T, Ohneda O, Irada T, Sudo T, Brasel K, et al.: Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med 1999;190:1741–1754.

    Article  PubMed  CAS  Google Scholar 

  27. Galibert L, Tometsko ME, Anderson DM, Cosman D, Dougall WC: The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR superfamily. J Biol Chem 1998;273:34,120–34,127.

    Article  CAS  Google Scholar 

  28. Lee ZH, Kwack K, Kim KK, Lee SH, Kim HH: Activation of c-Jun N-terminal kinase and activator protein 1 by receptor activator of nuclear factor kappaB. Mol Pharmacol 2000;58:1536–1545.

    PubMed  CAS  Google Scholar 

  29. Karin M, Lin A: NF-kappaB at the crossroads of life and death. Nat Immunol 2002;3:221–227.

    Article  PubMed  CAS  Google Scholar 

  30. Wong BR, Besser D, Kim N, Arron JR, Vologodskaia M, Hanafusa H, et al.: TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell 1999;4:1041–1049.

    Article  PubMed  CAS  Google Scholar 

  31. Takayanagi H, Ogasawa K, Hida S, Chiba T, Murata S, Sato K, et al.: T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 2000;408: 600–605.

    Article  PubMed  CAS  Google Scholar 

  32. Takai H, Kanematsu M, Yano K, Tsuda E, Higashio K, Ikeda K, et al.: Transforming growth factor-beta stimulates the production of osteoprotegerin/osteoclastogenesis inhibitory factor by bone marrow stromal cells. J Biol Chem 1998;273:27,091–27,096.

    Article  CAS  Google Scholar 

  33. Theill LE, Boyle WJ, Penninger JM: RANK-L AND RANK: T Cells, Bone Loss, and Mammalian Evolution. Annu Rev Immunol 2002;20:795–823.

    Article  PubMed  CAS  Google Scholar 

  34. Murali R, Greene MI: Structure-based design of immunologically active therapeutic peptides. Immunol Res 1998;17:163–169.

    PubMed  CAS  Google Scholar 

  35. Lader CS, Flanagan aM: Prostaglandin E2, interleukin 1 alpha, and tumor necrosis factor-alpha increase human osteoclast formation and bone resorption in vitro. Endocrinology 1998;139: 3157–3164.

    Article  PubMed  CAS  Google Scholar 

  36. Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D, et al.: Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. Embo J 1991; 10:4025–4031.

    PubMed  CAS  Google Scholar 

  37. Komine M, Kukita A, Kukita T, Ogata Y, Hotokebuchi T, Kohashi O: Tumor necrosis factor-alpha cooperates with receptor activator of auclear factor kappaB ligand in generation of osteoclasts instromal cell-depleted rat bone marrow cell culture. Bone 2001;28:474–483.

    Article  PubMed  CAS  Google Scholar 

  38. Tartaglia LA, Goeddel DV: Tumor necrosis factor receptor signaling. Adominant negative mutation suppresses the activation of the 55-kDa tumor necrosis factor receptor. J Biol Chem 1992;267:4304–4307.

    PubMed  CAS  Google Scholar 

  39. Zou W, Hakim I, Tschoep K, Endres S, Bar-Shavit Z: Tumor necrosis factor-alpha mediates RANK ligand stimulation of osteoclast differentiation by an autocrine mechanism. J Cell Biochem 2001; 83:70–83.

    Article  PubMed  CAS  Google Scholar 

  40. Tartaglia LA, Rothe M, Hu YF, Goeddel DV: Tumor necrosis factor's cytotoxic activity is signaled by the p55 TNF receptor. Cell 1993;73:213–216.

    Article  PubMed  CAS  Google Scholar 

  41. Lee SE, Chung WJ, Kwak HB, Chung CH, Kwack KB, Lee ZH, et al.: Tumor necrosis factor-alpha supports the survival of osteoclasts through the activation of Akt and ERK. J Biol Chem 2001;276:49,343–49,349.

    CAS  Google Scholar 

  42. Matsumoto M, Sudo T, Saito T, Osada H, Tsujimoto M: Involvement of p38 nitrogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J Biol Chem 2000;275:31,155–31,161.

    Article  CAS  Google Scholar 

  43. Lee SE, Woo KM, Kim SY, Kim HM, Kwack K, Lee ZH, et al.: The phosphatidy linositol 3-kinase, p38, and extracellular signalregulated kinase pathways are involved in osteoclast differentiation. Bone 2002;30:71–77.

    Article  PubMed  CAS  Google Scholar 

  44. Fuller K, Murphy C, Kirstein B, Fox SW, Chambers TJ: TNFalpha potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology 2002;143:1108–1118.

    Article  PubMed  CAS  Google Scholar 

  45. Romas E, Gillespie MT, Martin TJ: Involvement of receptor activator of NFkappa B ligand and tumor necrosis factor-alpha in bone destruction in rheumatoid arthritis. Bone 2002;30:340–346.

    Article  PubMed  CAS  Google Scholar 

  46. Keystone EC: Tumor necrosis factor-alpha blockade in the treatment of rheumatoid arthritis. Rheum Dis Clin North Am 2001;27:427–443.

    Article  PubMed  CAS  Google Scholar 

  47. Redlich K, Hayer S, Maier A, Dumstan CR, Tohidast-Akrad M, Lang S, et al.: Tumor necrosis factor alpha-mediated joint destruction is inhibited by targeting osteoclasts with osteoprotegerin. Arthritis Rheum 2002;46:785–792.

    Article  PubMed  CAS  Google Scholar 

  48. Morinaga T: Involvement of osteoclast differentiation factor (ODF) in osteoclast formation and immunity, Ersho to Men'eki. 2000;8:384–393.

    CAS  Google Scholar 

  49. Jimi E: Role of NF-kappa.B/Rel transcription factors for the differentiation and function of osteoclasts. Bone (Osaka) 1998;12:91–98.

    CAS  Google Scholar 

  50. Kieber-Emmons T, Murali R, Greene MI: Therapeutic peptides and peptidomimetics. Curr Opin Biotechmol 1997;8:435–441.

    Article  CAS  Google Scholar 

  51. Zhang X, Piatier-Tonneau D, Auffray C, Murali R, Mahapatra A, Zhang F, et al.: Synthetic CD4 exocyclic peptides antagonize CD4 holoreceptor binding and T cell activation. Nat Biotechnol 1996; 14:472–475.

    Article  PubMed  CAS  Google Scholar 

  52. Park B-W, Zhang H-T, Wu C, Berezov A, Zhang X, Dua R, et al.: Rationally designed anti-HER 2/neu peptide mimetic disables P185HER2/neuty rosine kinases in vitro and in vivo. Nat Biotechnol 2000;18:194–198.

    Article  PubMed  CAS  Google Scholar 

  53. Berezov A, Zhang H-T, Greene MI, Murali R: Disabling ErbB receptors with rationally designed exocyclic mimetics of antibodies: structure-function Analysis. J Med Chem 2001;44:2565–2574.

    Article  PubMed  CAS  Google Scholar 

  54. Lam J, Nelson CA, Ross FP, Teitelbaum SL, Fremont DH: Crystal structure of the TRANCE/RANKL cytokine reveals determinants of receptor-ligand specificity. J Clin Invest 2001;108:971–979.

    Article  PubMed  CAS  Google Scholar 

  55. Banner DW, D'arcy A, Janes W, Gentz R, Schoenfeld HJ, Broger C, et al.: Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptoractivation. Cell 1993;73:431–445.

    Article  PubMed  CAS  Google Scholar 

  56. Hymowitz SG, Christinger HW, Fuh G, Ultsch M, O'Connell M, Kelley RF, et al.: Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell 1999; 4:563–571.

    Article  PubMed  CAS  Google Scholar 

  57. Cha SS, Sung BJ, Kim YA, Song YL, Kim HJ, Kim S, et al.: Crystal structure of TRAIL-DR5 complex identifiesa critical role of the unique frame insertion in conferring recognition specificity. J Biol Chem 2000;275:31,171–31,177.

    CAS  Google Scholar 

  58. Takasaki W, Kajino Y, Kajino K, Murali R, Greene MI: Structure-based design and characterization of exocyclic pepti domimetics that inhibit TNF alpha binding to its receptor. Nat Biotechnol 1997; 15:1266–1270.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ramachandran Murali or Mark I. Greene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, X., Kinosaki, M., Murali, R. et al. The TNF receptor superfamily. Immunol Res 27, 287–294 (2003). https://doi.org/10.1385/IR:27:2-3:287

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:27:2-3:287

Key Words

Navigation