Skip to main content
Log in

Cell growth and metastasis in pancreatic cancer

Is vav the Rho’d to activation?

  • Review Article
  • Published:
International Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

The best-known family of low molecular weight GTP-binding proteins is Ras, owing to their high incidence of gain of function mutations in a variety of human cancers including pancreatic cancer. Unlike Ras, no activating mutations have been observed thus far for Rho family GTP-binding proteins in cancer, yet there is increasing evidence that overexpression of Rho family members and/or dysregulation of the GDP→GTP cycle play an important role in cancer development and progression. The activation of Rho family GTPases downstream of cell surface receptors results in the induction of several intracellular signaling cascades that have been shown to impact on such diverse cellular responses as reorganization of the actin cytoskeleton, gene transcription, cell survival, and cell proliferation. One family of guanine nucleotide exchange factors (GEFs) that have the potential to couple the activation of Rho family members to upstream growth factor receptor tyrosine kinases (RTKs) is the Vav family of proto-oncogenes. Recent experimental evidence has implicated Vav in the regulation of numerous Rho-mediated pathways downstream of RTKs and other cell surface receptors. In this review, we will discuss our current understanding of how Vav proteins are regulated, and how Vav and their target GTP-binding proteins participate in tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sahai E, Marshall CJ. RHO-GTPases and Cancer. Nat Rev Cancer 2002;2:133–142.

    Article  PubMed  Google Scholar 

  2. Fukata M, Kaibuchi K. Rho-family GTPases in cadherinmediated cell-cell adhesion. Nat Rev Mol Cell Biol 2001;2:887–897.

    Article  PubMed  CAS  Google Scholar 

  3. Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev 2001;81:153–208.

    PubMed  CAS  Google Scholar 

  4. Anastasiadis PZ, Reynolds AB. Regulation of Rho GTPases by p120-catenin. Curr Opin Cell Biol 2001;13:604–610.

    Article  PubMed  CAS  Google Scholar 

  5. Ridley AJ. Rho family proteins: coordinating cell responses. Trends Cell Biol 2001;11:471–477.

    Article  PubMed  CAS  Google Scholar 

  6. Sachdev P, Jiang YX, Li W, et al. Differential requirement for Rho family GTPases in an oncogenic insulin-like growth factor-I receptor-induced cell transformation. J Biol Chem 2001;276:26,461–26,471.

    Article  CAS  Google Scholar 

  7. Liu BP, Burridge K. Vav2 activates Rac1, Cdc42, and RhoA downstream from growth factor receptors but not beta1 integrins. Mol Cell Biol 2000;20:7160–7169.

    Article  PubMed  CAS  Google Scholar 

  8. Zeng L, Sachdev P, Yan L, et al. Vav3 mediates receptor protein tyrosine kinase signaling, regulates GTPase activity, modulates cell morphology, and induces cell transformation. Mol Cell Biol 2000;20:9212–9224.

    Article  PubMed  CAS  Google Scholar 

  9. Bhowmick NA, Ghiassi M, Bakin A, et al. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 2001;12:27–36.

    PubMed  CAS  Google Scholar 

  10. Bourguignon LY, Zhu H, Zhou B, et al. Hyaluronan promotes CD44v3-Vav2 interaction with Grb2-p185 (HER2) and induces Rac1 and Ras signaling during ovarian tumor cell migration and growth. J Biol Chem 2001;276:48,679–48,692.

    CAS  Google Scholar 

  11. Edlund S, Landstrom M, Heldin CH, et al. Transforming Growth Factor-beta-induced Mobilization of Actin Cytoskeleton Requires Signaling by Small GTPases Cdc42 and RhoA. Mol Biol Cell 2002;13:902–914.

    Article  PubMed  CAS  Google Scholar 

  12. Royal I, Lamarche-Vane N, Lamorte L, et al. Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol Biol Cell 2000;11:1709–1725.

    PubMed  CAS  Google Scholar 

  13. Sahai E, Ishizaki T, Narumiya S, et al. Transformation mediated by RhoA requires activity of ROCK kinases. Curr Biol 1999;9:136–145.

    Article  PubMed  CAS  Google Scholar 

  14. Schurmann A, Mooney AF, Sanders LC, et al. p21-activated kinase 1 phosphorylates the death agonist bad and protects cells from apoptosis. Mol Cell Biol 2000;20:453–461.

    Article  PubMed  CAS  Google Scholar 

  15. Mira JP, Benard V, Groffen J, et al. Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci USA 2000;97:185–189.

    Article  PubMed  CAS  Google Scholar 

  16. Vadlamudi RK, Adam L, Wang RA, et al. Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J Biol Chem 2000;275:36,238–36,244.

    Article  CAS  Google Scholar 

  17. Miki H, Yamaguchi H, Suetsugu S, et al. IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 2000;408:732–735.

    Article  PubMed  CAS  Google Scholar 

  18. Tominaga T, Sahai E, Chardin P, et al: Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. Mol Cell 2000;5:13–25.

    Article  PubMed  CAS  Google Scholar 

  19. Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem J 2000;348:241–255.

    Article  PubMed  CAS  Google Scholar 

  20. Katzav S, Martin-Zanca D, Barbacid M. vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells. Embo J 1989;8:2283–2290.

    PubMed  CAS  Google Scholar 

  21. Schuebel KE, Bustelo XR, Nielsen DA, et al. Isolation and characterization of murine vav2, a member of the vav family of proto-oncogenes. Oncogene 1996;13:363–371.

    PubMed  CAS  Google Scholar 

  22. Movilla N, Bustelo XR. Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Mol Cell Biol 1999;19:7870–7885.

    PubMed  CAS  Google Scholar 

  23. Henske EP, Short MP, Jozwiak S, et al. Identification of VAV2 on 9q34 and its exclusion as the tuberous sclerosis gene TSC1. Ann Hum Genet 1995;59:25–37.

    Article  PubMed  CAS  Google Scholar 

  24. Moores SL, Selfors LM, Fredericks J, et al. Vav family proteins couple to diverse cell surface receptors. Mol Cell Biol 2000;20:6364–6373.

    Article  PubMed  CAS  Google Scholar 

  25. Turner M, Billadeau DD. Vav proteins as signal integrators for multi-subunit immune recognition receptors. Nat Rev Immunol 2002;2:476–486.

    Article  PubMed  CAS  Google Scholar 

  26. Bustelo XR. Regulatory and signaling properties of the Vav family. Mol Cell Biol 2000;20:1461–1477.

    Article  PubMed  CAS  Google Scholar 

  27. Bustelo XR: Vav proteins, adaptors and cell signaling. Oncogene 2001;20:6372–6381.

    Article  PubMed  CAS  Google Scholar 

  28. Schuebel KE, Movilla N, Rosa JL, et al. Phosphorylation-dependent and constitutive activation of Rho proteins by wild-type and oncogenic Vav-2. Embo J 1998;17:6608–6621.

    Article  PubMed  CAS  Google Scholar 

  29. Crespo P, Schuebel KE, Ostrom AA, et al. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 1997;385:169–172.

    Article  PubMed  CAS  Google Scholar 

  30. Movilla N, Dosil M, Zheng Y, et al. How Vav proteins discriminate the GTPases Rac1 and RhoA from Cdc42. Oncogene 2001;20:8057–8065.

    Article  PubMed  CAS  Google Scholar 

  31. Zheng Y: Db1 family guanine nucleotide exchange factors. Trends Biochem Sci 2001;26:724–732.

    Article  PubMed  CAS  Google Scholar 

  32. Bustelo XR. Regulation of Vav Proteins by Intramolecular Events. Front Biosci 2002;7:D24-D30.

    Article  PubMed  CAS  Google Scholar 

  33. Songyang Z, Shoelson SE, McGlade J, et al. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol Cell Biol 1994;14:2777–2785.

    PubMed  CAS  Google Scholar 

  34. Marignani PA, Carpenter CL. Vav2 is required for cell spreading. J Cell Biol 2001;154:177–186.

    Article  PubMed  CAS  Google Scholar 

  35. Chiariello M, Marinissen MJ, Gutkind JS. Regulation of c-myc expression by PDGF through Rho GTPases. Nat Cell Biol 2001;3:580–586.

    Article  PubMed  CAS  Google Scholar 

  36. Kato-Stankiewicz J, Ueda S, Kataoka T, et al. Epidermal growth factor stimulation of the ACK1/Db1 pathway in a Cdc42 and Grb2-dependent manner. Biochem Biophys Res Commun 2001;284:470–477.

    Article  PubMed  CAS  Google Scholar 

  37. Chikumi H, Fukuhara S, Gutkind JS. Regulation of G Protein-linked Guanine Nucleotide Exchange Factors for Rho, PDZ-RhoGEF, and LARG by Tyrosine Phosphorylation. Evidence of a Role for Focal Adhesion Kinase. J Biol Chem 2002;277:12,463–12,473.

    CAS  Google Scholar 

  38. Aghazadeh B, Lowry WE, Huang XY, et al. Structural basis for relief of autoinhibition of the Db1 homology domain of proto-oncogene Vav by tyrosine phosphorylation. Cell 2000;102:625–633.

    Article  PubMed  CAS  Google Scholar 

  39. Lopez-Lago M, Lee H, Cruz C, et al: Tyrosine phosphorylation mediates both activation and downmodulation of the biological activity of Vav. Mol Cell Biol 2000;20:1678–1691.

    Article  PubMed  CAS  Google Scholar 

  40. Billadeau DD, Mackie SM, Schoon RA, et al. Specific subdomains of Vav differentially affect T cell and NK cell activation. J Immunol 2000;164:3971–3981.

    PubMed  CAS  Google Scholar 

  41. Crnogorac-Jurcevic T, Efthimiou E, Capelli P, et al. Gene expression profiles of pancreatic cancer and stromal desmoplasia. Oncogene 2001;20:7437–7446.

    Article  PubMed  CAS  Google Scholar 

  42. Suwa H, Ohshio G, Imamura T, et al. Overexpression of the rhoC gene correlates with progression of ductal adenocarcinoma of the pancreas. Br J Cancer 1998;77:147–152.

    PubMed  CAS  Google Scholar 

  43. Fritz G, Just I, Kaina B: Rho GTPases are over-expressed in human tumors. Int J Cancer 1999;81:682–687.

    Article  PubMed  CAS  Google Scholar 

  44. Kamai T, Arai K, Tsujii T, et al: Overexpression of RhoA mRNA is associated with advanced stage in testicular germ cell tumour. BJU Int 2001;87:227–231.

    Article  PubMed  CAS  Google Scholar 

  45. van Golen KL, Wu ZF, Qiao XT, et al. RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res 2000;60:5832–5838.

    PubMed  Google Scholar 

  46. Abraham MT, Kuriakose MA, Sacks PG, et al. Motility-related proteins as markers for head and neck squamous cell cancer. Laryngoscope 2001;111:1285–1289.

    Article  PubMed  CAS  Google Scholar 

  47. Preudhomme C, Roumier C, Hildebrand MP, et al. Nonrandom 4p13 rearrangements of the RhoH/TTF gene, encoding a GTP-binding protein, in non-Hodgkin’s lymphoma and multiple myeloma. Oncogene 2000;19:2023–2032.

    Article  PubMed  CAS  Google Scholar 

  48. Schnelzer A, Prechtel D, Knaus U, et al. Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 2000;19:3013–3020.

    Article  PubMed  CAS  Google Scholar 

  49. Jordan P, Brazao R, Boavida MG, et al. Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene 1999;18:6835–6839.

    Article  PubMed  CAS  Google Scholar 

  50. Lin R, Bagrodia S, Cerione R, et al. A novel Cdc42Hs mutant induces cellular transformation. Curr Biol 1997;7:794–797.

    Article  PubMed  CAS  Google Scholar 

  51. Adam L, Vadlamudi RK, McCrea P, et al. Tiam1 overexpression potentiates heregulin-induced lymphoid enhancer factor-1/beta-catenin nuclear signaling in breast cancer cells by modulating the intercellular stability. J Biol Chem 2001;276:28,443–28,450.

    Article  CAS  Google Scholar 

  52. Kourlas PJ, Strout MP, Becknell B, et al. Identification of a gene at 11q23 encoding a guanine nucleotide exchange factor: evidence for its fusion with MLL in acute myeloid leukemia. Proc Natl Acad Sci USA 2000;97:2145–2150.

    Article  PubMed  CAS  Google Scholar 

  53. Murga C, Zohar M, Teramoto H, et al. Rac1 and RhoG promote cell survival by the activation of PI3K and Akt, independently of their ability to stimulate JNK and NF-kappaB. Oncogene 2002;21:207–216.

    Article  PubMed  CAS  Google Scholar 

  54. Coleman ML, Marshall CJ. A family outing: small GTPases cyclin’ through G1. Nat Cell Biol 2001;3:E250-E251.

    Article  PubMed  CAS  Google Scholar 

  55. Joyce D, Bouzahzah B, Fu M, et al. Integration of Rac-dependent regulation of cyclin D1 transcription through a nuclear factor-kappaB-dependent pathway. J Biol Chem 1999;274:25,245–25,249.

    CAS  Google Scholar 

  56. Mettouchi A, Klein S, Guo W, et al. Integrin-specific activation of Rac controls progression through the G(1) phase of the cell cycle. Mol Cell 2001;8:115–127.

    Article  PubMed  CAS  Google Scholar 

  57. Pruitt K, Der CJ. Ras and Rho regulation of the cell cycle and oncogenesis. Cancer Lett 2001;171:1–10.

    Article  PubMed  CAS  Google Scholar 

  58. Liberto M, Cobrinik D, Minden A. Rho regulates p21 (CIP1), cyclin D1, and checkpoint control in mammary epithelial cells. Oncogene 2002;21:1590–1599.

    Article  PubMed  CAS  Google Scholar 

  59. Welsh CF, Roovers K, Villanueva J, et al. Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nat Cell Biol 2001;3:950–957.

    Article  PubMed  CAS  Google Scholar 

  60. Joyce D, Albanese C, Steer J, et al. NF-kappaB and cellcycle regulation: the cyclin connection. Cytokine Growth Factor Rev 2001;12:73–90.

    Article  PubMed  CAS  Google Scholar 

  61. Hinz M, Krappmann D, Eichten A, et al. NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol 1999;19:2690–2698.

    PubMed  CAS  Google Scholar 

  62. Adnane J, Bizouarn FA, Qian Y, et al. p21 (WAF1/CIP1) is upregulated by the geranylgeranyltransferase I inhibitor GGTI-298 through a transforming growth factor beta- and Sp1-responsive element: involvement of the small GTPase rhoA. Mol Cell Biol 1998;18:6962–6970.

    PubMed  CAS  Google Scholar 

  63. Olson MF, Paterson HF, Marshall CJ. Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature 1998;394:295–299.

    Article  PubMed  CAS  Google Scholar 

  64. Zhuge Y, Xu J. Rac1 mediates type I collagen-dependent MMP-2 activation. role in cell invasion across collagen barrier. J Biol Chem 2001;276:16,248–16,256.

    CAS  Google Scholar 

  65. Matsumoto Y, Tanaka K, Harimaya K, et al. Small GTP-binding protein, Rho, both increased and decreased cellular motility, activation of matrix metalloproteinase 2 and invasion of human osteosarcoma cells. Jpn J Cancer Res 2001;92:429–438.

    PubMed  CAS  Google Scholar 

  66. Engers R, Springer E, Michiels F, et al. Rac affects invasion of human renal cell carcinomas by up-regulating tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2 expression. J Biol Chem 2001;276:41,889–41,897.

    Article  CAS  Google Scholar 

  67. van Golen KL, Wu ZF, Qiao XT, et al. RhoC GTPase overexpression modulates induction of angiogenic factors in breast cells. Neoplasia 2000;2:418–425.

    Article  PubMed  Google Scholar 

  68. Braga VM, Machesky LM, Hall A, et al. The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J Cell Biol 1997;137:1421–1431.

    Article  PubMed  CAS  Google Scholar 

  69. Braga VM, Betson M, Li X, et al. Activation of the small GTPase Rac is sufficient to disrupt cadherin-dependent cell-cell adhesion in normal human keratinocytes. Mol Biol Cell 2000;11:3703–3721.

    PubMed  CAS  Google Scholar 

  70. Fukata M, Nakagawa M, Itoh N, et al. Involvement of IQGAP1, an effector of Rac1 and Cdc42 GTPases, in cell-cell dissociation during cell scattering. Mol Cell Biol 2001;21:2165–2183.

    Article  PubMed  CAS  Google Scholar 

  71. Sugimoto N, Imoto I, Fukuda Y, et al. IQGAP1, a negative regulator of cell-cell adhesion, is upregulated by gene amplification at 15q26 in gastric cancer cell lines HSC39 and 40A. J Hum Genet 2001;46:21–25.

    Article  PubMed  CAS  Google Scholar 

  72. Nabeshima K, Shimao Y, Inoue T, et al. Immunohistochemical analysis of IQGAP1 expression in human colorectal carcinomas: its overexpression in carcinomas and association with invasion fronts. Cancer Lett 2002;176:101–109.

    Article  PubMed  CAS  Google Scholar 

  73. Yonemasu H, Takashima M, Nishiyama KI, et al. Phenotypical characteristics of undifferentiated carcinoma of the pancreas: a comparison with pancreatic ductal adenocarcinoma and relevance of E-cadherin, alpha catenin and beta catenin expression. Oncol Rep 2001;8:745–752.

    PubMed  CAS  Google Scholar 

  74. Noren NK, Niessen CM, Gumbiner BM, et al. Cadherin engagement regulates Rho family GTPases. J Biol Chem 2001;276:33,305–33,308.

    Article  CAS  Google Scholar 

  75. Qiao Q, Ramadani M, Gansauge S, et al. Reduced membranous and ectopic cytoplasmic expression of betacatenin correlate with cyclin D1 overexpression and poor prognosis in pancreatic cancer. Int J Cancer 2001;95:194–197.

    Article  PubMed  CAS  Google Scholar 

  76. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer 2002;2:91–100.

    Article  PubMed  Google Scholar 

  77. Kleer CG, van Golen KL, Zhang Y, et al. Characterization of RhoC expression in benign and malignant breast disease: a potential new marker for small breast carcinomas with metastatic ability. Am J Pathol 2002;160:579–584.

    PubMed  CAS  Google Scholar 

  78. Kaneko K, Satoh K, Masamune A, et al. Expression of ROCK-1 in Human Pancreatic Cancer: Its Down-Regulation by Morpholino Oligo Antisense Can Reduce the Migration of Pancreatic Cancer Cells In Vitro. Pancreas 2002;24:251–257.

    Article  PubMed  Google Scholar 

  79. Akisawa N, Nishimori I, Iwamura T, et al. High levels of ezrin expressed by human pancreatic adenocarcinoma cell lines with high metastatic potential. Biochem Biophys Res Commun 1999;258:395–400.

    Article  PubMed  CAS  Google Scholar 

  80. Matsui T, Maeda M, Doi Y, et al. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol 1998;140:647–657.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel D. Billadeau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billadeau, D.D. Cell growth and metastasis in pancreatic cancer. Int J Gastrointest Canc 31, 5–13 (2002). https://doi.org/10.1385/IJGC:31:1-3:5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IJGC:31:1-3:5

Key Words

Navigation