Skip to main content
Log in

Invertase, maltase, lactase, and peroxidase activities in duodenum of BB rats

  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The development of immune-mediated diabetes in BB rats may involve a defect of the gastrointestinal tract (GI), as suggested by increased gut permeability. This study aimed at measuring invertase, maltase, lactase, and peroxidase activities in the duodenum of diabetes-prone BioBreeding (BBdp) rats and control BioBreeding rats (BBc) given free access to NIH-07 diet up to the time of killing at 60–66 d of age. After washing the entire small intestine, the duodenal mucosa was scraped off in the first 5-cm segment from the pylorus and frozen in distilled water. Invertase, maltase, and lactase activities were measured by monitoring the conversion of [U-14C]sucrose, [U-14C]maltose, and [d-[1-14C]glucose] lactose to radioactive hexoses, which were phosphorylated in the presence of adenosine triphosphatase and yeast hexokinase and then separated from their precursor by ion-exchange chromatography. Peroxidase activity was measured by a spectrophotometric procedure. In the BBdp rats, the activity of invertase, maltase, and lactase averaged, respectively, 70.2±4.4, 81.2±4.3, and 75.7±4.1% (n=16 and p<0.001 in all cases) of the control values found in BBc rats of the same sex. Inversely, after exclusion of two female BBc rats with abnormally high plasma d-glucose concentration, the activity of peroxidase in the BBdp rats averaged 157.4±20.0% (n=16; p<0.02) of the mean control value recorded in BBc rats of the same sex (100.0±9.3%; n=14). These findings are compatible with the view that a proinflammatory state of the GI associated with compromise function may precede the occurrence of pancreatic insulitis in BBdp rats and, possibly, human subjects with type 1 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller, D. and Crane, R. K. (1961). Biochim. Biophys. Acta 52, 293–298.

    Article  PubMed  CAS  Google Scholar 

  2. Semenza, G. and Aurichio, S. (1995). In: The metabolic and molecular bases of intestinal diseases, 7th ed. Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D. S. (eds.). McGraw-Hill: New York.

    Google Scholar 

  3. O’Grady, J. G., Stevens, F. M., Keane, R., et al. (1984). J. Clin. Pathol. 37, 298–301.

    PubMed  CAS  Google Scholar 

  4. Murray, I. A., Smith, J. A., Coupland, K., Ansell, I. D., and Long, R. G. (2001). Scand. J. Gastroenterol. 36, 163–168.

    Article  PubMed  CAS  Google Scholar 

  5. Nieminen, U., Kahri, A., Savilahti, E., and Färkkilä, M. A. (2001). Scand. J. Gastroenterol. 36, 507–510.

    Article  PubMed  CAS  Google Scholar 

  6. Hall, E. J. and Batt, R. M. (1990). J. Am. Vet. Med. Assoc. 196, 91–95.

    PubMed  CAS  Google Scholar 

  7. Hall, E. J. and Batt, R. M. (1991). J. Nutr. 121, S151, S152.

  8. Bjarnason, I. and Peters, T. J. (1984). Gut 25, 145–150.

    PubMed  CAS  Google Scholar 

  9. Meddings, J. B., Jarand, J., Urbanski, S. J., Hardin, J., and Gall, D. G. (1999). Am. J. Physiol. 276, G951-G957.

    PubMed  CAS  Google Scholar 

  10. Scott, F. W., Elliott, R. B., and Kolb, H. (1989). Diabetes Nutr. Metab. 2, 61–73.

    Google Scholar 

  11. Lampasona, V., Bonfanti, R., Bazzigaluppi, E., et al. (1999). Diabetologia 42, 1195–1198.

    Article  PubMed  CAS  Google Scholar 

  12. Hummel, M., Bonifacio, E., Stern, M., Dittler, J., Schimmel, A., and Ziegler, A. G. (2000). Diabetologia 43, 1005–1011.

    Article  PubMed  CAS  Google Scholar 

  13. Tandon, R. K., Strivastava, L. M., and Pandey, S. C. (1975). Am. J. Clin. Nutr. 28, 621–625.

    PubMed  CAS  Google Scholar 

  14. Nakabou, Y., Ishikawa, Y., Misaka, A., and Hagihira, H. (1980). Metabolism 29, 181–185.

    Article  PubMed  CAS  Google Scholar 

  15. Younoszai, M. K. and Schedl, H. P. (1972). J. Lab. Clin. Med. 79, 579–586.

    PubMed  CAS  Google Scholar 

  16. Olsen, W. A. and Korsmo, H. (1975). J. Lab. Clin. Med. 85, 832–837.

    PubMed  CAS  Google Scholar 

  17. Younoszai, M. K. and Ranshaw, J. (1976). J. Nutr. 106, 504–508.

    PubMed  CAS  Google Scholar 

  18. Olsen, W. A. and Rogers, L. (1971). J. Lab. Clin. Med. 77, 838–842.

    PubMed  CAS  Google Scholar 

  19. Langman, J. M. and Rowland, R. (1990). J. Clin. Pathol. 43, 537–540.

    PubMed  CAS  Google Scholar 

  20. Dyer, J., Wood, I. S., Palejwala, A., Ellis, A., and Shirazi-Beechey, S. P. (2002). Am. J. Physiol. Gastrointest. Liver Physiol. 282, G241-G248.

    PubMed  CAS  Google Scholar 

  21. Malis, F., Lojda, Z., Fric, P., and Jodl, J. (1972). Digestion 5, 40–48.

    Article  PubMed  CAS  Google Scholar 

  22. Berg, N. O., Dahlqvist, A., Lindberg, T., and Norén, Å. (1973). Scand. J. Gastroenterol. 8, 703–712.

    PubMed  CAS  Google Scholar 

  23. Anand, B. S., Piris, J., Jerrome, D. W., Orrel, R. E., and Truelove, S. C. (1981). Q. J. Med. 197, 83–94.

    Google Scholar 

  24. Scott, F. W., Olivares, E., Sener, A., and Malaisse, W. J. (2000). Metabolism 49, 1111–1117.

    Article  PubMed  CAS  Google Scholar 

  25. Malaisse, W. J., Olivares, E., Laghmich, A., Ladrière, L., Sener, A., and Scott, F. W. (2000). Int. J. Exp. Diabetes Res. 1, 121–130.

    Article  PubMed  CAS  Google Scholar 

  26. Olivares, E., Ladrière, L., Laghmich, A., Sener, A., Malaisse, W. J., and Scott, F. W. (1999). Mol. Gen. Metab. 68, 379–390.

    Article  CAS  Google Scholar 

  27. Scott, F. W., Olivares, E., Sener, A., and Malaisse, W. J. (2000). Metabolism 49, 1111–1117.

    Article  PubMed  CAS  Google Scholar 

  28. Bergmeyer, H. U. and Berndt, E. (1974). In: Methods of enzymatic analysis. Bergmeyer, H. U. (ed.). Academic: New York.

    Google Scholar 

  29. Leclercq-Meyer, V., Marchand, J., Woussen-Colle, M. C., Giroix, M.-H., and Malaisse, W. J. (1985). Endocrinology 116, 1168–1174.

    Article  PubMed  CAS  Google Scholar 

  30. Malaisse, W. J., Malaisse-Lagae, F., and Wright, P. H. (1967). Am. J. Physiol. 213, 843–848.

    PubMed  CAS  Google Scholar 

  31. Malaisse-Lagae, F. and Malaisse, W. J. (1984). In: Methods in diabetes research. Larner, J. and Pohl, S. (eds.). Wiley: New York.

    Google Scholar 

  32. Dahlqvist, A. (1974). In: Methods of enzymatic analysis. Bergmeyer, H. U. (ed.). Academic: New York.

    Google Scholar 

  33. Krawisz, J. E., Sharon, P., and Stenson, W. F. (1984). Gastroenterology 87, 1344–1350.

    PubMed  CAS  Google Scholar 

  34. Weehter, W. J., McCraeken, J. D., Kantoci, D., et al. (1998). Dig. Dis. Sci. 43, 1264–1274.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy J. Malaisse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Courtois, P., Meuris, S., Sener, A. et al. Invertase, maltase, lactase, and peroxidase activities in duodenum of BB rats. Endocr 19, 293–299 (2002). https://doi.org/10.1385/ENDO:19:3:293

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:19:3:293

Key Words

Navigation