Skip to main content
Log in

The oxygen radical generator pyrogallol impairs cardiomyocyte contractile function via a superoxide and p38 MAP kinase-dependent pathway

Protection by anisodamine and tetramethylpyrazine

  • Original Research
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Oxygen-derived free radicals have been demonstrated to contribute to the pathogenesis of myocardial dysfunction, although the underlying mechanism remains not fully understood. This study was designed to examine the role of the superoxide generator pyrogallol on cardiac contractile function and possible intervention with herbal medicines anisodamine and tetramethylpyrazine (TMP) on pyrogallol-induced cardiac contractile response. Adult rat ventricular myocytes were isolated and stimulated to contract at 0.5 Hz. Mechanical properties were evaluated using an lonOptix system including peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR90), and maximal velocity of shortening/relengthening (±dL/dt). A 10-min exposure of pyrogallol (0 to 10−2 M) did not affect cardiac contractile mechanics. However, longer duration of pyrogallol exposure (1, 3, and 6 h) significantly shortened resting cell length, reduced PS and ±dL/dt, and prolonged TPS and TR90 in time- and concentration-dependent manners. The pyrogallol (10−4 M with 6-h incubation)-induced mechanical defects were prevented by the p38 mitogen-activated protein (MAP) kinase inhibitor SB203580 (1 μM) and superoxide dismutase (SOD, 500 U/mL) with the exception that pyrogallol-induced PS depression was unaffected by SOD. Interestingly, incubation of herbal antioxidants anisodamine (10−7 M) and TMP (10−7 M) effectively attenuated the pyrogallol-induced cardiac mechanical defects with the exception of PS unaffected by TMP. Our data demonstrate a direct inhibitory effect of pyrogallol on cardiac contraction, probably in a superoxide- and p38 MAP kinase-dependent manner. The antioxidant medicines anisodamine and TMP may be useful in the treatment of oxygen free radical-induced myocardial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keith, M., Geranmayegan, A., Sole, M.J., Kurian, R., Robinson, A., Omran, A.S., et al. (1998). Increased oxidative stress in patients with congestive heart failure. J. Am. Coll. Cardiol. 31:1352–1356.

    Article  PubMed  CAS  Google Scholar 

  2. Hintz, K.K., Relling, D.P., Saari, J.T., Borgerding, A.J., Duan, J., Ren, B.H., et al. (2003). Cardiac over-expression of alcohol dehydrogenase exacerbates cardiac contractile dysfunction, lipid peroxidation and protein damage following chronic ethanol ingestion. Alcohol. Clin. Exp. Res. 27:1090–1098.

    Article  PubMed  CAS  Google Scholar 

  3. Ye, G., Metreveli, N.S., Ren, J., and Epstein PN. (2003). Overexpression of metallothionein reverses diabetes induced functional deficits in diabetic cardiomyocytes by inhibiting ROS production. Diabetes 52:777–783.

    Article  PubMed  CAS  Google Scholar 

  4. Przyklenk, K., Whittaker, P., and Kloner, R.A. (1990). In vivo infusion of oxygen free radical substrates causes myocardial systolic, but not diastolic dysfunction. Am. Heart J. 119:807–815.

    Article  PubMed  CAS  Google Scholar 

  5. Josephson, R.A., Silverman, H.S., Lakatta, E.G., Stern, M.D., and Zweier, J.L. (1991). Study of the mechanisms of hydrogen peroxide and hydroxyl free radical induced cellular injury and calcium overload in cardiac myocytes. J. Biol. Chem. 266:2354–2361.

    PubMed  CAS  Google Scholar 

  6. Gao, W.D., Atar, D., Backx, P.H., and Marban, E. (1995). Relationship between intracellular calcium and contractile force in stunned myocardium: direct evidence for decreased myofilament Ca2+ responsiveness and altered diastolic function in intact ventricular muscle. Circ. Res. 76:1036–1048.

    PubMed  CAS  Google Scholar 

  7. Dhalla, N.S., Temsah, R.M., and Netticadan, T. (2000). Role of oxidative stress in cardiovascular diseases. J. Hypertens. 18:655–673.

    Article  PubMed  CAS  Google Scholar 

  8. Norby, F.L. and Ren, J. (2002). Anisodamine inhbits cardiac contraction and intracellular Ca2+ transients in isolated adult rat ventricular myocytes. Eur. J. Pharmacol. 439:21–25.

    Article  PubMed  CAS  Google Scholar 

  9. Hintz, K.K. and Ren, J. (2003). Tetramethylpyrazine elicits disparate responses in cardiac contraction and intracellular Ca2+ transients in isolated adult rat ventricular myocytes. Vascul. Pharmacol. 40:213–217.

    Article  PubMed  CAS  Google Scholar 

  10. Luo, Z.Y., Tang, Y., You, J.I., and Luo, H. (1992). Protective effect of anisodamine on cultured bovine pulmonary endothelial cell injury induced by oxygen-free radicals. Arch. Surg. 127:1204–1208.

    PubMed  CAS  Google Scholar 

  11. Huang, J.B., Liu, X.F., and Chen, S.Y. (1994). Effect of tetramethylpyrazine in inhibiting respiratory burst of polymorphonuclears and scavenging oxygen free radicals. Chin. J. Integrated West. Tradit. Chin. Med. 14:607–609.

    CAS  Google Scholar 

  12. Zhang, Z., Wei, T., Hou, J., Li, G., Yu, S., and Xin, W. (2003). Tetramethylpyrazine scavenges superoxide anion and decreases nitric oxide production in human polymorphonuclear leukocytes. Life Sci. 72:2465–2472.

    Article  PubMed  CAS  Google Scholar 

  13. Xiu, R.J., Hammerschmidt, D.E., Coppo, P.A., and Jacob, H.S. (1982). Anisodamine inhibits thromboxane synthesis, granulocyte aggregation, and platelet aggregation. A possible mechanism for its efficacy in bacteremic shock. JAMA 247:1458–1460.

    Article  PubMed  CAS  Google Scholar 

  14. Wang, C., Zhou, J., Xie J., Zhou, J., and Guan, H. (1988). Circulatory effects of anisodamine on cardiopulmonary bypass. Thorac. Cardiovasc. Surg. 36:141–145.

    Article  PubMed  CAS  Google Scholar 

  15. Fu, C.J., Zhao, G.S., Zhang, J.F., and Li, G.Z. (1993). Effect of ligustrazine (anisodamine) on isolated ischemic reperfusion injury in rats. Chin. J. Integrated West. Tradit. Chin. Med. 13:228–229.

    CAS  Google Scholar 

  16. Kwan, C.Y., Daniel, E.E., and Chen, M.C. (1990). Inhibitor of vasoconstriction by tetramethyl pyrazine: does it act by blocking the voltage-dependent Ca-channel? J. Cardiovasc. Pharmacol. 15:157–162.

    Article  PubMed  CAS  Google Scholar 

  17. Lin, L.N., Wang, W.T., and Xu, Z.J. (1997). Clinical study on ligustrazine in treating myocardial ischemia and reperfusion injury. Chin. J. Integrated West. Tradit. Chin. Med. 17:261–263.

    CAS  Google Scholar 

  18. Zeng, Z.P., Zhu, W.L., Zhou, X.H., Jin, Z.Y., Liu, H.R., Chen, X.M., et al. (1998). Tetramethylpyrazine, a Chinese drug, blocks coronary vasoconstriction by endothelin-1 and decreases plasma endothelin-1 lelels in experimental animals. J. Cardiovasc. Pharmacol. 31:S313-S316.

    Article  PubMed  CAS  Google Scholar 

  19. Xie, Y.W., Kaminski, P.M., and Wolin, M.S. (1998). Inhibition of rat cardiac muscle contraction and mitochondrial respiration by endogenous peroxynitrite formation during posthypoxic reoxygenation. Circ. Res. 82:891–897.

    PubMed  CAS  Google Scholar 

  20. Malan, D., Levi, R.C., Alloatti G., Marcantoni, A., Bedendi, I., and Gallo, M.P. (2003). Cyclic AMP and cyclic MGP independent stimulation of ventricular calcium current by peroxynitrite donors in guinea pig myocytes. J. Cell. Physiol. 197:284–296.

    Article  PubMed  CAS  Google Scholar 

  21. Rajasekaran, S., Morey, T.E., Martynyuk, A.E., and Dennis, D.M. (2003). Free radicals potentiate the negative dromotropic effect of adenosine in guinea pig isolated heart. Acta Cardiol. 58:191–197.

    Article  PubMed  Google Scholar 

  22. Marklund, S. and Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47:469–474.

    Article  PubMed  CAS  Google Scholar 

  23. Guo, H.Y., Lorenz, R.R., and Vanhoutte, P.M. (1992). Anisodamine inhibits non-selectively muscarinic receptors in isolated canine veins. Chin. Med. J. 105:5–10.

    PubMed  CAS  Google Scholar 

  24. Chen, Q. and Zeng, Y. (2000). Anisodamine protects against neuronal death following cerebral ischemia in gerbils. Chin. Med. J. 113:636–639.

    PubMed  CAS  Google Scholar 

  25. Esberg, L.B. and Ren, J. (2003). Role of nitric oxide, tetrahydrobiopterin and peroxynitrite in glucose toxicity-associated contractile dysfunction in ventricular myocytes. Diabetologia 46:1419–1427.

    Article  PubMed  CAS  Google Scholar 

  26. Wold, L.E., Relling, D.P., Duan, J., Norby, F.L., and Ren, J. (2002). Abrogated leptin-induced cardiac contractile response in ventricular myocytes under spontaneous hypertension: role of Jak/STAT pathway. Hypertension 39: 69–74.

    Article  PubMed  CAS  Google Scholar 

  27. Tsutsui, H., Ide, T., Hayashidani, S., Suematsu, N., Utsumi, H., Nakamura, R., et al. (2001). Greater susceptibility of failing cardiac myocytes to oxygen free radical-mediated injury. Cardiovasc. Res. 49:103–09.

    Article  PubMed  CAS  Google Scholar 

  28. Liao, P., Wang, S.Q., Wang, S., Zheng, M., Zhang, S.J., Cheng, H., et al. (2002). p38 mitogen-activated protein kinase mediates a negative inotropic effect in cardiac myocytes. Circ. Res. 90:190–196.

    Article  PubMed  CAS  Google Scholar 

  29. Wang, P., Chen, H., Qin, H., Sankarapandi, S., Becher, M.W., Wong, P.C., et al. (1998). Overexpression of human copper, zinc-superoxide dismutase (SOD1) prevents postischemic injury. Proc. Natl. Acad. Sci. USA 95:4556–4560.

    Article  PubMed  CAS  Google Scholar 

  30. Bolli, R. (1990). Mechanisms of myocardial “stunning”. Circulation 82:723–738.

    PubMed  CAS  Google Scholar 

  31. Coretti, M.C., Koretsune, Y., Kusuoka, H., Chacko, V.P., Zweier, J.L., and Marban, E. (1991). Glycolytic inhibition and calcium overload as consequences of exogenously generated free radicals in rabbit hearts. J. Clin. Invest. 88:1014–1025.

    Article  Google Scholar 

  32. Pieske, B., Kretschmann, B., Meyer, M., Holubarsch, C., Weyrich, J., Posival, H., et al. (1995). Alterations in intracellular Ca2+ handling associated with the inverse forcefrequency relation in human dilated cardiomyopathy. Circulation 92:1169–1178.

    PubMed  CAS  Google Scholar 

  33. Flesch, M., Maack, C., Cremers, B., Baumer, A.T., Sudkamp, M., and Bohm, M. (1990). Effect of β-blockers on free radical-induced cardiac contractile dysfunction. Circulation 100:346–353.

    Google Scholar 

  34. Feng, J., Wu, G., and Tang, S. (1999). The effects of tetramethylpyrazine on the incidence of arrhythmias and the release of PG12 and TXA2 in the ischemic rat heart. Planta. Med. 65:268–270.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esberg, L.B., Ren, J. The oxygen radical generator pyrogallol impairs cardiomyocyte contractile function via a superoxide and p38 MAP kinase-dependent pathway. Cardiovasc Toxicol 4, 375–384 (2004). https://doi.org/10.1385/CT:4:4:375

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:4:4:375

Key Words

Navigation