Skip to main content
Log in

The galvanotaxis response mechanism of keratinocytes can be modeled as a proportional controller

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Human keratinocytes actively crawl in vitro when plated onto a collagen-coated glass substrate, and their direction of migration is totally random. In response to an imposed dc electric field, they migrate asymmetrically, moving mostly toward the negative pole of the field. The authors have analyzed experimental data reported by others to determine the basic characteristics of the cellular response machinery in these keratinocytes. This movement can be completely described mathematically using two independent variables: the speed, V, and the angle of migration, ϕ. The authors propose a model in which a steerer (controller without feedback) is responsible for determining the speed, and an automatic controller (controller with feedback) is responsible for determining the angle of migration. The torque to rotate is induced by a deterministic cellular signal and a stochastic cellular signal. The cellular machine characteristics are determined as follows: The angular dependence of the detection unit is sin ϕ; the detection unit detects the guiding field in a linear fashion; the cellular reaction unit can be described by a constant; the chemical amplifier, as well as the cellular motor work, is linear; the cellular characteristic time, which quantifies the cellular stochastic signal, is 50 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nuccitelli, R. (1988) Physiological electric fields can influence cell motility, growth, and polarity. Adv. Cell Biol. 2, 213–233.

    Article  Google Scholar 

  2. Wiener, N. (1961) Cybernetics: or Control and Communication in Animal and Machine, MIT Press, Cambridge, MA.

    Google Scholar 

  3. Gruler, H. and Gow, N. A. (1990) Directed growth of fungal hyphae in an electric field. Z. Naturforsch. 45c, 306–313.

    Google Scholar 

  4. Nishimura, K. Y., Isseroff, R. R., and Nuccitelli, R. (1996) Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J. Cell Sci. 109, 199–207.

    PubMed  CAS  Google Scholar 

  5. Sheridan, D. M., Isseroff, R. R., and Nuccitelli, R. (1996) Imposition of a physiologic DC electric field alters the migratory response of human keratinocytes on extracellular matrix molecules. J. Invest. Dermatol. 106, 642–646.

    Article  PubMed  CAS  Google Scholar 

  6. Erickson, C. A. and Nuccitelli, R. (1984) Embryonic fibroblast motility and orientation can be influenced by physiological fields. J. Cell Biol. 98, 296–307.

    Article  PubMed  CAS  Google Scholar 

  7. Gruler, H. and Nuccitelli, R. (1986) New insights into galvanotaxis and other directed cell movements: an analysis of the translocation distribution function, in Ionic Currents in Development, Nuccitelli, R. ed., Alan R. Liss, New York, 337–347.

    Google Scholar 

  8. Haken, H. (1983) Synergetics, Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology, Springer, Heidelberg.

    Google Scholar 

  9. Schienbein, M. and Gruler, H. (1994) Langevin equation, Fokker-Planck equation and cell migration. Bull. Math. Biol. 55, 585–608.

    Google Scholar 

  10. Gruler, H. (1998). Fluid self-organized machines. Liquid Crystal 24, 49–66.

    Article  CAS  Google Scholar 

  11. Malawista, S. E. and de Boisfleury Chevance, A. (1982) The cytokineplast: purified, stable, and functional motile machinery from human blood polymorphonuclear leukocytes. Possible formation role of heat-induced centrosomal dysfunction. J. Cell Biol. 95, 960–973.

    Article  PubMed  CAS  Google Scholar 

  12. Risken, H. (1984) The Fokker-Planck Equation, Springer-Verlag, Heidelberg.

    Google Scholar 

  13. Gruler, H. and Nuccitelli, R. (1991) Neural crest cell galvanotaxis: new data and a novel approach to the analysis of both galvanotaxis and chemotaxis. Cell Motil. Cytoskelet. 19, 121–133.

    Article  CAS  Google Scholar 

  14. de Boisfleury-Chevance, A., Rapp, B., and Gruler, H. (1989) Locomotion of white blood cells: a biophysical analysis. Blood Cells 15, 315–333.

    PubMed  Google Scholar 

  15. Barker, A. T., Jaffe, L. F., and Vanable, J. W., Jr. (1982) The glabrous epidermis of cavies contains a powerful battery. Am. J. Physiol. 242, R358-R366.

    PubMed  CAS  Google Scholar 

  16. Schienbein, M., Franke, K., and Gruler, H. (1994) Random walk and directed movement: comparison between inert particles and self-organized molecular machines. Phys. Rev. E. 49, 5492–5471.

    Article  Google Scholar 

  17. Gruler, H. (1995) New insights into directed cell migration: characteristics and mechanisms. Nouv. Rev. Fr. Hematol. 37, 255–265.

    PubMed  CAS  Google Scholar 

  18. Wymann, M. P., Kernen, P., Bengtsson, T., Andersson, T., Baggiolini, M., and Deranleau, D. A. (1990) Corresponding oscillations in neutrophil shape and filamentous actin content. J. Biol. Chem. 265, 619–622.

    PubMed  CAS  Google Scholar 

  19. Jäger, U., Gruler, H., and Bültmann, B. D. (1988) Morphological changes and membrane potential of human granulocytes under influence of chemotactic peptide and/or echo-virus, type 9. Klin Wochenschr. 66, 434–436.

    Article  PubMed  Google Scholar 

  20. Petty, H. R. (2000) Metabolic signaling and cellular oscillations during neutrophil migration and induction of metabolic resonance by electric fields, in Self-Organized Biological Dynamics and Nonlinear Control: Toward Understanding Complexity Chaos, and Emergent Function in Living systems. (Walleczek J., ed.,) Cambridge University Press, Cambridge, UK.

    Google Scholar 

  21. Vereycken, V., Gruler, H., Bucherer, C., Lacombe, C., and Lelièvre, J. C. (1995) The linear motor in the human neutrophil migation. J. Phys. III France 5, 1469–1480.

    Article  Google Scholar 

  22. Constant, E., LeNegrate, A., and deBoisfleury-Chevance, A. (1993) Visualization of intracellular calcium during necrotaxis. Blood Cells 19, 43–52.

    PubMed  CAS  Google Scholar 

  23. Franke, K. and Gruler, H. (1994) Directed cell migration in pulsed electric fields. Z. Naturforsch. 49c, 241–249.

    Google Scholar 

  24. Gruler, H. (1991) Cell movement and automatic control, in Biologically Inspired Physics (Peliti, L., ed.), Plenum, New York. 217–227.

    Google Scholar 

  25. Gruler, H. (1990) Chemokinesis, chemotaxis, and galvanotaxis. Dose-response curves and signal chain, in Biological Motion, (Alt, W. and Hoffmann, G., ed.), Springer Verlag, Heidelberg, 396–414.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Gruler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruler, H., Nuccitelli, R. The galvanotaxis response mechanism of keratinocytes can be modeled as a proportional controller. Cell Biochem Biophys 33, 33–51 (2000). https://doi.org/10.1385/CBB:33:1:33

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:33:1:33

Index Entries

Navigation