Skip to main content
Log in

Concentration of 17 trace elements in serum and whole blood of plains viscachas (Lagostomus maximus) by ICP-MS, their reference ranges, and their relation to cataract

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The reference ranges of the trace elements Al, As, Be, B, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Li, Rb, Se, Sr, and Zn were determined by inductively coupled plasma-mass spectrometry (ICP-MS) in sera of a group of free-ranging plains viscachas of the pampa grasslands of Argentina. The values were compared with those of a small group of captive plains viscachas of the Zurich Zoo with diabetes and bilateral cataracts. In addition, a method for digestion of whole-blood samples is described for the trace element determination. Significant differences in the concentration of trace elements in the two groups of animals are discussed. No correlation was found between the levels of selenium and of other trace elements compared to the formation of cataracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Forrer, K. Gautschi, A. Stroh, and H. Lutz, Direct determination of selenium and other trace elements in serum samples by ICP-MS, J. Trace Elements Med. Biol. 12, 240–247 (1998).

    Google Scholar 

  2. R. Forrer, K. Gautschi, and H. Lutz, Simultaneous measurement of trace elements: Al, As, B, Be, Cd, Co, Cu, Fe, Li, Mn, Mo, Ni, Rb, Se, Sr and Zn in human serum and their reference ranges by ICP-MS, Biol. Trace Element Res. (2000), in press.

  3. Ch. J. Wenker, H. Oppliger, D. Hunziker, J. Lopez, and E. Isenbügel, Mission (im)possible: capture management and field research of free-ranging plains viscacha (Lagostomus maximus) in Argentina, Proceedings of the Third Scientific Meeting of the European Association of Zoo and Wildlife Veterinarians, Paris, pp. 151–154 (2000).

  4. E. H. Larsen and S. Sturup, Carbon-enhanced inductively coupled plasma mass spectrometric detection of arsenic and selenium and its application to arsenic speciation, J. Anal. Atomic Spectrom. 9, 1099–1105 (1994).

    Article  CAS  Google Scholar 

  5. E. Eggenberger and R. Thun, Eine graphische Methode zur Darstellung von Messwerten, Schweiz. Arch. Tierheilk. 126, 199–205 (1984).

    CAS  Google Scholar 

  6. L. Sachs, Angewandte Statistik, Springer-Verlag, Berlin (1984).

    Google Scholar 

  7. R. G. Cornell, Spearman estimation for a simple exponential model, Biometrics 21, 858–864 (1965).

    Article  PubMed  CAS  Google Scholar 

  8. H. Vanhoe, J. Goossens, L. Moen, and R. Dams, Spectral interferences encountered in the analysis of biological materials by inductively coupled plasma mass spectrometry, J. Anal. Atomic Spectrom. 9, 177–185 (1994).

    Article  CAS  Google Scholar 

  9. M. F. Robinson, H. M. Rea, G. M. Friend, R. D. H. Stewart, P. C. Snow, and C. D. Thomson, On supplementing the selenium intake of New Zeealanders. 2. Prolonged metabolic experiments with daily supplements of selenomethionine, selenite and fish, Br. J. Nutr. 39, 589–600 (1978).

    Article  PubMed  CAS  Google Scholar 

  10. H. M. Rea, C. D. Thomson, D. R. Campbell, and M. F. Robinson, Relation between erythrocyte selenium concentrations and glutathione peroxidase (EC 1.11.1.9) activities of New Zealand residents and visitors to New Zealand, Br. J. Nutr. 42, 201–208 (1979).

    Article  PubMed  CAS  Google Scholar 

  11. I. A. Bergdahl, A. Grubb, A. Schutz, R. J. Desnick, J. G. Wetmur, S. Sassa, et al., Lead binding to delta-aminolevulinic acid dehydratase (ALAD) in human erythrocytes, Pharmacol. Toxicol. 81, 153–158 (1997).

    Article  PubMed  CAS  Google Scholar 

  12. G. Bunce, J. Kinoshita, and J. Horwitz, Nutritional factors in cataract, Annu. Rev. Nutr., 10, 233–254 (1990).

    Article  PubMed  CAS  Google Scholar 

  13. R. Hirunuma, K. Endo, M. Yanaga, S. Enomoto, S. Ambe, A. Tanaka, et al., The use of a multitracer technique for the studies of the uptake and retention of trace elements in rats, Appl. Radiat. Isot 48, 727–733 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. E. S. El-Hifnawi, D. T. Lincoln, and H. Dashti, Nutritionally induced retinal degeneration in rats, Nutrition 11 (Suppl.), 705–707 (1995).

    Google Scholar 

  15. E. S. El-Hifnawi, D. Lincoln, and H. Dashti, Effects of vitamin E on the retina and retina pigment epithelium of RCS rats, Nutrition 11, 576–581 (1995).

    CAS  Google Scholar 

  16. A. Hollis, W. Butcher, H. Davis, R. Henderson, and W. Stone, Structural alterations in renal tissues from rats deficient in vitamin E and selenium and treated with hyperbaric oxygen, Exp. Eye Res. 54, 671–684 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. W. Stone, R. Henderson, and G. Howard, Jr., et al., The role of antioxidant nutrients in preventing hyperbaric oxygen damage to the retina, Free Radical Biol. Med. 6, 505–512 (1989).

    Article  CAS  Google Scholar 

  18. M. Katz, K. Parker, G. Handelmann, T. Bramel, and E. Dratz, Effects of antioxidant nutrient deficiency on the retina and retina pigment epithelium of albino rats: a light and electron microscopic study, Exp. Eye Res. 34, 339–369 (1982).

    Article  PubMed  CAS  Google Scholar 

  19. I. Ostaladova, A. Bubicky, and J. Obenberger, Cataract induced by administration of a single dose of sodium selenite to suckling rats, Experientia 34, 222–223 (1978).

    Article  Google Scholar 

  20. Y. Amemiya, Retinal changes in the selenium deficient rat, Int. J. Vitam. Nutr. Res. 55, 233–237 (1985).

    PubMed  CAS  Google Scholar 

  21. P. L. Bergad, W. B. Rathbun, and W. Linder, Glutathione peroxadase from bovine lens: a selenoenzyme, Exp. Eye Res. 34, 131–144 (1982).

    Article  PubMed  CAS  Google Scholar 

  22. K. C. Bhuyan, T. Baxter, and S., M.J., Selenium status in the eye: increased level in cataract in the human and its distribution in the eye tissues of animals, Invest. Ophthalmol. Vis. Sci. 22, (Suppl.), 35 (1982).

    Google Scholar 

  23. A. A. Swanson and A. W. Truesdale, Elemental analysis in normal and cataractous human lents tissues, Biochem. Biophys. Res. Commun. 45, 1488–1496 (1971).

    Article  PubMed  CAS  Google Scholar 

  24. E. L. Lakomaa and P. Eklund, Trace element analysis of human cataractous lenses by neutron activation analysis and atomic absorption, Proceedings Series Nuclear Activation Techniques in the Life Sciences. International Atomic Energy—MS, 227, pp. 333–334 (1979).

  25. T. R. Shearer and L. L. David, Role of calcium in selenium cataract, Curr. Eye Res. 2, 777–784 (1983).

    CAS  Google Scholar 

  26. Z. Wang, J. Hess, and G. Bunce, Deferoxamine effect on selenite-induced cataract formation in rats, Invest. Ophthalmol. Vis. Sci. 33, 2511–2519 (1992).

    PubMed  CAS  Google Scholar 

  27. G. N. Schrauzer, Selen: Neue Entwicklungen aus Biologie, Biochemie und Medizin, Johann Ambrosius Barth Verlag, Heidelberg (1998).

    Google Scholar 

  28. J. Wu, Q. Chen, and Z. Gao, Changes in contents of chromium, zinc and copper in the blood, liver and kidney of diabetic rats, Chung-Hua Yu Fang i Hsueh Tsa Chih [Chin. J. Prevent. Med.], 31, 37–39 (1997).

    CAS  Google Scholar 

  29. M. Anke, B. Groppel, K. Gruhn, T. Kosla, and M. Szilagyi, New research on vanadium deficiency in ruminants, in 5. Spurenelement-Symposium Al, As, Cd, Hg, Ni, Pb, Sn, Tl, Si, V, M. Anke, W. Baumann, H. Bräunlich, Chr. Brückner, B. Groppel, Karl-Marx-Universität Leipzig, Friedrich-Schiller-Universität Jena, pp. 1266–1283 (1986).

  30. K. Jeejeebhoy, R. C. Chu, E. B. Marliss, G. R. Greenberg, and A. Bruce-Robertson, Cromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation, in a patient receiving long-term parenteral nutrition, Am. J. Clin. Nutr. 30, 531–538 (1977).

    PubMed  CAS  Google Scholar 

  31. J. S. Borel and R. A. Anderson, Biochemistry of the Elements, E. Frieden, ed., Plenum, New York, Chap. 8 (1984).

    Google Scholar 

  32. K. Schwarz and W. Mertz, Selenium as an integral part of factor 3 against dietary necrotic liver degeneration, Arch. Biochem. Biophys. 85, 292 (1959).

    Article  PubMed  CAS  Google Scholar 

  33. W. Mertz, E. E. Roginski, and K. Schwarz, Effect of trivalent chromium complexes on glucose uptake by epididymal fat tissue of rats, J. Biol. Chem. 236, 318–322 (1961).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forrer, R., Wenker, C., Gautschi, K. et al. Concentration of 17 trace elements in serum and whole blood of plains viscachas (Lagostomus maximus) by ICP-MS, their reference ranges, and their relation to cataract. Biol Trace Elem Res 81, 47–62 (2001). https://doi.org/10.1385/BTER:81:1:47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:81:1:47

Index Entries

Navigation