Skip to main content
Log in

Effect of zinc supplementation on serum leptin levels and insulin resistance of obese women

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Leptin is thought to be a lipostatic signal that contributes to body weight regulation. Zinc might play an important role in appetite regulation and its administration stimulates leptin production. However, there are few reports in the literature on its role on leptin levels in the obese population. The present work asseses the effect of zinc supplementation on serum leptin levels in insulin resistance (IR). A prospective double-blind, randomized, clinical, placebo-controlled study was conducted. Fifty-six normal glucose-tolerant obese women (age: 25–45 yr, body mass index [BMI]=36.2 ±2.3 kg/m2) were randomized for treatment with 30 mg zinc daily for 4 wk. Baseline values of both groups were similar for age, BMI, caloric intake, insulin concentration, insulin resistance, and zinc concentration in diet, plasma, urine, and erythrocytes. Insulin and leptin were measured by radioimmunoassay and IR was estimated by the homeostasis model assessment (HOMA). The determinations of zinc in plasma, erythrocytes, and 24-h urine were performed by using atomic absorption spectrophotometry. After 4 wk, BMI, fasting glucose, and zinc concentration in plasma and erythrocyte did not change in either group, although zinc concentration in the urine increased from 385.9±259.3 to 470.2±241.2±μg/24 h in the group with zinc supplementation (p<0.05). Insulin did not change in the placebo group, whereas there was a significant decrease of this hormone in the supplemented group. HOMA also decreased from 5.8±2.6 to 4.3±1.7 (p<0.05) in the zinc-supplemented group but did not change in the placebo group. Leptin did not change in the placebo group. In the zinc group, leptin was 23.6±12.3 μg/L and did not change. More human data from a unique population of obese individuals with documented insulin resistance would be useful in guiding future studies on zinc supplementation (with higher doses or longer intervals) or different measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Reaven and A. Laws, Insulin resistance, compensatory hyperinsulinemia, and coronary heart disease, Diabetologia 37, 948–952 (1994).

    PubMed  CAS  Google Scholar 

  2. J. P. Despres, B. Lamarche, and P. Mauriege, Hyperinsulinemia as an independent risk factor for ischemic heart disease. N. Engl. J. Med. 334, 952–957 (1996).

    Article  PubMed  CAS  Google Scholar 

  3. A. O. MacDougald, C. S. Hwang, H. Fan, and M. D. Lane, Regulated expression of the obese product (leptin) in white adipose tissue and 3T3-L1 adipocytes. Proc. Natl. Acad. Sci. USA 92, 9034–9037 (1995).

    Article  PubMed  CAS  Google Scholar 

  4. J. Rentsch and M. Chiesi, Regulation of ob gene mRNA levels in cultured adipocytes, FEBS Lett. 379, 55–59 (1996).

    Article  PubMed  CAS  Google Scholar 

  5. J. I. Halaas, K. S. Gajiwala, and M. Maffei, Weight-reducing effects of the plasma protein encoded by the obese gene, Science 269, 543–546 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. T. W. Stephens, M. Basinski, and P. K. Bristow, The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 377, 530–532 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. R. V. Considine, M. K. Sinha, and M. L. Heiman, Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. B. S. Hamilton, D. Paglia, A. Y. M. Kwan, and M. Deitel, Increased obese nRNA expression in omental fat cells from massively obese humans. Nature Med. 1, 953–956 (1995).

    Article  PubMed  CAS  Google Scholar 

  9. S. M. Haffner, H. Miettinen, L. Mykkanen, D. L. Rainwater, and M. Laakso, Leptin concentrations and insulin sensitivity in normoglycemic men. Int. J. Related Metab. Disord. 21, 393–399 (1997).

    Article  CAS  Google Scholar 

  10. M. D. Chen, P. Lin, and W. Sheu, Zinc status in plasma of obese individuals during glucose administration, Biol. Trace Element Res. 60, 123–129 (1997).

    CAS  Google Scholar 

  11. G. Martino, M. G. Matera, B. Martino, C. Vacca, S. Martino, and F. Rossi, Relationship between zinc and obesity, J. Med. 24, 177–183 (1993).

    PubMed  Google Scholar 

  12. L. Perrone, G. Gialanella, R. Moro, et al., Zinc, copper, and iron in obese children and adolescents. Nutr. Res. 18, 183–189 (1998).

    Article  CAS  Google Scholar 

  13. C. S. Mantzoros, A. S. Prasad, F. W. J. Beck, et al., Zinc may regulate serum leptin concentrations in humans, J. Am. Coll. Nutr, 17, 270–275 (1998).

    PubMed  CAS  Google Scholar 

  14. L. Coulston and P. Dandona, Insulin-like effects of zinc on adipocytes, Diabetes 29, 665–667 (1980).

    PubMed  CAS  Google Scholar 

  15. Biodynamics, Monitor de composição corporal: biodynamics modelo 310, Biodynamics, (1995).

  16. R. C. Whitehouse, A. S. Prasad, P. I. Rabbani, and Z. T. Cossack, Zinc in plasma, neutrophils lymphocytes, and erythrocytes as determined by flameless atomic absorption spectrophotometry, Clin. Chem. 28, 475–480 (1982).

    PubMed  CAS  Google Scholar 

  17. M. P. Rodriguez, A. Narizano, V. Demczylo, and A. Cid, A simpler method for the determination of zinc human plasma levels by flame atomic absorption spectrophotometry, Atomic Spectrosc. 10, 68–70 (1989).

    Google Scholar 

  18. O. W. Van Assendelft. The measurement of hemoglobin, in Modern Concepts in Hematology, G. Izak and S. M. Lewis (eds.), Academic, New York, pp. 4–25 (1972).

    Google Scholar 

  19. S. Kilerich, M. S. Christiansen, and J. Naestoft. Determination of zinc in serum and urine by atomic absorption spectrophotometry; relationship between serum levels of zinc and proteins in 104 normal subjects. Clin. Chim. Acta 105, 231–239 (1980).

    Article  Google Scholar 

  20. D. R. Matthews, J. P. Hosker, A. S. Rudenski, B. A. Naylor, D. F. Treacher, and R. C. Turner, Homeostasis Model Assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985).

    Article  PubMed  CAS  Google Scholar 

  21. J. C. King and C. L. Keen, Zinc, in Modern Nutrition in Health and Disease, 8th ed., M. E. Shils, J. A. Olson, and M. Shike, eds., Lea and Febiger, Philadelphia, pp. 214–230 (1994).

    Google Scholar 

  22. D. L. Donaldson, C. C. Smith, and M. S. Walker, Tissue zinc and copper levels in diabetic C57BL/KsJ (ob/ob) mice fed a zinc-deficient diet: lack of evidence for specific depletion of tissue zinc stores. J. Nutr. 118, 1502–1508 (1988).

    PubMed  CAS  Google Scholar 

  23. N. Begin-heick, M. Dalpe-Scott, J. Rowe, and H. M. C. Heick, Zinc supplementation attenuates secretory activity in pancreatic islets of the ob/ob mouse, Diabetes 34, 179–184 (1985).

    PubMed  CAS  Google Scholar 

  24. D. N. Marreiro, M. Fisberg, and S. M. F. Cozzolino, Zinc nutritional status in obese children and adolescents. Biol. Trace Element Res. 85, 1–16 (2002).

    Article  Google Scholar 

  25. Food and Nutrition Board, Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chormium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc, National Academy of Sciences, Washington, DC, (2001).

    Google Scholar 

  26. G. J. Brewer, V. Yuzbasiyan-gurkan, V. Johnson, R. D. Dick, and Y. Wang, Treatment of Wilson's disease with zinc: XI. Interation with other anticopper agents, J. Am. Coll. Nutr. 12, 26–30 (1993).

    PubMed  CAS  Google Scholar 

  27. M. L. Kennedy and M. L. Failla, Zinc metabilsm in genetically obese (ob/ob) mice, J. Nutr. 117, 886–893 (1987).

    PubMed  CAS  Google Scholar 

  28. D. N. Marreiro, M. Fisberg, and S. M. F. Cozzolino, Zinc nutritional status and its relationships with hyperinsulinemia in obese children and adolescents, Biol. Trace Element Res. 100, 137–150 (2004).

    Article  Google Scholar 

  29. M. D. Chen, Y. M. Song, and P. Y. Lin, Zinc effects on hyperglycemia and hypoleptinemia in streptozotocin-induced diabetic mice. Horn. Metab. Res. 32, 107–109 (2000).

    Article  CAS  Google Scholar 

  30. P. Sarrat, R. C. Frederich, E. M. Turner, et al., Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia, J. Exp. Med. 185, 171–175 (1997).

    Article  Google Scholar 

  31. T. G. Kirchgessner, K. T. Uysal, S. M. Wiesbrock, M. W. Marino, and G. S. Hotamisligil Tumor necrosis factor a contributes to obesity-related hyperleptinemia by regulating leptin release from adipocytes. J. Clin. Invest. 100, 2777–2782 (1997).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marreiro, D.d.N., Geloneze, B., Tambascia, M.A. et al. Effect of zinc supplementation on serum leptin levels and insulin resistance of obese women. Biol Trace Elem Res 112, 109–118 (2006). https://doi.org/10.1385/BTER:112:2:109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:112:2:109

Index Entries

Navigation