Skip to main content
Log in

Maternal and neonatal scalp hair concentrations of zinc, copper, cadmium, and lead

Relationship to some lifestyle factors

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Postpartum scalp hair samples from 82 term-pregnancy mother/neonate pairs were analyzed for their concentration of zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb), using inductively coupled plasma-mass spectrometry. Maternal and neonatal Zn concentrations had geometric means (and 99% confidence intervals) of 122.5 μg/g (117.9–131.5 μg/g) and 146.9 μg (141.5–156.7 μg/g) respectively. Corresponding Cu values were 18.4 μg/g (17.6–23.8 μg/g) and 6.7 μg/g (6.3–7.6 μg/g). Those of Cd were 0.49 μg/g (0.47–0.69 μg/g) in the mothers and 0.57 μg/g (0.55–0.86 μg/g) in the neonates. For Pb, they were 7.95 μg/g (7.60–9.32 μg/g) and 4.56 μg/g (4.39–5.56 μg/g). Cigaret smoking, despite its relatively low prevalence (19.5%), was associated with lower Zn and higher Cd and Pb concentrations and in lower Zn/Cd and Zn/Pb molar concentration ratios. Smoking also altered interelemental relationships, particularly those of Zn with Cd and Pb and those between Cd and Pb. Smoking frequency appeared to show negative dose-response effects on maternal and neonatal Zn concentrations, Zn/Pb molar concentration ratios, and birth weight. Mothers with a history of oral contraceptive (OC) usage had significantly higher Cu concentrations and lower Zn/Cu molar concentration ratios than nonusers, with the highest Cu concentrations and lowest Zn/Cu values being associated with third-generation OCs. No similar effects were elicited in the respective neonatal Cu concentrations. Neither alcohol consumption nor prenatal supplementation with iron and/or folic acid had discernible effects on the maternal or neonatal elemental concentrations. The data from this study suggest that in a given population of term-pregnancy mothers and neonates, significant interindividual variations in hair trace element concentrations can occur, irrespective of commonality of general environment, and that lifestyle factors, including cigaret smoking and OC usage history, can be significant contributory factors to such variations. The data are discussed in relation to the effects of smoking-associated exposure to Cd and Pb exposure on Zn availability for placental transfer, as well as on the quantitative maternal Zn supply levels to the fetus resulting from the known tendency of smokers to have lower dietary intakes of Zn. The higher Cu concentrations in OC users are discussed in relation to altered Cu metabolism, characterized by increased synthesis of the Cu-binding protein, ceruloplasmin, as an acute-phase antioxidant response to altered lipid profile and increased lipid oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. A. Swanson and J. C. King, Zinc and pregnancy outcome, Am. J. Clin. Nutr. 46, 763–771 (1986).

    Google Scholar 

  2. S. Bro, H. Berendtsen, J. Norgaard, A. Host, and P. J. Jorgensen, Serum zinc and copper concentrations in maternal and umbilical cord blood: relation to course and out-come of pregnancy, Scand. J. Clin. Lab. Invest. 48, 805–811 (1988).

    PubMed  CAS  Google Scholar 

  3. J. Apgar, Zinc and reproduction: an update, J. Nutr. Biochem. 3, 266–278 (1992).

    Article  CAS  Google Scholar 

  4. R. Uauy, M. Olivares, and M. Gonzales, Essentiality of copper to humans Am. J. Clin. Nutr. 67, 952S-959S (1998).

    PubMed  CAS  Google Scholar 

  5. M. Hambidge, Human zinc deficiency, J. Nutr. 130, 1344S-1349S (2000).

    PubMed  CAS  Google Scholar 

  6. R. E. Black, Micronutrients in pregnancy, Br. J. Nutr. 85, S193-S107 (2001).

    PubMed  CAS  Google Scholar 

  7. C. L. Keen, J. Y. Uri-Hare, S. N. Hawk, et al., Effect of copper deficiency on prenatal development and pregnancy outcome, Am. J. Clin. Nutr. 67, 1003S-1111S (1998).

    PubMed  CAS  Google Scholar 

  8. J. Lee, J. R. Prohaska, and D. Thiele, Essential role for mammalian copper transport Ctr1 in copper homeostasis and embryonic development, Proc. Natl. Acad. Sci. USA 98, 6842–6847 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. D. Shah and H. P. Sachdev, Effect of gestational zinc deficiency on pregnancy out-comes: summary of observation studies and zinc supplementation trials, Br. J. Nutr. 85, S101-S108 (2001).

    PubMed  CAS  Google Scholar 

  10. L. H. Allen and N. W. Solomons, Absorption and malabsorption of mineral nutrients, in Current Topics in Nutrition And Disease, Vol. 12, N. W. Solomons, and I. H. Rosenberg, eds., Alan R. Liss, New York, pp 199–229 (1984).

    Google Scholar 

  11. D. B. Milne, Copper intake and assessment of copper status, Am. J. Clin. Nutr. 67, 1041S-1045 (1998).

    PubMed  CAS  Google Scholar 

  12. D. B. Milne and P. E. Johnson, Assessment of copper status: effect of age and gender on reference range in healthy adults, Clin. Chem. 39, 883–887 (1994).

    Google Scholar 

  13. F. Martin-Lagos, M. Navarro-Alarcon, C. Terres-Martos, H. Lopez-Garcia dela Serrana, V. Perez-Valero, and M. C. Lopez-Martinez, Zinc and copper concentrations in serum from Spanish women during pregnancy, Biol. Trace Element Res, 61, 61–70 (1998).

    CAS  Google Scholar 

  14. C. Grasmick, G. Huel, G. H. Moreau, and H. Sarmini, The combined effect of tobacco and alcohol consumption on the level of lead and cadmium in blood, Sci. Total Environ. 41, 207–217 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. C. B. Ernhart, A. W. Wolf, R. J. Sokol, G. M. Brittenham, and P. Erhard, Fetal lead exposure: antenatal factors, Environ. Res. 38, 54–66 (1985).

    Article  PubMed  CAS  Google Scholar 

  16. R. Sikorski, T. Radomanski, T. Paszkowski, and J. Skoda, Smoking during pregnancy and the perinatal cadmium burden, J. Perinat. Med. 16, 225–231 (1988).

    PubMed  CAS  Google Scholar 

  17. M. Rhainds and P. Levallois, P., Effects of maternal smoking and alcohol consumption on blood lead levels of newborns, Am. J. Epidemiol. 145, 250–257 (1997).

    PubMed  CAS  Google Scholar 

  18. C. Cardella, Lead exposure in pregnancy: a review of the literature and arguments for routine prenatal screening, Obstet. Gynecol. Surv. 56, 231–238 (2001).

    Article  Google Scholar 

  19. L. B. Sasser, B. J. Kelman, A. A. Levin, and R. K. Miller, The influence of maternal cadmium exposure or fetal cadmium injection on hepatic metallothionein concentration in fetal rats, Toxicol. Appl. Pharmacol. 80, 299–307 (1985).

    Article  PubMed  CAS  Google Scholar 

  20. A. Torreblanca, J. Del Ramo, and B. Sarkar, Cadmium effect on zinc metabolism in human trophoblast cells: involvement of cadmium-induced metallothionein, Toxicology, 72, 167–174 (1992).

    Article  PubMed  CAS  Google Scholar 

  21. D. B. Milne and P. E. Johnson, Assessment of copper status: effect of age and gender on reference range values in adults, Clin. Chem. 39, 883–887 (1993).

    PubMed  CAS  Google Scholar 

  22. P. W. F. Fisher, M. R. L'Abbé, and A. Giroux, Effect of age, smoking, drinking, exercise and estrogen use on indices of copper status in healthy adults, Nutr. Res. 10, 1081–1090 (1990).

    Article  Google Scholar 

  23. P. Whittaker, Iron and znc interactions in humans, Am. J. Clin. Nutr, 68, 442S-446S (1998).

    PubMed  CAS  Google Scholar 

  24. B. Sandström, Micronutrient interactions; effects on absorption and bioavailability, Br. J. Nutr. 85, S181-S185 (2001).

    PubMed  Google Scholar 

  25. D. B. Milne, W. K. Canfield, J. R. Mahalko, and H. H. Sandstead, Effect of oral folic acid supplements on zinc, copper, and iron absorption and excretion, Am. J. Clin. Nutr. 39, 535–549 (1984).

    PubMed  CAS  Google Scholar 

  26. B. R. Kuhnert, P. M. Kuhnert, N. Lazebnik, and P. Erhard, The relationship between placental cadmium, zinc, and copper, J. Am. Coll. Nutr, 12, 31–35 (1993).

    PubMed  CAS  Google Scholar 

  27. M. Kantola, R. Purkenen, P. Kröger, et al., Accumulation of cadmium, zinc, and copper in maternal blood and developmental placental tissue: differences between Finland, Estonia, and St. Petersburg, Environ. Res, 83, 54–66 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. G. V. Iyengar and A. Rapp, Human placenta as a “dual” biomarker for monitoring fetal and maternal environment with special reference to potentially toxic trace elements. Part 1: PHysiology, function and sampling of placenta for elemental characterization, Sci. Total Environ. 280, 195–206 (2001).

    Article  PubMed  CAS  Google Scholar 

  29. G. V. Iyengar and A. Rapp, Human placenta as “dual” biomarker for monitoring fetal and maternal environment with special reference to potentially toxic trace elements. Part 2: Essential minor, trace and other (non-essential) elements in human placenta, Sci. Total Environ. 280, 207–219 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. G. V. Iyengar and A. Papp, A., Human placenta as “dual” biomarker for monitoring fetal and maternal environment with special reference to potentially toxic elements. Part 3: Toxic trace elements in placenta and placenta as a biomarker for these elements, Sci. Total Environ. 280, 221–238 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. B. J. Lagerkvist, S. Sandberg, W. French, T. Jin, and G. F. Nordberg, Is placenta a good indicator of cadmium and lead exposure? Arch. Environ. Health 51, 389–394 (1996).

    Article  PubMed  CAS  Google Scholar 

  32. I. B. Razagui and S. J. Haswell, The determination of mercury and selenium concentrations in the maternal and neonatal scalp hair, J. Anal. Toxicol. 21, 149–153 (1997).

    PubMed  CAS  Google Scholar 

  33. Royal College of Physicians of London, A Great and Growing Evil: The Medical Consequences of Alcohol Abuse, Tavistock, London (1987).

    Google Scholar 

  34. Department of Health, Dietary Reference Values for Food, Energy and Nutrients for the United Kingdom, Report on Health and Social Subjects 41, HMSO, London (1991).

    Google Scholar 

  35. J. A. King, Determinants of maternal zinc status during pregnancy, Am. J. Clin. Nutr. 71, 1334S-1343S (2000).

    PubMed  CAS  Google Scholar 

  36. E. B. Fung, L. Ritchie, L. R. Woodhouse, R. Roehl, and J. C. King, Zinc absorption in women during pregnancy and lactation: a longitudinal study, Am. J. Clin. Nutr. 66, 80–88 (1997).

    PubMed  CAS  Google Scholar 

  37. J. King, Effect of reproduction on the bioavailability of calcium, zinc and selenium, J. Nutr. 131, 1355S-1358S (2001).

    PubMed  CAS  Google Scholar 

  38. K. Simmer, C. A. Iles, B. Slavin, P. W. N. Keeling, and R. P. H. Thompson, Maternal nutrition and intrauterine growth retardation, Hum. Nutr: Clin. Nutr. 41C, 193–197 (1987).

    Google Scholar 

  39. F. M. Haste, O. G. Brooke, H. R. Anderson, J. M. Bland, and J. L. Peacok, Social determinants of nutrient intake in smokers and non-smokers during pregnancy, J. Epidemiol. Community Health 44, 205–209 (1990).

    PubMed  CAS  Google Scholar 

  40. F. M. Haste, O. G. Brooke, H. R. Anderson, and J. M. Bland, The effect of nutritional intake on outcome of pregnancy in smokers and non-smokers, Br. J. Nutr. 65, 347–354 (1991).

    Article  PubMed  CAS  Google Scholar 

  41. B. M. Margetts and A. A. Jackson, Interactions between people's diet and their smoking habits: the dietary and nutritional survey of British adults, Br. Med. J. 308, 1042–1043 (1993).

    Google Scholar 

  42. J. B. McPhillips, C. B. Eaton, K. M. Gans, et al., Dietary differences in smokers and nonsmokers from two southeastern New England communities, J. Am. Diet. Assoc. 94, 287–292 (1994).

    Article  PubMed  CAS  Google Scholar 

  43. A. Mezzetti, D. Lapenna, S. D. Pierdomenico, et al., Vitamins E, C and lipid peroxidation in plasma and arterial tissue of smokers and non-smokers, Atherosclerosis 112, 91–99 (1995).

    Article  PubMed  CAS  Google Scholar 

  44. J. Ma, J. S. Hampl, and N. M. Betts, Antioxidant intakes and smoking status: data from the Continuing Survey of Food Intakes by Individuals 1994–1996, Am. J. Clin. Nutr. 71, 774–780 (2000).

    PubMed  CAS  Google Scholar 

  45. F. Mathews, P. Yudkin, R. F. Smith, and A. Neil, Nutrient intakes during pregnancy: the influence of smoking status and age, J. Epidemiol. Community Health 54, 17–23 (2000).

    Article  PubMed  CAS  Google Scholar 

  46. R. M. Ortega, A. M. Lopez-Sobaler, M. E. Quintas, R. M. Martinez, and P. Andres, The influence of smoking on vitamin C status during the third trimester of pregnancy and on vitamin C levels in maternal milk, J. Am. Coll. Nutr. 17, 379–384 (1998).

    PubMed  CAS  Google Scholar 

  47. A. A. Levin, J. R. Plautz, P. A. di Sant'Agnese, and R. K. Miller, Cadmium, placental mechanisms of fetal toxicity, Placenta 3(Suppl.): 308–318 (1981).

    Google Scholar 

  48. T. Paszkowski and R. Sikorski, Gestational smoking and the placental content of essential elements, Trace Elements Med. 11, 148–152 (1994).

    Google Scholar 

  49. L. G. Larsen, H. V. Clausen, and L. Johnson, Sterologic examination of placentas from mothers who smoke during pregnancy, Am. J. Obstet. Gynecol. 186, 531–537 (2002).

    Article  PubMed  Google Scholar 

  50. D. Harats, M. Ben-Naim, Y. Dabach, G. Hollander, O. Stein, and Y. Stein, Cigarette smoking renders LDL susceptible to peroxidative modification and enhanced metabolism of macrophages, Atherosclerosis 79, 245–252 (1989).

    Article  PubMed  CAS  Google Scholar 

  51. A. Kocyigit, O. Erel, and S. Gur, Effects of tobacco smoking on plasma selenium zinc, copper and iron concentrations and related antioxidative enzyme activities, Clin. Biochem. 34, 629–633 (2001).

    Article  PubMed  CAS  Google Scholar 

  52. N. Ercal, H. Gurer-Orhan, and N. Aykin-Burns, Toxic metals and oxidative stress Part I. Mechanisms involved in metal-induced oxidative damage, Curr. Topics Med. Chem. 1, 529–539 (2001).

    Article  CAS  Google Scholar 

  53. P. C. Hsu and Y. L. Guo, Antioxidant nutrients and lead toxicity, Toxicology 180, 33–44 (2002).

    Article  PubMed  CAS  Google Scholar 

  54. A. F. Subar, L. C. Harlan, and M. F. Mattson, Food nutrient intake differences between smokers and non-smokers in the US, Am. J. Public Health 80, 1323–1329 (1990).

    PubMed  CAS  Google Scholar 

  55. C. Bolton-Smith, C. E. Casey, K. F. Gey, W. C. Smith, and H. Tunstall-Pedoe, Antioxidant vitamin intakes assessed using food-frequency questionnaire: correlation with biochemical status in smokers and non-smokers, Br. J. Nutr. 65, 337–346 (1991).

    Article  PubMed  CAS  Google Scholar 

  56. A. Alberg, The influence of cigarette smoking on circulating concentrations of antioxidant nutrients, Toxicology 180, 121–137 (2002).

    Article  PubMed  CAS  Google Scholar 

  57. M. Falcon, P. Vinas, E. Osuna, and A. Luna, Environmental exposures to lead and cadmium measured in human placenta, Arch. Environ. Health 57, 598–602 (2002).

    PubMed  CAS  Google Scholar 

  58. T. Gonzalez-Cossio, K. E. Peterson, L. H. Sanin, et al., Decrease in birth weight in relation to maternal bone-lead burden, Pediatrics 100, 856–862 (1997).

    Article  PubMed  CAS  Google Scholar 

  59. H. Y. Chuang, J. Schwartz, T. Gonzales-Cossio, et al., Interrelations of lead levels in bone, venous blood, and ambilical cord blood with exogenous lead exposure through maternal plasma lead in peripartum women, Environ. Health Perspect 105, 527–532. (2001).

    Article  Google Scholar 

  60. R. A. Goyer, Transplacental transport of lead, Environ. Health Perspect 89, 101–105 (1990).

    Article  PubMed  CAS  Google Scholar 

  61. K. Osman, A. Akesson, M. Berglund, et al., Toxic and essential elements in placentas of Swedish women, Clin. Biochem. 33, 131–138 (2000).

    Article  PubMed  CAS  Google Scholar 

  62. K. T. Suzuki, H. Tamagawa K. Takahashi, and N. Shingo, Pregnancy-induced mobilization of copper and zinc bound to renal metallothionein in cadmium-loaded rats, Toxicology 60, 199–210 (1990).

    Article  PubMed  CAS  Google Scholar 

  63. W. Y. Boadi, S. Yannai, J. Urbach, J. M. Brandes, and K. H. Summer, Transfer and accumulation of cadmium, and the level of metallothionein in perfused human placentae, Arch. Toxicol. 65, 318–323 (1991).

    Article  PubMed  CAS  Google Scholar 

  64. E. P. Slater, A. C. Cato, M. Karin, J. D. Baxter, and M. Beaton, Progesterone induction of metallothionein-IIA gene expression, Mol. Endocrinol. 2, 485–491 (1988).

    Article  PubMed  CAS  Google Scholar 

  65. R. A. Goyer and M. C. Cherian, Role of metallothionein in human placenta and rats exposed to cadmium, in Cadmium in the Human Environment: Toxicity and Carcinogenecity, G. F. Nordberg, R. F. M. Herber, and L. Alessio, eds., International Agency for Research on Cancer, Lyon, pp. 239–247 (1992).

    Google Scholar 

  66. H. M. Chan, Y. Tamura, M. G. Cherian, and R. A. Goyer, Pregnancy-associated changes in plasma metallothionein concentrations and renal accumulation in rats, Proc. Soc. Exp. Biol. Med. 202, 420–427 (1993).

    PubMed  CAS  Google Scholar 

  67. P. M. Kuhnert, B. R. Kuhnert, P. Erhard, W. T. Brashear, S. L. Gruh-Wargo, and M. S. Webster, The effect of smoking on placental and fetal zinc status, Am. J. Obstet. Gynecol. 157, 1241–1246 (1987).

    PubMed  CAS  Google Scholar 

  68. B. R. Kuhnert, P. M. Kuhnert, and T. J. Zarlingo, Associations between placental cadmium and zinc and age and parity in pregnant women who smoke, Obstet. Gynecol. 71, 67–70 (1988).

    PubMed  CAS  Google Scholar 

  69. J. Fiala, D. Hruba, and P. Rezl, Cadmium and zinc concentrations in human placentas, Cent. Eur. J. Public Health 6, 241–248 (1998).

    PubMed  CAS  Google Scholar 

  70. S. Saito, M. Okabe, K. Yoshida, and M. Kurasaki, The effect of heavy metal-induced metallothionein on Zn, Cu, Cd accumulation in rat kidney, Pharmacol. Toxicol. 84, 255–260 (1999).

    PubMed  CAS  Google Scholar 

  71. K. T. Shiverick and C. Salafia, Cigarette smoking and pregnancy ovarian, uterine and placental effects, Placenta 20, 265–272 (1999).

    Article  PubMed  CAS  Google Scholar 

  72. M. Piasek, M. Blanusa, K. Kostial, and J. W. Laskey, Placental cadmium and progesterone concentrations in cigarette smokers, Reprod. Toxicol. 15, 673–681 (2001).

    Article  PubMed  CAS  Google Scholar 

  73. M. Piasek, J. W. Laskey, K. Kostial, and M. Blanusa, M. (2002) Assessment of steroid disruption using cultures of whole ovary and/or placenta in rat and human placental tissue, Int. Arch. Occup. Environ. Health 75, S36-S44 (2002).

    Article  PubMed  CAS  Google Scholar 

  74. M. C. Henson and P. J. Chedres, Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction, Exp. Biol. Med. (Maywood) 229, 383–392 (2004).

    CAS  Google Scholar 

  75. J. Moon, A. J. Davison, T. J. Smith, and S. Fadl, S, Correlation clusters, in the accumulation of metals in human scalp hair: effects of age, community of residence, and abundances of metals in air and water supplies, Sci. Total Environ. 72, 87–112 (1988).

    Article  PubMed  CAS  Google Scholar 

  76. G. Ysart, P. Miller, H. Crews, et al., Dietary exposure estimates of 30 elements from the UK Total Diet Study, Food Addit. Contam. 16, 391–403 (1999).

    Article  PubMed  CAS  Google Scholar 

  77. G. Ysart, P. Miller, M. Crosdale, et al., [???]1997 UK Total Diet Study—dietary exposure to aluminium, arsenic cadmium, chromium, copper, lead, mercury, nickel, selenium, tin and zinc, Food Addit. Contam. 17, 775–786 (2000)

    Article  PubMed  CAS  Google Scholar 

  78. H. Ohta and M. Cherian, The influence of nutritional deficiencies on gastrointestinal uptake of cadmium and cadmium-metallothionein in rats, Toxicology 97, 71–80 (1995).

    Article  PubMed  CAS  Google Scholar 

  79. T. M. Leazer, Y. Liu, and C. D. Klaassen, Cadmium absorption and its relationship to divalent metal transport-1 in the pregnant rat, Toxicol. Appl., Pharmacol. 185, 18–24 (2002).

    Article  CAS  Google Scholar 

  80. M. K. Horwitt, C. C. Harvey, and C. H. Dahm, Relationship between levels of blood lipids, vitamins C, A, and E, serum copper compounds, and urinary excretion of tryptophan metabolites in women taking oral contraceptive therapy, Am. J. Clin. Nutr. 28, 403–412 (1975).

    PubMed  CAS  Google Scholar 

  81. S. B. Deeming and C. W. Weber, Hair analysis of trace minerals in human subjects as influenced by age, sex, and contraceptive drugs, Am. J. Clin. Nutr. 31, 1175–1180 (1978).

    PubMed  CAS  Google Scholar 

  82. J. L. Web, Nutritional effects of oral contraceptive use: a review, J. Repord. Med. 25, 150–156 (1980).

    Google Scholar 

  83. L. J. Hinks, B. E. Clayton, and R. Lloyd, Zinc and copper concentrations in leucocytes and erythrocytes in healthy adults and the effect of oral contraceptives, J. Clin. Pathol. 36, 1016–1021 (1983).

    Article  PubMed  CAS  Google Scholar 

  84. G. Berg, L. Kohlmeier, and H. Brenner, Use of oral contraceptives and serum betacarotene, Eur. J. Clin. Nutr. 51, 181–187 (1997).

    Article  PubMed  CAS  Google Scholar 

  85. G. Berg, L. Kohlmeier, and H. Brenner, Effect of oral contraceptive progestins on serum copper concentration, Eur. J. Clin. Nutr. 52, 711–715 (1998).

    Article  PubMed  CAS  Google Scholar 

  86. M. H. Briggs, M. Briggs, and A. Wakamata, Trace elements in human hair, Experienta 28, 406–407 (1972).

    Article  CAS  Google Scholar 

  87. K. M. Hambidge and W. Droegemueller, Changes, in plasma and hair concentrations of zinc and copper, chromium and manganese during pregnancy, Obstet. Gynecol. 44, 666–672 (1974).

    CAS  Google Scholar 

  88. S. C. Vir and A. H. Love, Effect of oral contraceptive usage on zinc and copper in serum and hair, Int. J. Vitam. Nutr. Res. 49, 330–335 (1979).

    PubMed  CAS  Google Scholar 

  89. S. C. Vir and A. H. Love, Zinc and copper nutriture of women taking oral contraceptive agents, Am. J. Clin. Nutr. 34, 1479–1483 (1981).

    PubMed  CAS  Google Scholar 

  90. A. K. Mantel-Teeuwisse, J. M. Kloosterman, A. H. Maitland-van der Zee, O. H. Klungel, A. J. Porsius, and A. de Boer, Drug-induced lipid changes: a review of the unintended effects of some commonly used drugs on serum lipid levels, Drug Safety 24, 443–456 (2001).

    Article  PubMed  CAS  Google Scholar 

  91. M. A. Johnson, M. S. Fischer, and S. E. Kays, Is copper an antioxidant nutrient? Crit. Rev. Food Sci. Nutr. 32, 1–31 (1992).

    Article  PubMed  CAS  Google Scholar 

  92. C. Jenkins, R. Wilson, J. Roberts, H. Miller, J. H. McKillop, and J. J. Walker, Antioxidants: their role in pregnancy and miscarriage, Antioxid. Redox. Signal 2, 623–628 (2000).

    Article  PubMed  CAS  Google Scholar 

  93. M. H. Briggs and M. Briggs, Plasma lipoprotein changes during oral contraception, Curr. Opin. Med. Res. 6, 249–254 (1979).

    CAS  Google Scholar 

  94. S. B. Subakir, O. Abdul-Madjid, S. Sabarials, and B. Affandi, Oxidative stress, vitamin E and progestin breakthrough bleeding, Hum. Reprod. 15(Suppl. 3), 18–23 (2000).

    PubMed  CAS  Google Scholar 

  95. P. Durand, M. Prost, and D. Blache, Folic, acid deficiency enhances oral contraceptiveinduced platelet hyperactivity, Arterioscler. Thromb. Vasc. Biol. 17, 1939–1946 (1997).

    PubMed  CAS  Google Scholar 

  96. M. O. Louro, J. A. Cocho, and J. C. Tutor, Assessment of copper status during pregnancy by means of determining the specific oxidase activity of ceruloplasmin, Clin. Chim. Acta 312, 123–127 (2001).

    Article  PubMed  CAS  Google Scholar 

  97. E. Jauniaux, A. L. Watson, J. Hempstock, Y. P. Bao, J. N. Skepper, and G. J. Burton, Onset of maternal arterial blood flow and placental oxidative stress. Am. J. Pathol. 157, 2111–2122 (2000).

    PubMed  CAS  Google Scholar 

  98. G. J. Burton and E. Jauniaux, Maternal vascularisation of the human placenta: does the embryo develop in a hypoxic environment? Gynecol. Obstet. Fertil. 29, 503–508 (2001).

    Article  PubMed  CAS  Google Scholar 

  99. E. M. Widdowson, H. Chan, G. E. Harrison, and R. D. G. Milner Accumulation of Cu, Zn, Mn, Cr and Co in the human liver before birth, Biol. Neonate 20, 360–367 (1972).

    Article  PubMed  CAS  Google Scholar 

  100. E. M. Widdowson, J. Dauncey, and J. L. C. Shaw, Trace elements in foetal and early postnatal development, Proc. Nutr. Soc. 33, 275–284 (1974).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razagui, I.B.A., Ghribi, I. Maternal and neonatal scalp hair concentrations of zinc, copper, cadmium, and lead. Biol Trace Elem Res 106, 1–27 (2005). https://doi.org/10.1385/BTER:106:1:001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:106:1:001

Index Entries

Navigation