Skip to main content
Log in

Review on the role of dietary zinc in poultry nutrition, immunity, and reproduction

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc is an important nutrient in animal metabolism. In poultry, zinc serves not only as a nutrient but can also be used as a dietary supplement to manipulate the reproductive system of the bird. This article summarizes the general biochemistry, physiology, and nutritional aspects of zinc metabolism to provide a brief overview on what is known regarding zinc. The potential role of zinc in poultry immune response, Salmonella infection, and molting are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. L. O’Dell, Zinc plays both structural and catalytic roles in metalloproteins. Nutr. Rev. 50, 48–50 (1992).

    Article  PubMed  CAS  Google Scholar 

  2. D. Keilin and T. Mann, Carbonic anhydrase, purification and nature of the enzyme. Biochem. J. 34, 1163–1176 (1940).

    PubMed  CAS  Google Scholar 

  3. R. Österberg, Metal ion-protein interactions in solution, in Metal Ions in Biological Systems, Vol 3. High Molecular Complexes, H. Sigel, ed., Marcel Dekker, New York, pp. 45–88 (1983).

    Google Scholar 

  4. J. Bannister, W. Bannister, and E. Wood, Bovine erythrocyte cupro-zinc protein-1. Isolation and general characterization. Eur. J. Biochem. 18, 178–186 (1971).

    Article  PubMed  CAS  Google Scholar 

  5. J. M. McCord, B. B. Keele, Jr., and I. Fridovich, An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc. Natl. Acad. Sci. USA 68, 1024–1027 (1971).

    Article  PubMed  CAS  Google Scholar 

  6. B. L. Vallee and F. L. Hoch, Yeast alcohol dehydrogenase, a zinc metalloenzyme. J. Am. Chem. Soc. 77, 821–822 (1955).

    Article  CAS  Google Scholar 

  7. J-P. vonWartburg, J. L. Bethune, and B. L. Vallee, Human liver-alcohol dehydrogenase. Kinetic and physiochemical properties. Biochemistry 3, 1775–1782 (1964).

    Article  PubMed  CAS  Google Scholar 

  8. D. E. Drum, J. H. Harrison IV, T.-K. Li, J. L. Bethune, and B. L. Vallee, Structural and functional zinc in horse liver and alcohol dehydrogenase, Proc. Nat. Acad. Sci. USA 57, 1434–1440 (1967).

    Article  PubMed  CAS  Google Scholar 

  9. J. F. Riordan and B. L. Vallee, Structure and function of zinc metalloenzymes, in Trace Elements in Human Health and Disease, A. S. Prasad and D. Oberleas, eds., Academic, New York, Vol. 1, pp. 227–256 (1976).

    Google Scholar 

  10. I. Lieberman, R. Abrams, N. Hunt, and P. Ove, Levels of enzyme activity and deoxyribonucleic acid synthesis in mammalian cells cultured from the animal, J. Biol. Chem. 238, 3955–3962 (1963).

    PubMed  CAS  Google Scholar 

  11. M. Fujioka and I. Lieberman, A Zn2+ requirement for synthesis of deoxyribonucleic acid by rat liver, J. Biol. Chem. 239, 1164–1167 (1964).

    PubMed  CAS  Google Scholar 

  12. J. R. Duncan and L. S. Hurley, Thymidine kinase and DNA polymerase activity in normal and zinc-deficient developing rat embryos, Proc. Soc. Exp. Biol. Med. 159, 39–43 (1978).

    PubMed  CAS  Google Scholar 

  13. C. E. Castro and J. S. Sevall, Zinc deficiency, chromatin structure, and gene expression, in Nutrient Modulation of the Immune Response, S. Cunningham-Rundles, ed., Marcel Dekker, New York, pp. 141–150 (1993).

    Google Scholar 

  14. J. A. Hartsuck and W. N. Lipscomb, Carboxypeptidase A, in The Enzymes, Vol. III, Hydrolysis: Pentide Bonds, P. D. Boyer, ed., Academic, New York, pp. 1–56 (1971).

    Google Scholar 

  15. J. E. Folk, Carboxypeptidase B, In The Enzymes, Vol. III Hydrolysis: Peptide Bonds, P.D. Boyer, ed., Academic, New York, pp. 57–79 (1971).

    Google Scholar 

  16. M. Dardenne and J. M. Bach, Rationale for the mechanism of zinc interaction in the immune system, in Nutrient Modulation of the Immune Response, S. Cunningham-Rundles, ed., Marcel Dekker, New York, pp. 501–509 (1993).

    Google Scholar 

  17. R. S. Beach, M. E. Gershwin, and L. S. Hurley, Reversibility of developmental retardation following murine fetal zinc deprivation, J. Nutr. 112, 1169–1181 (1982).

    PubMed  CAS  Google Scholar 

  18. R. K. Chandra and B. Au, Single nutrient deficiency and cell-mediated immune responnes. I. Zinc, Am. J. Clin. Nutr. 33, 736–738 (1980).

    PubMed  CAS  Google Scholar 

  19. K. G. Vruwink, C. L. Keen, M. E. Gershwin, J. P. Mareschi, and L. S. Hurley, The effect of experimental zinc deficiency on development of the immune system, in Nutrient Modulation of the Immune Response, S. Cunningham-Rundles, ed., Marcel Dekker, New York, pp. 263–279 (1993).

    Google Scholar 

  20. A. S. Prasad, Acquired zinc deficiency and immune dysfunction in sickle cell anemia, in Nutrient Modulation of the Immune Response, S. Cunningham-Rundles, ed., Marcel Dekker, New York, pp. 393–410, (1993).

    Google Scholar 

  21. U. Srinivas, J. H. Braconier, B. Jeppsson, and L. Hansson, Influence of zinc deficiency and malnutrition on organ uptake of Eschericia coli during Gram-negative sepsis in the rat. Nutr. Res. 9, 455–463 (1989).

    Article  CAS  Google Scholar 

  22. R. L. Squibb, W. R. Beisel, and K. A. Bostain, Effect of Newcastle disease on serum copper, zinc, cholesterol, and carotenoid values in the chick, Appl. Microbiol. 22, 1096–1099 (1971).

    PubMed  CAS  Google Scholar 

  23. E. J. Butler and M. J. Curtis, The effects of Escherichia coli endotoxin and ACTH on the plasma zinc concentration in the domestic fowl, Res. Vet. Sci. 15, 363–367 (1973).

    PubMed  CAS  Google Scholar 

  24. K. C. Klasing, Effect of inflammatory agents and interleukin 1 on iron and zinc metabolism, Am. J. Physiol. 247(5, Pt.2), R901-R904 (1984).

    PubMed  CAS  Google Scholar 

  25. R. S. Pekarek, M. C. Powanda, and R. W. Wannemacher, Jr., The effect of leukocytic endogenous mediator (LEM) on serum copper and ceruloplasmin concentrations in the rat, Proc. Soc. Exp. Biol. Med. 141, 1029–1031 (1972).

    PubMed  CAS  Google Scholar 

  26. C. H. Hill, Effect of Salmonella gallinarum infection on zinc metabolism in chicks, Poult. Sci. 68, 297–305 (1989).

    PubMed  CAS  Google Scholar 

  27. L. S. Tufft, C. F. Nockels, and M. J. Fettman, Effects of Escherichia coli on iron, copper, and zinc metabolism in chicks, Avian Dis. 32, 779–786 (1988).

    Article  PubMed  CAS  Google Scholar 

  28. P. Z. Sobocinski, W. J. Canterbury, Jr., and M. C. Powanda, Differential effect of parenteral zinc on the course of various bacterial infections, Proc. Soc. Exp. Biol. Med. 156, 334–339 (1977).

    PubMed  CAS  Google Scholar 

  29. D. H. Nies, The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli, J. Bacteriol. 177, 2707–2712 (1995).

    PubMed  CAS  Google Scholar 

  30. K. Hantke, Bacterial zinc transporters and regulators, BioMetals 14, 239–249 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. S. I. Patzer and K. Hantke, The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol. Microbiol. 28, 1199–1210 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. C. Rensing, T. Pirbyl, and D. H. Nies, New functions for the three subunits of the Czc-CBA cation-proton antiporter, J. Bacteriol. 179, 6871–6879 (1997).

    PubMed  CAS  Google Scholar 

  33. A. Anton, C. Große, J. Reißmann, T. Pribyl, and D. H. Nies, CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34, J. Bacteriol. 181, 6876–6881 (1999).

    PubMed  CAS  Google Scholar 

  34. A. Xiong and R. K. Jayaswal, Molecular characterization of a chromosomoal determinant conferring resistance to zinc and cobalt ions in Staphylococcus aureus, J. Bacteriol. 180, 4024–4029 (1998).

    PubMed  CAS  Google Scholar 

  35. S. Lutsenko and J. H. Kaplan, Organization of P-type ATPases: significance of structural diversity, Biochemistry 34, 15,607–15,613 (1995).

    Article  CAS  Google Scholar 

  36. D. Gatti, B. Mitra, and B. P. Rosen, Escherichia coli soft metal ion translocation ATPases, J. Biol. Chem. 275, 34,009–34,012 (2000).

    Article  CAS  Google Scholar 

  37. D. D. Agranoff and S. Krishna, Metal ion homeostasis and intracellular parasitism, Mol. Microbiol. 28, 403–412 (1998).

    Article  PubMed  CAS  Google Scholar 

  38. A. A. Guffanti, Y. Wei, S. V. Rood, and T. A. Krulwich, An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+, Mol. Microbiol. 45, 145–153 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. I. T. Paulsen, J. H. Park, P. S. Choi, and M. H. Saier, Jr., A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs, and heavy metals from Gram-negative bacteria, FEMS Microbiol. Lett. 156, 1–8 (1997).

    Article  PubMed  CAS  Google Scholar 

  40. N. Gotoh, T. Kusumi, H. Tsujimoto, T. Wada, and T. Nishino, Topological analysis of an RND family transporter, MexD of Pseudomonas aeruginosa, FEBS Lett. 458, 32–36 (1999).

    Article  PubMed  CAS  Google Scholar 

  41. H. Nikaido, Multidrug efflux pumps of Gram-negative bacteria. J. Bacteriol. 178, 5853–5859 (1996).

    PubMed  CAS  Google Scholar 

  42. A. Ocaktan, H. Yoneyama, and T. Nakae, Use of fluorescence probes to monitor function of the subunit proteins of the MexA-MexB-OprM drug extrusion machinery in Pseudomonas aeruginosa, J. Biol. Chem. 272, 21,964–21,969 (1997).

    Article  CAS  Google Scholar 

  43. M. K. Song and N. F. Adham, Evidence for an important role of prostaglandins E2 and F2 in the regulation of zinc transport in the rat, J. Nutr. 109, 2152–2159 (1979).

    PubMed  CAS  Google Scholar 

  44. M. P. Menard and R. J. Cousins, Zinc transport by brush border membrane vesicles from rat intestine, J. Nutr. 113, 1434–1442 (1983).

    PubMed  CAS  Google Scholar 

  45. N. T. Davies, Studies on the absorption of zinc by rat intestine, Br. J. Nutr. 43, 189–203 (1980).

    Article  PubMed  CAS  Google Scholar 

  46. K. T. Smith and R. J. Cousins, Quantitative aspects of zinc absorption by isolated, vascularly perfused rat intestine, J. Nutr. 110, 316–323 (1980).

    PubMed  CAS  Google Scholar 

  47. M. K. Song, Low-molecular weight zinc-binding ligand: a regulatory modulator for intestinal zinc transport, Comp. Biochem. Physiol. 87, 223–230 (1987).

    Article  CAS  Google Scholar 

  48. L. S. Hurley, B. Lönnerdal, and A. G. Stanislowski, Zinc citrate, human milk, and acrodermatitis enteropathica, Lancet 1, 677–678 (1979).

    Article  PubMed  CAS  Google Scholar 

  49. P. Vohra, E. Krantz, and F. H. Kratzer, Formation constants of certain zinc-complexes by ion-exchange method, Proc. Soc. Exp. Biol. Med. 121, 422–425 (1965).

    Google Scholar 

  50. R. M. Forbes, Excretory patterns and bone deposition of zinc, calcium and magnesium in the rat as influenced by zinc deficiency, EDTA, and lactose, J. Nutr. 74, 194–200 (1961).

    CAS  Google Scholar 

  51. P. Vohra and F. H. Kratzer, Influence of various phosphates and other complexing agents on the availability of zinc for turkey poults. J. Nutr. 89, 106–112 (1966).

    PubMed  CAS  Google Scholar 

  52. B. M. Sahagian, I. Harding-Barlow, and H. M. Perry, Jr., Transmural movements of zinc, manganese, cadmium and mercury by rat small intestine, J. Nutr. 93, 291–300 (1967).

    PubMed  CAS  Google Scholar 

  53. F. A. Suso and H. M. Edwards, Jr., Influence of various chelating agents on absorption of 60Co, 59Fe, 54Mn, and 65Zn by chickens, Poult. Sci. 47, 1417–1425 (1968).

    PubMed  CAS  Google Scholar 

  54. G. W. Evans and P. E. Johnson, Characterization and quantitation of a zinc binding ligand in human milk. Pediatr. Res. 14, 876–880 (1980).

    PubMed  CAS  Google Scholar 

  55. R. A. Wapnir, D. E. Khani, M. A. Bayne, and F. Lifshitz, Absorption of zinc by the rat ileum: effects of histidine and other low-molecular-weight ligands, J. Nutr. 113, 1346–1354 (1983).

    PubMed  CAS  Google Scholar 

  56. R. J. Cousins, K. T. Smith, M. L. Failla, and L. A. Markowitz, Origin of low-molecular weight zinc-binding complexes from rat intestine, Life. Sci. 23, 1819–1826 (1978).

    Article  PubMed  CAS  Google Scholar 

  57. A. B. Batal, T. M. Parr, and D. H. Baker, Zinc bioavailability in tetrabasic zinc chloride and the dietary zinc requirement of young chicks fed a soy concentrate diet, Poult. Sci. 80, 87–90 (2001).

    PubMed  CAS  Google Scholar 

  58. S. Leeson and J. D. Summers, Commercial Poultry Nutrition, 2nd ed., University Books, Guelph, Ontario, Canada, pp. 1–9 (1997).

    Google Scholar 

  59. K. J. Wedekind and D. H. Baker, Zinc bioavailability in feed-grade sources of zinc, J. Anim. Sci. 68, 684–689 (1990).

    PubMed  CAS  Google Scholar 

  60. M. Sandoval, P. R. Henry, C. B. Ammerman, R. D. Miles, and R. C. Littell, Relative bioavailability of supplemental inorganic zinc sources for chicks, J. Anim. Sci. 75, 3195–3205 (1997).

    PubMed  CAS  Google Scholar 

  61. H. M. Edwards III and D. H. Baker, Zinc bioavailability in soybean meal, J. Anim. Sci. 78, 1017–1021 (2000).

    PubMed  CAS  Google Scholar 

  62. G. J. Fosmire, Zinc toxicity, Am. J. Clin. Nutr. 51, 225–227 (1990).

    PubMed  CAS  Google Scholar 

  63. R. H. Roberson and P. J. Schaible, The tolerance of growing chicks for high levels of different forms of zinc, Poult. Sci. 39, 893–896 (1960).

    CAS  Google Scholar 

  64. W. A. Dewar, P. A. L. Wight, R. A. Pearson, and M. J. Gentle, Toxic effects of high concentrations of zinc oxide in the diet of the chick and laying hens, Br. Poult. Sci. 24, 397–404 (1983).

    PubMed  CAS  Google Scholar 

  65. T. L. Blalock and C. H. Hill, Studies on the role of iron in zinc toxicity in chicks, Biol. Trace Element Res. 17, 17–29 (1988).

    CAS  Google Scholar 

  66. K. L. Hermayer, P. E. Stake, and R. L. Shippe, Evaluation of dietary zinc, cadmium, tin, lead, bismuth and arsenic toxicity in hens, Poult. Sci. 56(Suppl. 1), 1721–1722 (1977) (abstract).

    Google Scholar 

  67. D. H. Cox and D. L. Harris, Effect of excess dietary zinc on iron and copper in the rat, J. Nutr. 70, 514–520 (1960).

    PubMed  CAS  Google Scholar 

  68. R. Rama and J. Planas, Effects of dietary zinc on iron metabolism in chickens, Biol. Trace. Element Res. 3, 287–299 (1981).

    Article  CAS  Google Scholar 

  69. J. L. Stahl, J. L. Greger, and M. E. Cook, Zinc, copper, and iron utilization by chicks fed various concentrations of zinc, Br. Poult. Sci. 30, 123–134 (1989).

    PubMed  CAS  Google Scholar 

  70. C. C. McCormick, The tissue-specific accumulation of hepatic zinc metallothionein following parenternal iron loading, Proc. Soc. Exp. Biol. Med. 176, 392–402, (1984).

    PubMed  CAS  Google Scholar 

  71. M. P. Richards and R. J. Cousins, Mammalian zinc homeostasis: requirement for RNA and metallothionein synthesis, Biochem. Biophys. Res. Commun. 64, 1215–1223 (1975).

    Article  PubMed  CAS  Google Scholar 

  72. P. J. Fraker, L. E. King, B. A. Garvy, and C. A. Medina, The immunopathology of zinc deficiency in humans and rodents: a possible role for programmed cell death, in Nutrition and Immunology—A Comprehensive Treatise, D. M. Klurfeld, ed., Plenum, New York, pp. 267–283 (1993).

    Google Scholar 

  73. M. T. Kidd, P. R. Ferket, and M. A. Qureshi, Zinc metabolism with special reference to its role in immunity, World’s Poult. Sci. J. 52, 309–324 (1996).

    Article  Google Scholar 

  74. M. T. Kidd, N. B. Anthony, and S. R. Lee, Progeny performance when dams and chicks are fed supplemental zinc, Poult. Sci. 71, 1201–1206 (1992).

    PubMed  CAS  Google Scholar 

  75. M. T. Kidd, N. B. Anthony, L. A. Newberry, and S. R. Lee, Effect of supplemental zinc in either a corn-soybean or a milo and corn-soybean meal diet on the performance of young broiler breeders and their progeny, Poult. Sci. 72, 1492–1499 (1993).

    CAS  Google Scholar 

  76. M. T. Kidd, M. A. Qureshi, P. R. Ferket, and L. N. Thomas, Dietary zinc-methionine enhances mononuclear-phagocytic function in young turkeys, Biol. Trace Element Res. 42, 217–229 (1994).

    Article  CAS  Google Scholar 

  77. P. R. Ferket and M. A. Qureshi, Effect of level of inorganic and organic zinc and manganese on the immune function of turkey toms, Poult. Sci. 71(Suppl. 1), 60 (1992) (abstract).

    Google Scholar 

  78. J. D. Flinchum, C. F. Nockels, and R. E. Moreng, Aged hens fed zinc methionine had chicks with improved performance, Poult. Sci. 68(Suppl. 1), 55 (1989) (abstract).

    Google Scholar 

  79. N. Mrosovsky and D. F. Sherry, Animal anorexias, Science 207, 837–842 (1980).

    Article  PubMed  CAS  Google Scholar 

  80. M. O. North and D. D. Bell, Commercial Chicken Production Manual, 4th ed., Chapman & Hall, New York (1990).

    Google Scholar 

  81. J. Brake, Recent advances in induced molting, Poult. Sci. 72, 929–931 (1993).

    Google Scholar 

  82. D. D. Bell, Historical and current molting practices in the U.S. table egg industry, Poult. Sci. 82, 965–970 (2003).

    PubMed  CAS  Google Scholar 

  83. H. Cheever, AVAR’s concerns about forced molting, J. Am. Vet. Med. Assoc. 215, 1236 (1999).

    PubMed  CAS  Google Scholar 

  84. P. L. Ruszler, Health and husbandry considerations of induced molting, Poult. Sci. 77, 1789–1793 (1998).

    PubMed  CAS  Google Scholar 

  85. K. Keshavarz and F. W. Quimby, An investigation of different molting techniques with an emphasis on animal welfare, J. Appl. Poult. Res. 11, 54–67 (2002).

    Google Scholar 

  86. A. Bar, V. Razaphkovsky, D. Shinder, and E. Vax, Alternative procedures for molt induction: practical aspects, Poult. Sci. 82, 543–550 (2003).

    PubMed  CAS  Google Scholar 

  87. R. K. Gast and S. C. Ricke, Current and future prospects for induced molting in laying hens, Poult. Sci. 82, 964 (2003).

    Google Scholar 

  88. A. B. Webster, Physiology and behavior of the hen during induced molt, Poult. Sci. 82, 992–1002 (2003).

    PubMed  CAS  Google Scholar 

  89. P. S. Holt and R. E. Porter, Jr., Effect of induced molting on the course of infection and transmission of Salmonella enteritidis in white Leghorn hens of different ages, Poult. Sci. 71, 1842–1848 (1992).

    PubMed  CAS  Google Scholar 

  90. P. S. Holt, Effect of induced molting on the susceptibility of white Leghorn hens to a Salmonella enteritidis infection, Avian Dis. 37, 412–417 (1993).

    Article  PubMed  CAS  Google Scholar 

  91. P. S. Holt, R. J. Buhr, D. L. Cunningham, and R. E. Porter, Jr., Effect of two different molting procedures on a Salmonella enteritidis infection, Poult. Sci. 73, 1267–1275 (1994).

    PubMed  CAS  Google Scholar 

  92. P. S. Holt, N. P. Macri, and R. E. Porter, Jr., Microbiological analysis of the early Salmonella enteritidis infection in molted and unmolted hens, Avian Dis. 39, 55–63 (1995).

    Article  PubMed  CAS  Google Scholar 

  93. J. A. Durant, D. E. Corrier, J. A. Byrd, L. H. Stanker, and S. C. Ricke, Feed deprivation affects crop environment and modulates Salmonella enteritidis colonization and invasion of Leghorn hens, Appl. Environ. Microbiol. 65, 1919–1923 (1999).

    PubMed  CAS  Google Scholar 

  94. P. S. Holt, Molting and Salmonella enterica serovar Entertitidis infection: the problem and some solutions, Poult. Sci. 82, 1008–1010 (2003).

    PubMed  CAS  Google Scholar 

  95. S. C. Ricke, The gastrointestinal tract ecology of Salmonella Enteritidis colonization in molting hens, Poult. Sci. 82, 1003–1007 (2003).

    PubMed  CAS  Google Scholar 

  96. J. T. Scott and C. R. Creger, The use of dietary zinc as an effective molting agent in laying hens, Poult. Sci. 55, 2089 (1976) (abstract).

    Google Scholar 

  97. C. R. Creger and Scott, J. T., Dietary zinc as an effective resting agent for the laying hen, Poult. Sci. 56, 1706 (1977) (abstract).

    Google Scholar 

  98. R. H. Roberson and D. W. Francis, The effect two molting methods on performance of Hyline and Shaver hens, Poult. Sci. 58, 1098 (1979) (abstract).

    Google Scholar 

  99. R. L. Shippee, P. E. Stake, U. Koehn, J. L. Lambert, and R. W. Simmons III, High dietary zinc or magnesium as force-resting agents for laying hens, Poult. Sci. 58, 949–954 (1979).

    CAS  Google Scholar 

  100. S. Y. Park, S. G. Birkhold, L. F. Kubena, D. J. Nisbet, and S. C. Ricke, Effects of high zinc diets using zinc propionate on molt induction, organs, and postmolt egg production and quality in laying hens, Poult. Sci. 83, 24–33 (2004).

    PubMed  CAS  Google Scholar 

  101. W. D. Berry and J. Brake, Comparison of parameters associated with molt induced by fasting, zinc, and low dietary sodium in caged layers, Poult. Sci. 64, 2027–2036 (1985).

    CAS  Google Scholar 

  102. C. C. McCormick and D. L. Cunningham, Performance and physiological profiles of high dietary zinc and fasting as methods of inducing a forced rest: a direct comparison, Poult. Sci. 66, 1007–1013 (1987).

    PubMed  CAS  Google Scholar 

  103. S. W. Breeding, J. Brake, J. D. Garlich, and A. L. Johnson, Molt induced by dietary zinc in a low-calcium diet, Poult. Sci. 71, 168–180 (1992).

    PubMed  CAS  Google Scholar 

  104. M. R. Luck and C. G. Scanes, Ionic and endocrine factors influencing the secretion of luteinizing hormone by chicken anterior pituitary cells in vitro, Gen. Comp. Endocrinol. 41, 260–265 (1980).

    Article  PubMed  CAS  Google Scholar 

  105. J. D. Garlich and C. R. Parkhurst, Increased egg production by calcium supplementation during the initial fasting period of a forced molt, Poult. Sci. 61, 955–961 (1982).

    CAS  Google Scholar 

  106. R. F. Walker and L. S. Frawley, Gonadal function in underfed rats: II. Effect of estrogen on plasma gonoadotropins after pinealectomy or constant light exposure, Biol. Reprod. 17, 630–634 (1977).

    Article  PubMed  CAS  Google Scholar 

  107. K. Simkiss, Calcium metabolism and avian reproduction, Biol. Rev. 36, 321–367 (1961).

    CAS  Google Scholar 

  108. T. G. Taylor, Calcium-endocrine relationships in the laying hens, Proc. Nutr. Soc. 24, 49–54 (1965).

    Article  PubMed  CAS  Google Scholar 

  109. E. K. Asem, M. Molnar, and F. Hertelendy, Leuteninizing hormone-induced intracellular calcium mobilization in granulosa cells: comparison with forskolin and 8-bromoadenosine 3′,5′-monophosphate, Endocrinology 120, 853–859 (1987).

    Article  PubMed  CAS  Google Scholar 

  110. D. Thiagarajan, A. M. Saeed, and E. K. Asem, Mechanism of transovarian transmission of Salmonella enteritidis in laying hens, Poult. Sci. 73, 89–98 (1994).

    PubMed  CAS  Google Scholar 

  111. P. S. Holt, B. W. Mitchell, and R. K. Gast, Airborne horizontal transmission of Salmonella enteritidis in molted laying chicken, Avian Dis. 42, 45–52 (1998).

    Article  PubMed  CAS  Google Scholar 

  112. S. C. Ricke, S. Y. Park, R. W. Moore, et al., Feeding low calcium and zinc molt diets sustains gastrointestinal fermentation and limits Salmonella enterica serovar enteritidis colonization in laying hens. J. Food Safety (2004).

  113. R. W. Moore, S. Y. Park, L. F. Kubena, et al., Comparison of zinc acetate and propionate addition on gastrointestinal tract fermentation and susceptibility of laying hens to Salmonella enteritidis during forced molt, Poult. Sci. 83, 1276–1286 (2004).

    PubMed  CAS  Google Scholar 

  114. M. E. Hume, L. F. Kubena, T. S. Edrington, et al., Poultry digestive microflora biodiversity as indicated by denaturing gradient gel electrophoresis, Poult. Sci. 82, 1100–1107 (2003).

    PubMed  CAS  Google Scholar 

  115. S. C. Ricke, M. E. Hume, S. Y. Park, et al., Denaturing gradient gel electrophoresis (DGGE) as a rapid method for assessing gastrointestinal tract microflora responses in laving hens fed similar zinc molt induction diets, J. Rapid Methods Autom. Microbiol. 12, 69–81 (2004).

    Article  CAS  Google Scholar 

  116. S. Y. Park, C. L. Woodward, S. G. Birkhold, L. F. Kubena, D. J. Nisbet, and S. C. Ricke, In vitro comparison of anaerobic and aerobic growth response of Salmonella typhimurium to zinc addition, J. Food Safety 22, 219–229 (2002).

    Article  CAS  Google Scholar 

  117. S. Y. Park, C. L. Woodward, S. G. Birkhold, L. F. Kubena, D. J. Nisbet, and S. C. Ricke, The combination of zinc compounds and acidic pH limits aerobic growth of a Salmonella typhimurium poultry isolate marker strain in rich and minimal media, J. Environ. Sci. Health B39, 199–207 (2004).

    Article  PubMed  CAS  Google Scholar 

  118. S. Y. Park, C. L. Woodward, S. G. Birkhold, L. F. Kubena, D. J. Nisbet, and S. C. Ricke, Influence of oxidation-reduction media reductants on Salmonella typhimurium growth kinetics response in an anaerobic atmosphere after initial pH adjustment and zinc compound addition, J. Rapid Methods Autom. Microbiol. (2004).

  119. R. Nayak, P. B. Kenney, and G. K. Bissonnette, Inhibition and reversal of Salmonella typhimurium attachment to poultry skin using zinc chloride, J. Food Prot. 64, 456–461 (2001).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S.Y., Birkhold, S.G., Kubena, L.F. et al. Review on the role of dietary zinc in poultry nutrition, immunity, and reproduction. Biol Trace Elem Res 101, 147–163 (2004). https://doi.org/10.1385/BTER:101:2:147

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:101:2:147

Index Entries

Navigation