Skip to main content
Log in

Selection of anion exchangers for detoxification of dilute-acid hydrolysates from spruce

  • Session 3—Bioprocessing, Including Separations
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Six anion-exchange resins with different properties were compared with respect to detoxification of a dilute-acid hydrolysate of spruce prior to ethanolic fermentation with Saccharomyces cerevisiae. The six resins encompassed strong and weak functional groups as well as styrene-, phenol-, and acrylic-based matrices. In an analytical experimental series, fractions from columns packed with the different resins were analyzed regarding pH, glucose, furfural, hydroxymethylfurfural, phenolic compounds, levulinic acid, acetic acid, formic acid, and sulfate. An initial adsorption of glucose occurred in the strong alkaline environment and led to glucose accumulation at a later stage. Acetic and levulinic acid passed through the column before formic acid, whereas sulfate had the strongest affinity. In a preparative experimental series, one fraction from each of six columns packed with the different resins was collected for assay of the fermentability and analysis of glucose, mannose, and fermentation inhibitors. The fractions collected from strong anion-exchange resins with styrene-based matrices displayed the best fermentability: a sevenfold enhancement of ethanol productivity compared with untreated hydrolysate. Fractions from a strong anion exchanger with acrylic-based matrix and a weak exchanger with phenol-based resin displayed an intermediate improvement in fermentability, a four- to fivefold increase in ethanol productivity. The fractions from two weak exchangers with styrene- and acrylic-based matrices displayed a twofold increase in ethanol productivity. Phenolic compounds were more efficiently removed by resins with styrene-and phenol-based matrices than by resins with acrylic-based matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faith, W. L. (1945), Ind. Eng. Chem. 37, 9–11.

    Article  CAS  Google Scholar 

  2. Lee, Y. Y., Iyer, P., and Torget, R. W. (1999), Adv. Biochem. Eng./Biotechnol. 65, 93–115.

    CAS  Google Scholar 

  3. Harris, J. F., Baker, A. J., and Zerbe, J. R. (1984), Energy Biomass Wastes 8, 1151–1170.

    CAS  Google Scholar 

  4. Banerjee, N., Bhatnagar, R., and Vishwanathan, L. (1981), Enzyme Microb. Technol. 3, 24–28.

    Article  CAS  Google Scholar 

  5. Sjöström, E. (1993), Wood Chemistry: Fundamental and Applications. Academic, San Diego, CA.

    Google Scholar 

  6. Soboleva, G. A. and Vitrinskaja, A. M. (1975), Prikl. Biokhim. Mikrobiol. 11, 649–652.

    PubMed  Google Scholar 

  7. Taherzadeh, M. J., Gustafsson, L., Niklasson, C., and Lidén, G. (1999), J. Biosci. Bioeng. 87, 169–174.

    Article  PubMed  CAS  Google Scholar 

  8. Palmqvist, E., Almeida, J. S., and Hahn-Hägerdal, B. (1999), Biotechnol. Bioeng. 62, 447–454.

    Article  PubMed  CAS  Google Scholar 

  9. Sárvári Horváth, I., Taherzadeh, M. J., Niklasson, C., and Lidén, G. (2001), Biotechnol. Bioeng. 75, 540–549.

    Article  Google Scholar 

  10. Sárvári Horváth, I., Franzén, C. J., Taherzadeh, M. J., Niklasson, C., and Lidén, G. (2003), Appl. Environ. Microbiol. 69, 4076–4086.

    Article  PubMed  CAS  Google Scholar 

  11. Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., and Nilvebrant, N.-O. (1999), Enzyme Microb. Technol. 24, 151–159.

    Article  CAS  Google Scholar 

  12. Taherzadeh, M. J., Gustafsson, L., Niklasson, C., and Lidén, G. (2000), Appl. Microbiol. Biotechnol. 53, 701–703.

    Article  PubMed  CAS  Google Scholar 

  13. Clark, T. and Mackie, K. (1984), J. Chem. Tech. Biotechnol. 34B, 101–110.

    CAS  Google Scholar 

  14. Ando, S., Arai, I., Kiyoto, K., and Hanai, S. (1986), J. Ferment. Technol. 64, 567–570.

    Article  CAS  Google Scholar 

  15. Larsson, S., Quintana-Sáinz, A., Reimann, A., Nilvebrant, N.-O., and Jönsson, L. J. (2000), Appl. Biochem. Biotechnol. 84–86, 617–632.

    Article  PubMed  Google Scholar 

  16. Martín, C., Galbe, M., Nilvebrant, N.-O., and Jönsson, L. J. (2002), Appl. Biochem. Biotechnol. 98–100, 699–716.

    Article  PubMed  Google Scholar 

  17. Taherzadeh, M. J., Eklund, R., Gustafsson, L., Niklasson, C., and Lidén, G. (1997), Ind. Eng. Chem. Res. 36, 4659–4665.

    Article  CAS  Google Scholar 

  18. Olsson, L. and Hahn-Hägerdal, B. (1996), Enzyme Microb. Technol. 18, 312–331.

    Article  CAS  Google Scholar 

  19. Palmqvist, E., and Hahn-Hägerdal, B. (2000), Bioresour. Technol. 74, 17–24.

    Article  CAS  Google Scholar 

  20. Larsson, S., Reimann, A., Nilvebrant, N.-O., and Jönsson, L. J. (1999), Appl. Biochem. Biotechnol. 77–79, 91–103.

    Article  Google Scholar 

  21. Nilvebrant, N.-O., Reimann, A., Larsson, S., and Jönsson, L. J. (2001), Appl. Biochem. Biotechnol. 91–93, 35–49.

    Article  PubMed  Google Scholar 

  22. Nilvebrant, N.-O., Persson, P., Reimann, A., de Sousa, F., Gorton, L., and Jönsson, L. J. (2003), Appl. Biochem. Biotechnol. 105–108, 615–628.

    Article  PubMed  Google Scholar 

  23. Singleton, V. L., Orthofer, R., and Lamuela-Raventós, R. M. (1999), Methods Enzymol. 299, 152–178.

    Article  CAS  Google Scholar 

  24. Watson, N. E., Prior, B. A., Lategan, P. M., and Lussi, M. (1984), Enzyme Microb. Technol. 6, 451–456.

    Article  CAS  Google Scholar 

  25. Dominguez, J. M., Ningjun, C., Gong, C. S., and Tsao, G. T. (1997), Bioresour Technol. 61, 85–90.

    Article  CAS  Google Scholar 

  26. Chung, I. S. and Lee, Y. Y. (1985), Biotechnol. Bioeng. 27, 308–315.

    Article  CAS  Google Scholar 

  27. Jönsson, L. J., Palmqvist, E., Nilvebrant, N.-O., and Hahn-Hägerdal, B. (1998), Appl Microbiol. Biotechnol. 49, 691–697.

    Article  Google Scholar 

  28. Persson, P., Larsson, S., Jönsson, L. J., Nilvebrant, N.-O., Sivik, B., Munteanu, F., Thörneby, L., and Gorton, L. (2002), Biotechnol. Bioeng., 79, 694–700.

    Article  PubMed  CAS  Google Scholar 

  29. Taherzadeh, M. J., Niklasson, C., and Lidén, G. (1997), Chem. Eng., Sci. 52, 2653–2659.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif J. Jönsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sárvári Horváth, I., Sjöde, A., Nilvebrant, NO. et al. Selection of anion exchangers for detoxification of dilute-acid hydrolysates from spruce. Appl Biochem Biotechnol 114, 525–538 (2004). https://doi.org/10.1385/ABAB:114:1-3:525

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:114:1-3:525

Index Entries

Navigation