Skip to main content
Log in

Catalytic antibodies for complex reactions

Hapten design and the importance of screening for catalysis in the generation of catalytic antibodies for the NDA/CN reaction

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Success in generating catalytic antibodies as enzyme mimics lies in the strategic design of the transition-state analog (TSA) for the reaction of interest, and careful development of screening processes for the selection of antibodies that are catalysts. Typically, the choice of TSA structure is straightforward, and the criterion for selection in screening is often binding of the TSA to the antibody in a microtiter-plate assay. This article emphasizes the problems of TSA design in complex reactions and the importance of selecting antibodies on the basis of catalysis as well as binding to the TSA. The target reaction is the derivatization of primary amines with naphthalene-2,3-dicarboxaldehyde (NDA) in the presence of cyanideion. The desired outcome is selective catalysis of formation of the fluorescent derivative in preference to nonfluorescent side-products. In the study, TSA design was directed toward the reaction branch leading to the fluorescent product. Here, we describe a microtiter plate-based assay that is capable of detecting antibodies showing catalytic activity atan early stage. Of the antibodies selected, 36% showed no appreciable binding to any of the substrates tested, but did show catalytic activity in deriving one or more of the amino acids screened. In contrast, only two out of 77 clones that showed binding did not show catalysis. Thus, in this complex system, observation of binding is a good predictor of the presence of catalytic activity, and failure to observe binding is a poor predictor of the absence of catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tramontano, A., Janda, K., and Lerner, R. A. (1986), Science 234, 1566–1670.

    Article  PubMed  CAS  ADS  Google Scholar 

  2. Pollack, S. J., Jacobs, J., and Schultz, P. G. (1986), Science 234, 1570–1573.

    Article  PubMed  CAS  ADS  Google Scholar 

  3. Wade, H. and Scanlan, T. S. (1997), Annu. Rev. Biophys. Biomol. Struct. 26, 461–493.

    Article  PubMed  CAS  Google Scholar 

  4. Tawfik, D. S., Zemel, R. R., Arad-Yellin, R., Green, B. S., and Eshhar, Z. (1990), Biochemistry 29 9916–9921.

    Article  PubMed  CAS  Google Scholar 

  5. Tawfik, D. S., Green, B. S., and Eshhar, Z. (1992), Anal. Biochem. 202, 35–39.

    Article  PubMed  CAS  Google Scholar 

  6. Tawfik, D. S., Green, B. S., Chap, R., Sela, M., and Eshhar, Z. (1993), Proc. Natl. Acad. Sci. USA 90, 373–377.

    Article  PubMed  CAS  ADS  Google Scholar 

  7. Höllfelder, F., Kirby, A. J., and Tawfik, D. S. (1996), Nature 383, 60–63; Benkovic, S. J. (1996), Nature 383, 23,24.

    Article  PubMed  ADS  Google Scholar 

  8. Barbas, C. F., Heine, A., Zhong, G. F., Hoffmann, T., Gramatikova, S., Bjornestedt, R., List, B., Anderson, J., Stura, E. A., Wilson, I. A., and Lerner, R. A. (1997), Science 278, 2085–2092.

    Article  PubMed  CAS  ADS  Google Scholar 

  9. Lane, J. W., Hong, X., and Schwabacher, A. W. (1993), J. Am. Chem. Soc. 115, 2078–2080.

    Article  CAS  Google Scholar 

  10. Reymond, J-L., Koch, T., Schröer, J., and Tierney, E. (1996), Proc. Natl. Acad. Sci. USA 93, 4251–4256.

    Article  PubMed  CAS  ADS  Google Scholar 

  11. Janda, K. D., Lo, L. C., Lo, C. H. L., Sim, M. M., Wang, R., Wong, C. H., and Lerner, R. A. (1997), Science 275, 945–948.

    Article  PubMed  CAS  Google Scholar 

  12. Gao, C. S., Lavey, B. J., Lo, C. H. L., Datta, A., Wentworth, P., and Janda, K. D. (1998), J. Am. Chem. Soc., 120, 2211–2217.

    Article  CAS  Google Scholar 

  13. Pauling, L. (1946), Chem. Eng. News 24, 1375–1377.

    CAS  Google Scholar 

  14. deMontigny, P., Stobaugh, J. F., Givens, R. S., Carlson, R. G., Srinivasachar, K., Sternson, L. A., and Higuchi, T. (1987), Anal. Chem. 59, 1096–1101.

    Article  CAS  Google Scholar 

  15. Lunte, S. M. and Wong, O. S. (1989), LC-GC. 7, 908–916, Wong, O. S., Sternson, L. A., and Schowen, R. L. (1985), J. Am. Chem. Soc. 107, 6421,6422.

    CAS  Google Scholar 

  16. Staros, J. V., Wright, R. W., and Swingle, D. M. (1986), Anal. Biochem. 156, 220–222.

    Article  PubMed  CAS  Google Scholar 

  17. Goding, J. W. (1983), Monoclonal Antibodies: Principles and Practice, Academic Press, NY.

    Google Scholar 

  18. Tijssen, P. (1985), in Laboratory Techniques in Biochemistry and Molecular Biology. Practice and Theory of Immunoassays, Burton, R. H., and van Knippenberg, P. H., eds., Elsevier, Amsterdam.

    Google Scholar 

  19. Jitsukawa, T., Nakajima, S., Sugawara, I., and Watanabe, H. (1989), J. Immunol. Methods 116, 251–257.

    Article  PubMed  CAS  Google Scholar 

  20. Dottavio-Martin, D. and Ravel, J. M. (1976), Anal. Biochem. 87, 562–565.

    Article  Google Scholar 

  21. Habeeb, A. F. S. A. (1966), Anal. Biochem. 14, 328–336.

    Article  PubMed  CAS  Google Scholar 

  22. Galfré, G. and Milstein, C. (1981), Methods Enzymol. 73, 3–47.

    Article  PubMed  Google Scholar 

  23. DeSilva, B. S. and Wilson, G. S., manuscript in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeSilva, B.S., Orosz, G., Egodage, K.L. et al. Catalytic antibodies for complex reactions. Appl Biochem Biotechnol 83, 195–208 (2000). https://doi.org/10.1385/ABAB:83:1-3:195

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:83:1-3:195

Index Entries

Navigation