Skip to main content

Pathway Mapping Tools for Analysis of High Content Data

  • Protocol
High Content Screening

Part of the book series: Methods in Molecular Biology ((MIMB,volume 356))

Abstract

The complexity of human biology requires a systems approach that uses computational approaches to integrate different data types. Systems biology encompasses the complete biological system of metabolic and signaling pathways, which can be assessed by measuring global gene expression, protein content, metabolic profiles, and individual genetic, clinical, and phenotypic data. High content screening assays can also be used to generate systems biology knowledge. In this review, we will summarize the pathway databases and describe biological network tools used predominantly with this genomics, proteomics, and metabolomics data but which are equally as applicable for high content screening data analysis. We describe in detail the integrated data-mining tools applicable to building biological networks developed by GeneGo, namely, MetaCoreā„¢ and MetaDrug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nicholson, J. K. and Wilson, I. D. (2003) Understanding ā€˜globalā€™ systems biology: metabonomics and the continuum of metabolism. Nat. Rev. Drug Discov. 2, 668ā€“676.

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Laghaee, A., Malcolm, C., Hallam, J., and Ghazal, P. (2005) Artificial intelligence and robotics in high-throughput post-genomics. Drug Discov. Today 10, 1253ā€“1259.

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Hood, L. (2003) Systems biology: integrating technology, biology, and computation. Mech. Ageing Dev. 124, 9ā€“16.

    ArticleĀ  Google ScholarĀ 

  4. Hartwell, L. H., Hopfield, J. J., Leibler, S., and Murray, A. W. (1999) From molecular to modular cell biology. Nature 402, C47ā€“C52.

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Peri, S., Navarro, J. D., Amanchy, R., et al. (2003) Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 13, 2363ā€“2371.

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14,863ā€“14,868.

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Butte, A. (2002) The use and analysis of microarray data. Nat. Rev. Drug Discov. 1, 951ā€“960.

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Abraham, V. C., Taylor, D. L., and Haskins, J. R. (2004) High content screening applied to large-scale cell biology. Trends Biotechnol. 22, 15ā€“22.

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Giuliano, K. A. and Taylor, D. L. (1998) Fluorescent-protein biosensors: new tools for drug discovery. Trends Biotechnol. 16, 135ā€“140.

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Taylor, D. L., Woo, E. S., and Giuliano, K. A. (2001) Real-time molecular and cellular analysis: the new frontier of drug discovery. Curr. Opin. Biotechnol. 12, 75ā€“81.

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Mitchison, T. J. (2005) Small-molecule screening and profiling by using automated microscopy. Chembiochem 6, 33ā€“39.

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Vogt, A., Tamewitz, A., Skoko, J., Sikorski, R. P., Giuliano, K. A., and Lazo, J. S. (2005) The benzo[c]phenanthridine alkaloid, sanguinarine, is a selective, cell-active inhibitor of mitogen-activated protein kinase phosphatase-1. J. Biol. Chem. 280, 19,078ā€“19,086.

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Mousses, S., Caplen, N. J., Cornelison, R., et al. (2003) RNAi microarray analysis in cultured mammalian cells. Genome Res. 13, 2341ā€“2347.

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Tencza, S. B. and Sipe, M. A. (2004) Detection and classification of threat agents via high-content assays of mammalian cells. J. Appl. Toxicol. 24, 371ā€“377.

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Vogt, A., Cooley, K. A., Brisson, M., Tarpley, M. G., Wipf, P., and Lazo, J. S. (2003) Cell-active dual specificity phosphatase inhibitors identified by high content screening. Chem. Biol. 10, 733ā€“742.

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Simpson, P. B., Bacha, J. I., Palfreyman, E. L., Woollacott, A. J., McKernan, R. M., and Kerby, J. (2001) Retinoic acid evoked-differentiation of neuroblastoma cells predominates over growth factor stimulation: an automated image capture and quantitation approach to neuritogenesis. Anal. Biochem. 298, 163ā€“169.

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Borchert, K. M., Galvin, R. J., Frolik, C. A., et al. (2005) High content screening assay for activators of the Wnt/Fzd pathway in primary human cells. Assay Drug Dev. Technol. 3, 133ā€“141.

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Giuliano, K. A., Cheung, W. S., Curran, D. P., et al. (2005) Systems cell biology knowledge created from high content screening. Assay Drug Dev. Tech. 3, 501ā€“514.

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Ekins, S., Bugrim, A., Nikolsky, Y., and Nikolskaya, T. (2005) Systems biology: applications in drug discovery. In Drug Discovery Handbook (Gad, S. C., ed.), Wiley, New York, pp. 123ā€“183.

    ChapterĀ  Google ScholarĀ 

  20. Ekins, S., Kirillov, E., Rakhmatulin, E., and Nikolskaya, T. (2005) A novel method for visualizing nuclear hormone receptor networks relevant to drug metabolism. Drug Metab. Dispos. 33, 474ā€“481.

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Chaussabel, D. (2004) Biomedical literature mining: challenges and solutions in the ā€˜omicsā€™ era. Am. J. Pharmacogenomics 4, 383ā€“393.

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Chaussabel, D. and Sher, A. (2002) Mining microarray expression data by literature profiling. Genome Biol. 3, 0055.1ā€“0055.16.

    ArticleĀ  Google ScholarĀ 

  23. Chen, H. and Sharp, B. M. (2004) Content-rich biological network constructed by mining PubMed abstracts. BMC Bioinformatics 5, 147.

    ArticleĀ  Google ScholarĀ 

  24. Blaschke, K. and Valencia, A. (2001) Can bibliographical pointers for known biological data be found automatically? Protein interactions as a case study. Comp. Funct. Genomics 2, 196ā€“206.

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Santos, C., Eggle, D., and States, D. J. (2005) Wnt pathway curation using automated natural language processing: combining statistical methods with partial and full parse for knowledge extraction. Bioinformatics 21, 1653ā€“1658.

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Grigorov, M. G. (2005) Global properties of biological networks. Drug Discov. Today 10, 365ā€“372.

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Daraselia, N., Yuryev, A., Egorov, S., Novihkova, S., Nikitin, A., and Mazo, I. (2004) Extracting human protein interactions from Medline using a full-sentence parser. Bioinformatics 20, 604ā€“611.

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Chien, C. T., Bartel, P. L., Sternglanz, R., and Fields, S. (1991) The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA 88, 9578ā€“9582.

    ArticleĀ  CASĀ  Google ScholarĀ 

  29. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569ā€“4574.

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Giot, L., Bader, J. S., Brouwer, C., et al. (2003) A protein interaction map of Drosophila melanogaster. Science 302, 1727ā€“1736.

    ArticleĀ  CASĀ  Google ScholarĀ 

  31. Li, S., Armstrong, C. M., Bertin, N., et al. (2004) A map of the interactome network of the metazoan C. elegans. Science 303, 540ā€“543.

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Mrowka, R., Patzak, A., and Herzel, H. (2001) Is there a bias in proteome research? Genome Res. 11, 1971ā€“1973.

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Lehner, B. and Fraser, A. G. (2004) A first-draft human protein-interaction map. Genome Biol. 5, R63.

    ArticleĀ  Google ScholarĀ 

  34. Pagel, P., Kovac, S., Oesterheld, M., et al. (2005) The MIPS mammalian protein-protein interaction database. Bioinformatics 21, 832ā€“834.

    ArticleĀ  CASĀ  Google ScholarĀ 

  35. Hughes, T. R., Marton, M. J., Jones, A. R., et al. (2000) Functional discovery via a compendium of expression profiles. Cell 102, 109ā€“126.

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. van Noort, V., Snel, B., and Huynen, M. A. (2003) Predicting gene function by conserved co-expression. Trends Genet. 19, 238ā€“242.

    ArticleĀ  Google ScholarĀ 

  37. Kemmeren, P., van Berkum, N. L., Vilo, J., et al. (2002) Protein interaction verification and functional annotation by integrated analysis of genome-scale data. Mol. Cell 9, 1133ā€“1143.

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Deane, C. M., Salwinski, L., Xenarios, I., and Eisenberg, D. (2002) Protein interactions: two methods for assessment of the reliability of high-throughput observations. Mol. Cell Proteomics 1, 349ā€“356.

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Ho, Y., Gruhler, A., Heilbut, A., et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180ā€“183.

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Gavin, A. C., Bosche, M., Krause, R., et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141ā€“147.

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. Salwinski, L. and Eisenberg, D. (2003) Computational methods of analysis of protein-protein interactions. Curr. Opin. Struct. Biol. 13, 377ā€“382.

    ArticleĀ  CASĀ  Google ScholarĀ 

  42. Navarro, J. D. and Pandey, A. (2004) Unraveling the human interactome: lessons from the yeast. Drug Discov. Today: Targets 3, 79ā€“84.

    ArticleĀ  CASĀ  Google ScholarĀ 

  43. Nikolsky, Y., Nikolskaya, T., and Bugrim, A. (2005) Biological networks and analysis of experimental data in drug discovery. Drug Discov. Today 10, 653ā€“662.

    ArticleĀ  CASĀ  Google ScholarĀ 

  44. Peri, S., Navarro, J. D., Kristiansen, T. Z., et al. (2004) Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res. 32 (Database issue), D497ā€“D501.

    ArticleĀ  CASĀ  Google ScholarĀ 

  45. Bader, J. S., Chaudhuri, A., Rothberg, J. M., and Chant, J. (2004) Gaining confidence in high-throughput protein interaction networks. Nat. Biotechnol. 22, 78ā€“85.

    ArticleĀ  CASĀ  Google ScholarĀ 

  46. Zanzoni, A., Montecchi-Palazzi, L., Quondam, M., Ausiello, G., Helmer-Citterich, M., and Cesareni, G. (2002) MINT: a Molecular INTeraction database. FEBS Lett. 513, 135ā€“140.

    ArticleĀ  CASĀ  Google ScholarĀ 

  47. von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., and Snel, B. (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 31, 258ā€“261.

    ArticleĀ  Google ScholarĀ 

  48. Ashburner, M., Ball, C. A., Blake, J. A., et al. (2000) Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25ā€“29.

    ArticleĀ  CASĀ  Google ScholarĀ 

  49. Eisenberg, D., Marcotte, E. M., Xenarios, I., and Yeates, T. O. (2000) Protein function in the post-genomic era. Nature 405, 823ā€“826.

    ArticleĀ  CASĀ  Google ScholarĀ 

  50. Hood, L. and Perlmutter, R. M. (2004) The impact of systems approaches on biological problems in drug discovery. Nat. Biotechnol. 22, 1215ā€“1217.

    ArticleĀ  CASĀ  Google ScholarĀ 

  51. Yu, H., Zhu, X., Greenbaum, D., Karro, J., and Gerstein, M. (2004) TopNet: a tool for comparing biological sub-networks, correlating protein properties with topological statistics. Nucleic Acids Res. 32, 328ā€“337.

    ArticleĀ  CASĀ  Google ScholarĀ 

  52. Barabasi, A.-L. and Oltvai, Z. N. (2004) Network biology: understanding the cellā€™s functional organization. Nat. Rev. Genet. 5, 101ā€“113.

    ArticleĀ  CASĀ  Google ScholarĀ 

  53. Albert, R., Jeong, H., and Barabasi, A. L. (2000) Error and attack tolerance of complex networks. Nature 406, 378ā€“382.

    ArticleĀ  CASĀ  Google ScholarĀ 

  54. Doniger, S. W., Salomonis, N., Dahlquist, K. D., Vranizan, K., Lawlor, S. C., and Conklin, B. R. (2003) MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol. 4, R7.

    ArticleĀ  Google ScholarĀ 

  55. Jeong, H., Mason, S. P., Barabasi, A. L., and Oltvai, Z. N. (2001) Lethality and centrality in protein networks. Nature 411, 41ā€“42.

    ArticleĀ  CASĀ  Google ScholarĀ 

  56. Yu, H., Greenbaum, D., Xin Lu, H., Zhu, X., and Gerstein, M. (2004) Genomic analysis of essentiality within protein networks. Trends Genet. 20, 227ā€“231.

    Google ScholarĀ 

  57. Han, J. D., Bertin, N., Hao, T., et al. (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430, 88ā€“93.

    ArticleĀ  CASĀ  Google ScholarĀ 

  58. Sharom, J. R., Bellows, D. S., and Tyers, M. (2004) From large networks to small molecules. Curr. Opin. Chem. Biol. 8, 81ā€“90.

    ArticleĀ  CASĀ  Google ScholarĀ 

  59. Bredel, M. and Jacoby, E. (2004) Chemogenomics: an emerging strategy for rapid target and drug discovery. Nat. Rev. Genet. 5, 262ā€“275.

    ArticleĀ  CASĀ  Google ScholarĀ 

  60. Csermely, P., Agoston, V., and Pongor, S. (2005) The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol. Sci. 26, 178ā€“182.

    ArticleĀ  CASĀ  Google ScholarĀ 

  61. Parsons, A. B., Brost, R. I., Ding, H., et al. (2004) Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat. Biotechnol. 22, 62ā€“69.

    ArticleĀ  CASĀ  Google ScholarĀ 

  62. Thornton-Wells, T. A., Moore, J. H., and Haines, J. L. (2004) Genetics, statistics and human disease: analytical retooling for complexity. Trends Genet. 20, 640ā€“647.

    ArticleĀ  CASĀ  Google ScholarĀ 

  63. Moore, J. H. (2005) A global view of epistasis. Nat. Genet. 37, 13ā€“14.

    ArticleĀ  CASĀ  Google ScholarĀ 

  64. Krauthammer, M., Kaufmann, C. A., Gilliam, T. C., and Rzhetsky, A. (2004) Molecular triangulation: bridging linkage and molecular-network information for identifying candidate genes in Alzheimerā€™s disease. Proc. Natl. Acad. Sci. USA 101, 15,148ā€“15,153.

    ArticleĀ  CASĀ  Google ScholarĀ 

  65. Babu, M. M., Luscombe, N. M., Aravind, L., Gerstein, M., and Teichmann, S. A. (2004) Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol. 14, 283ā€“291.

    ArticleĀ  CASĀ  Google ScholarĀ 

  66. Stuart, J. M., Segal, E., Koller, D., and Kim, S. K. (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249ā€“255.

    ArticleĀ  CASĀ  Google ScholarĀ 

  67. Wuchty, S. (2002) Interaction and domain networks of yeast. Proteomics 2, 1715ā€“1723.

    ArticleĀ  CASĀ  Google ScholarĀ 

  68. Bork, P., Jensen, L. J., von Mering, C., Ramani, A. K., Lee, I., and Marcotte, E. M. (2004) Protein interaction networks from yeast to human. Curr. Opin. Struct. Biol. 14, 292ā€“299.

    ArticleĀ  CASĀ  Google ScholarĀ 

  69. Aloy, P., Bottcher, B., Ceulemans, H., et al. (2004) Structure-based assembly of protein complexes in yeast. Science 303, 2026ā€“2029.

    ArticleĀ  CASĀ  Google ScholarĀ 

  70. Ng, W.-L., Kazmierczak, K. M., Robertson, G. T., Gilmour, R., and Winkler, M. E. (2003) Transcriptional regulation and signature patterns revealed by microarray analyses of streptococcus pneumoniae R6 challenged with sublethal concentrations of translation inhibitors. J. Bacteriol. 185, 359ā€“370.

    ArticleĀ  CASĀ  Google ScholarĀ 

  71. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and Barabasi, A. L. (2000) The large-scale organization of metabolic networks. Nature 407, 651ā€“654.

    ArticleĀ  CASĀ  Google ScholarĀ 

  72. Schilling, C. H. and Palsson, B. O. (1998) The underlying pathway structure of biochemical reaction networks. Proc. Natl. Acad. Sci. USA 95, 4193ā€“4198.

    ArticleĀ  CASĀ  Google ScholarĀ 

  73. Ekins, S., Giroux, C. N., Nikolsky, Y., Bugrim, A., and Nikolskaya, T. (2005) A signature gene network approach to toxicity. Toxicologist 84, meeting abstract.

    Google ScholarĀ 

  74. Ekins, S., Nikolsky, Y., and Nikolskaya, T. (2005) Techniques: application of systems biology to absorption, distribution, metabolism, excretion, and toxicity. Trends Pharmacol. Sci. 26, 202ā€“209.

    ArticleĀ  CASĀ  Google ScholarĀ 

  75. Korolev, D., Balakin, K. V., Nikolsky, Y., et al. (2003) Modeling of human cytochrome P450-mediated drug metabolism using unsupervised machine learning approach. J. Med. Chem. 46, 3631ā€“3643.

    ArticleĀ  CASĀ  Google ScholarĀ 

  76. Ekins, S., Andreyev, S., Ryabov, A., et al. (2005) Computational prediction of human drug metabolism. Exp. Opin. Drug Metab. Toxicol. 1, 303ā€“324.

    ArticleĀ  CASĀ  Google ScholarĀ 

  77. Nikolsky, Y., Ekins, S., Nikolskaya, T., and Bugrim, A. (2005) A novel method for generation of signature networks as biomarkers from complex high-throughput data. Toxicol. Lett. 158, 20ā€“29.

    ArticleĀ  CASĀ  Google ScholarĀ 

  78. Hodges, L. C., Cook, J. D., Lobenhofer, E. K., et al. (2003) Tamoxifen functions as a molecular agonist inducing cell cycle-associated genes in breast cancer cells. Mol. Cancer Res. 1, 300ā€“311.

    CASĀ  Google ScholarĀ 

  79. Hopkins, A. L. and Groom, C. R. (2002) The druggable genome. Nat. Rev. Drug Discov. 1, 727ā€“730.

    ArticleĀ  CASĀ  Google ScholarĀ 

  80. Bollard, M. E., Keun, H. C., Beckonert, O., et al. (2005) Comparative metabonomics of differential hydrazine toxicity in the rat and mouse. Toxicol. Appl. Pharmacol. 204, 135ā€“151.

    ArticleĀ  CASĀ  Google ScholarĀ 

  81. Lu, B., Soreghan, B. A., Thomas, S. N., Chen, T., and Yang, A. J. (2005) ACS, San Diego. Meeting abstract.

    Google ScholarĀ 

  82. Waters, K. M., Shankaran, H., Wiley, H. S., Resat, H., and Thrall, B. D. (2005) Keystone Symposia.

    Google ScholarĀ 

  83. Lantz, R. C., Petrick, J. S., and Hays, A. M. (2005) Society of Toxicology. Meeting abstract.

    Google ScholarĀ 

  84. Nie, A. Y., McMillian, M. K., Leone, A. M., et al. (2005) Society of Toxicology. Meeting abstract.

    Google ScholarĀ 

  85. Meng, Q., Waters, K. M., Malard, J. M., Lee, K. M., and Pounds, J. G. (2005) Society of Toxicology. Meeting abstract.

    Google ScholarĀ 

  86. Mason, C. W., Swaan, P. W., and Weiner, C. P. (2005) Society of Gynecological Investigation, Los Angeles, CA. Meeting abstract.

    Google ScholarĀ 

  87. Weiner, C. P., Mason, C. W., Buhimschi, C., Hall, G., Swaan, P. W., and Buhimschi, I. (2005) Society of Gynecological Investigation, Los Angeles, CA. Meeting abstract.

    Google ScholarĀ 

  88. Liang, W. S., Maddukuri, A., Teslovich, T. M., et al. (2005) Therapeutic targets for HIV-1 infection in the host proteome. Retrovirology 2, 20.

    ArticleĀ  Google ScholarĀ 

  89. Lee, K. A., Shim, J. H., Kho, C. W., et al. (2004) Protein profiling and identification of modulators regulated by the E7 oncogene in the C33A cell line by proteomics and genomics. Proteomics 4, 839ā€“848.

    ArticleĀ  CASĀ  Google ScholarĀ 

  90. Hougardy, B. M., Maduro, J. H., van der Zee, A. G., Willemse, P. H., de Jong, S., and de Vries, E. G. (2005) Clinical potential of inhibitors of survival pathways and activators of apoptotic pathways in treatment of cervical cancer: changing the apoptotic balance. Lancet Oncol. 6, 589ā€“598.

    ArticleĀ  CASĀ  Google ScholarĀ 

  91. Harima, Y., Togashi, A., Horikoshi, K., et al. (2004) Prediction of outcome of advanced cervical cancer to thermoradiotherapy according to expression profiles of 35 genes selected by cDNA microarray analysis. Int. J. Radiat. Oncol. Biol. Phys. 60, 237ā€“248.

    ArticleĀ  CASĀ  Google ScholarĀ 

  92. Wong, Y. F., Selvanayagam, Z. E., Wei, N., et al. (2003) Expression genomics of cervical cancer: molecular classification and prediction of radiotherapy response by DNA microarray. Clin. Cancer Res. 9, 5486ā€“5492.

    CASĀ  Google ScholarĀ 

  93. Kitahara, O., Katagiri, T., Tsunoda, T., Harima, Y., and Nakamura, Y. (2002). Classification of sensitivity or resistance of cervical cancers to ionizing radiation according to expression profiles of 62 genes selected by cDNA microarray analysis. Neoplasia 4, 295ā€“303.

    ArticleĀ  CASĀ  Google ScholarĀ 

  94. Sachs, K., Perez, O., Peā€™er, D., Lauffenburger, D. A., and Nolan, G. P. (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523ā€“529.

    ArticleĀ  CASĀ  Google ScholarĀ 

  95. Friedman, N. (2004) Inferring cellular networks using probabilistic graphical models. Science 303, 799ā€“805.

    ArticleĀ  CASĀ  Google ScholarĀ 

  96. Basso, K., Margolin, A. A., Stolovitzky, G., Klein, U., Dalla-Favera, R., and Califano, A. (2005) Reverse engineering of regulatory networks in human B cells. Nat. Genet. 37, 382ā€“390.

    ArticleĀ  CASĀ  Google ScholarĀ 

  97. Swaan, P. W. and Ekins, S. (2005) Reengineering the pharmaceutical industry by crash-testing molecules. Drug Discov. Today 10, 1191ā€“1200.

    ArticleĀ  Google ScholarĀ 

  98. Burk, O., Arnold, K. A., Nussler, A. K., et al. (2005) Antimalarial artemisinin drugs induce cytochrome P450 and MDR1 expression by activation of xenosensors pregnane X receptor and constitutive androstane receptor. Mol. Pharmacol. 67, 1954ā€“1965.

    ArticleĀ  CASĀ  Google ScholarĀ 

Reference Added in Proof

  • Ekins, S., Andreyev, S., Ryabov, A., et al. (2006) A combined approach to drug metabolism and toxicity assessment. Drug Metabolism and Disposition, in press.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2007 Humana Press, Inc.

About this protocol

Cite this protocol

Ekins, S., Nikolsky, Y., Bugrim, A., Kirillov, E., Nikolskaya, T. (2007). Pathway Mapping Tools for Analysis of High Content Data. In: Taylor, D.L., Haskins, J.R., Giuliano, K.A. (eds) High Content Screening. Methods in Molecular Biology, vol 356. Humana Press. https://doi.org/10.1385/1-59745-217-3:319

Download citation

  • DOI: https://doi.org/10.1385/1-59745-217-3:319

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-731-0

  • Online ISBN: 978-1-59745-217-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics