Skip to main content

Bioluminescence Resonance Energy Transfer to Monitor Protein-Protein Interactions

  • Protocol
Transmembrane Signaling Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 332))

Summary

The bioluminescence resonance energy transfer (BRET) methodology allows for the study of protein-protein interactions as well as conformational changes within proteins or molecular complexes. BRET is a highly versatile technique that can be applied to in vitro studies using purified proteins, crude cell membranes, cell fractions obtained by centrifugation on a density gradient, as well as permeabilized cells. Importantly, BRET also allows for monitoring of protein-protein interactions, in real time, in intact living cells that can be submitted to various stimuli. Moreover, quantitative BRET analysis also permits a pharmacological approach of protein-protein interactions, allowing one to determine whether a given stimulus induces a conformational change within preassociated partners or increases the association (recruitment) between two separated partners. Determination of the proportion of the dimeric vs monomeric form of a protein in the cell also is possible. Therefore, the BRET technology can be considered as a new and powerful tool in the field of protein-protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morin J. G., and Hastings J. W. (1971) Energy transfer in a bioluminescent system. J. Cell Physiol. 77, 313–318.

    Article  PubMed  CAS  Google Scholar 

  2. Lorenz W. W., McCann R. O., Longiaru M., and Cormier M. J. (1991) Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc. Natl. Acad. Sci. USA 88, 4438–4442.

    Article  PubMed  CAS  Google Scholar 

  3. Tsien R. Y., Bacskai B. J., and Adams S. R. (1993) FRET for studying intracellular signalling. Trends Cell Biol. 3, 243–245.

    Article  Google Scholar 

  4. Wu P. and Brand L. (1994) Resonance energy transfer: methods and applications. Anal. Biochem. 218, 1–13.

    Article  PubMed  CAS  Google Scholar 

  5. Boute N., Jockers R., and Issad T. (2002) The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol. Sci. 23, 351.

    Article  PubMed  CAS  Google Scholar 

  6. Xu Y., Piston D. W., and Johnson C. H. (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc. Natl. Acad. Sci. USA 96, 151–156.

    Article  PubMed  CAS  Google Scholar 

  7. Angers S., Salahpour A., Joly E., Hilairet S., Chelsky D., Dennis M., and Bouvier M. (2000) Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl. Acad. Sci. USA 97, 3684–3689.

    Article  PubMed  CAS  Google Scholar 

  8. McVey M., Ramsay D., Kellett E., et al. (2001) Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human delta-opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J. Biol. Chem. 276, 14092–14099.

    PubMed  CAS  Google Scholar 

  9. Kroeger K. M., Hanyaloglu A. C., Seeber R. M., Miles L. E., and Eidne K. A. (2001) Constitutive and agonist-dependent homo-oligomerization of the thyrotropin-releasing hormone receptor. Detection in living cells using bioluminescence resonance energy transfer. J. Biol. Chem. 276, 12,736–12,743.

    Article  PubMed  CAS  Google Scholar 

  10. Cheng Z. J. and Miller L. J. (2001) Agonist-dependent dissociation of oligomeric complexes of G protein-coupled cholecystokinin receptors demonstrated in living cells using bioluminescence resonance energy transfer. J. Biol. Chem. 276, 48,040–48,047.

    PubMed  CAS  Google Scholar 

  11. Ayoub M. A., Couturier C., Lucas-Meunier E., et al. (2002) Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J. Biol. Chem. 277, 21,522–21,528.

    Article  PubMed  CAS  Google Scholar 

  12. Boute N., Pernet K., and Issad T. (2001) Monitoring the activation state of the insulin receptor using bioluminescence resonance energy transfer. Mol. Pharmacol. 60, 640–645.

    PubMed  CAS  Google Scholar 

  13. Couturier C. and Jockers R. (2003) Activation of the leptin receptor by a ligandinduced conformational change of constitutive receptor dimers. J. Biol. Chem. 278, 26,604–26,611.

    Article  PubMed  CAS  Google Scholar 

  14. Hasbi A., Devost D., Laporte S. A., and Zingg H. H. (2004) Real-time detection of interactions between the human oxytocin receptor and G protein-coupled receptor kinase-2. Mol. Endocrinol. 18, 1277–1286.

    Article  PubMed  CAS  Google Scholar 

  15. Boute N., Boubekeur S., Lacasa D., and Issad T. (2003) Dynamics of the interactionb etween the insulin receptor and protein tyrosine-phosphatase 1B in living cells. EMBO Rep. 4, 313–319.

    Article  PubMed  CAS  Google Scholar 

  16. Lacasa D., Boute N., and Issad T. (2005) Interaction of the insulin receptor with the receptor-like protein tyrosine-phosphatases PTPα and PTPβ in living cells. Mol. Pharmacol. 67, 1206–1213.

    Article  PubMed  CAS  Google Scholar 

  17. Milligan G. (2004) Applications of bioluminescence-and fluorescence resonance energy transfer to drug discovery at G protein-coupled receptors. Eur. J. Pharm. Sci. 21, 397–405.

    Article  PubMed  CAS  Google Scholar 

  18. Issad T., Tavaré J., and Denton R. M. (1991) Analysis of insulin receptor phosphorylation sites in intact rat liver cells by two-dimensional phosphopeptides mapping. Predominance of the trisphosphorylated form of the kinase domain after stimulation by insulin. Biochem. J. 275, 15–21.

    PubMed  CAS  Google Scholar 

  19. Mercier J. F., Salahpour A., Angers S., Breit A., and Bouvier M. (2002) Quantitative assessment of beta 1-and beta 2-adrenergic receptor homo-and heterodimerization by bioluminescence resonance energy transfer. J. Biol. Chem. 277, 44,925–44,931.

    Article  PubMed  CAS  Google Scholar 

  20. Ramsay D., Carr I. C., Pediani J., et al. (2004) High-affinity interactions between human alpha1A-adrenoceptor C-terminal splice variants produce homoand heterodimers but do not generate the alpha1L-adrenoceptor. Mol. Pharmacol. 66, 228–239.

    Article  PubMed  CAS  Google Scholar 

  21. Ramsay D., Kellett E., McVey M., Rees S., and Milligan G. (2002) Homo-and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences. Biochem. J. 365, 429–440.

    Article  PubMed  CAS  Google Scholar 

  22. Ayoub M. A., Levoye A., Delagrange P., and Jockers R. (2004) Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand interaction properties compared with MT2 homodimers. Mol. Pharmacol. 66, 312–321.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Issad, T., Jockers, R. (2006). Bioluminescence Resonance Energy Transfer to Monitor Protein-Protein Interactions. In: Ali, H., Haribabu, B. (eds) Transmembrane Signaling Protocols. Methods in Molecular Biology™, vol 332. Humana Press. https://doi.org/10.1385/1-59745-048-0:193

Download citation

  • DOI: https://doi.org/10.1385/1-59745-048-0:193

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-546-0

  • Online ISBN: 978-1-59745-048-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics